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Abstract

Vector graphics (VG) are ubiquitous in industrial de-
signs. In this paper, we address semantic segmentation
of a typical VG, i.e., roughcast floorplans with bare wall
structures, whose output can be directly used for further
applications like interior furnishing and room space mod-
eling. Previous semantic segmentation works mostly pro-
cess well-decorated floorplans in raster images and usu-
ally yield aliased boundaries and outlier fragments in seg-
mented rooms, due to pixel-level segmentation that ignores
the regular elements (e.g. line segments) in vector floor-
plans. To overcome these issues, we propose to fully uti-
lize the regular elements in vector floorplans for more in-
tegral segmentation. Our pipeline predicts room segmen-
tation from vector floorplans by dually classifying line seg-
ments as room boundaries, and regions partitioned by line
segments as room segments. To fully exploit the structural
relationships between lines and regions, we use two-stream
graph neural networks to process the line segments and par-
titioned regions respectively, and devise a novel modulated
graph attention layer to fuse the heterogeneous information
from one stream to the other. Extensive experiments show
that by directly operating on vector floorplans, we outper-
form image-based methods in both mIoU and mAcc. In ad-
dition, we propose a new metric that captures room integrity
and boundary regularity, which confirms that our method
produces much more regular segmentations. Source code is
available at https://github.com/DrZiji/VecFloorSeg.

1. Introduction
Vector graphics are widely used in industrial designs, in-

cluding graphic designs [26], 2D interfaces [5] and floor-
plans [15]. In particular, 2D floorplans consisting of ge-
ometric primitives (e.g., lines and curves) are the de-facto
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Figure 1. Comparing the results of our vector graphics based
method (e) and raster image-based method [39] (f). Our result has
straight boundaries and consistent region labels, compared with
image-based result where red squares highlight semantic confu-
sion and the green square underscores missing room prediction.

data representation for interior designs, indoor construction
and property development. In contrast to raster images with
fixed resolutions, vector graphics can be arbitrarily scaled
without artifacts such as blurring and aliasing details. On
the other hand, due to the irregularly structured data, it is
difficult to apply image-based backbone networks directly
to vector graphics for various applications.

Semantic segmentation of roughcast floorplans into
rooms with labeled types (e.g. bedroom, kitchen, etc.) is a
fundamental task for downstream applications. Interior de-
signers usually first draw the roughcast floorplan, including
basic elements like wall blocks and pipe barrels for property
development (Fig. 1(a)) [29, 34]. Afterwards, interior fur-
nishing, furniture layout, and 3D room spaces can be con-
structed and customized (Fig. 1(b)&(c)) [33]. During this
procedure, it is important to obtain semantic segmentation
of room spaces to cater to above needs. While recogniz-
ing room layouts from wall structures is straightforward for
humans, automatic recognition with accurate semantics and
clean boundaries is challenging.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Recent works [19, 22, 23, 39] use powerful image-based
segmentation networks on rasterized floorplans to predict
room segmentation in a pixel-wise manner. Due to the
pixel-wise processing that ignores the integrity of structural
elements, their results tend to have jigsaw boundaries and
fragmented semantic regions as shown in Fig. 1(f). Besides,
these methods usually rely on texts and furniture to deter-
mine the semantic labels, which are not available in rough-
cast floorplans. Another line of prior works processes vec-
tor graphics for recognition, e.g., object detection [14, 28]
and symbol spotting [9,10,41]. However, to our best knowl-
edge, semantic segmentation of vector graphics, roughcast
floorplans in particular, has not been investigated before.

In this work, we make a first attempt at semantic seg-
mentation of 2D roughcast floorplans directly as vector
graphics. On one hand, by working with vector floor-
plans directly, the segmentation output is naturally regular
and compact vector graphics rather than dense pixels (cf.
Fig. 1(e)&(f)), which greatly facilitates downstream appli-
cations. On the other hand, the vector roughcast floorplans
pose challenges in the following aspects. First, rooms in
vector floorplans seldomly contain complete contour lines
formed by the input line segments (see Fig. 1(a)&(d)). Sec-
ond, the type of a room is determined not only by its shape
but also by the relative relationships with its neighboring
rooms and within the overall floorplan.

To address the above challenges, we make two obser-
vations. First, room spaces can be subdivided into a set
of polygonal regions by input lines together with their ex-
tensions (Fig. 2), and their semantic classification as room
types defines room segmentation. Second, lines (including
extended lines) are potential boundaries of different rooms,
and their being classified as boundaries or not should assist
room segmentation in a dual direction.

Based on the two observations, we design a two-stream
graph attention network (GAT) for the task. As illustrated
in Fig. 2, the primal stream takes as input the primal graph
that encodes line endpoints as vertices and line segments as
edges, and predicts the boundary classification of edges; the
dual stream takes as input the dual graph that encodes parti-
tioned regions as vertices and their adjacency as edges, and
predicts the vertex classification of regions, which effec-
tively defines the semantic segmentation of a vector floor-
plan. Furthermore, the two streams should enhance each
other rather than being separated. To facilitate data ex-
change between two streams, we present a novel modulated
GAT layer to fuse information from one stream into the
graph network computation of the other stream. We evalu-
ate our approach on two large-scale floorplan datasets; both
classical metrics and a new metric that we develop to focus
on integral segmentation show that our results improve pre-
vious image-based results significantly. To summarize, we
make the following contributions:

• We approach semantic segmentation of vector rough-
cast floorplans through the dual aspects of boundary
line classification and region classification.

• We design two-stream graph neural networks to pro-
cess dual regions and primal lines respectively, and
devise a novel modulated GAT layer to exchange data
across streams.

• We propose a new metric to capture both accuracy and
integrity of the segmentation results.

• We obtain vector segmentation results on two floorplan
datasets, which show much more compact boundaries
and better integrity than raster image-based results.

2. Related Work
Rasterized Floorplan Understanding Floorplan under-
standing plays a crucial role in various indoor applications,
such as interior designs, room space modeling, and real
estates. Traditional methods [1, 8] treat a floorplan as an
image and rely on low-level image processing and pre-
defined rules to detect walls, doors and windows. How-
ever, they are limited by hand-crafted features and can-
not handle floorplan elements with diverse drawing styles,
e.g., different shapes, lengths or thickness. Recently, deep
learning-based floorplan segmentation dominates the field
and can achieve superior performance. For example, pre-
vious works [15, 19] employ a fully convolutional network
(FCN) [20] to recognize room types, boundaries, and in-
door furniture. Zeng et al. [39] design a deep multi-task
network to learn room types and boundaries, respectively,
and model their spatial interactions by boundary-guided at-
tentions. Latest works [22, 23, 30] employ more powerful
semantic segmentation networks [6, 27] and utilise object
detection to detect furniture and texts, which as seman-
tic priors further enhances the segmentation performance.
However, image-based room segmentation is easily inter-
fered by pixel noises and drawing styles, leading to aliased
predictions near room boundaries and outlier fragments in
segmented rooms. To avoid these drawbacks, this work ex-
plores direct segmentation with vectorized floorplans. After
extending the lines in a floorplan to partition space into re-
gions, we tackle the vector floorplan segmentation task with
two complementary tasks, i.e. line classification as room
boundaries and region classification as room types; by op-
erating on these regular elements, the integrity of result seg-
ments largely improves.
Vector Graphics Recognition Vector graphics are widely
used in 2D CAD designs, urban designs, graphic designs,
and circuit designs, to facilitate resolution-free high pre-
cision geometric modeling. Considering their wide appli-
cations and great importance, many works are devoted to
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Figure 2. The overall pipeline of the proposed method. Given a vector floorplan input, we first build the primal and dual graphs in stage I,
then compute the vertex/edge embeddings for the graphs in stage II by referring to CNN image features extracted from a rendered image of
the floorplan, and finally in stage III use two parallel streams of GNN with modulated GAT layers exchanging data among them to learn the
two tasks: primal edge classification as boundaries and dual region classification as room types. Since the two GNN streams have identical
architecture, only one path has the layer operations shown. Lower right inset shows the feature embedding scheme for dual vertices.

recognition tasks on vector graphics. Fan et al. [10] propose
panoptic symbol spotting on CAD floorplans to recognize
different symbols. In subsequent works [9, 41], better net-
work designs are explored to improve the spotting perfor-
mance. Jiang et al. [14] explore vectorized object detection
and achieve a superior accuracy to detection methods [3,18]
working on raster graphics, while enjoying faster inference
time and less training parameters. Shi et al. [28] propose
a unified vector graphics recognition framework that lever-
ages the merits of both vector graphics and raster graphics.
In this work, we tackle vectorized floorplan segmentation,
which differs from symbol recognition in that the seman-
tic regions generally have no corresponding entities in the
input. We construct primal extended line graphs and dual
partitioned region graphs to enable segmentation learning.

Graph Neural Networks Pioneer works on Graph Neural
Networks (GNN) [12] extend traditional neural networks to
graph structured data, e.g., social networks [13] and rec-
ommendation systems [37]. More variants of GNNs, such
as graph convolutional network (GCN) [16], graph atten-
tion network (GAT) [32], and other modifications [2, 4, 17],
have been proposed and demonstrated ground-breaking per-
formances for different graph learning tasks. Among these
models, GAT features simplicity and generality, as it learns
adaptive attention weights for neighbors by considering
their similarity and relevance to the center node [4, 32, 40].
In this work, we design a novel graph attention module,
to ensure the heterogeneous information from two differ-
ent streams can modulate the attention operations of their
dual streams, which enables the joint enhancement of the

two tasks with floorplan segmentation.

3. Methodology
This work aims at semantic segmentation of 2D vector

roughcast floorplans. Being roughcast floorplans, the input
consists of predominantly a set of 2D geometric line seg-
ments representing wall structures, along with few circular
arcs representing other structures, and the output is the vec-
torized semantic segmentation of different room regions.
The overall pipeline of our proposed method is illustrated
in Fig. 2. First, we divide the whole floorplan into non-
overlapping polygonal regions by extending the line seg-
ments until intersection. Then, we construct two graphs to
represent the primal geometric line segments and the dual
polygonal regions, and calculate their feature embeddings
as described in Sec. 3.1 and Sec. 3.2. Finally, we use a two-
stream GNN for segmentation, where the primal stream pre-
dicts whether or not a line segment separates different room
regions, and the dual stream classifies the partitioned poly-
gon regions into different room types (see Sec. 3.3), with
two streams enhancing each other. In this way, semantic
segmentation of a vector floorplan is reformulated as poly-
gon region classification, which naturally avoids impreci-
sion in rasterization based methods.

3.1. Graph Construction

Aesthetically pleasing and rational room layouts contain
both rooms that are separated into private areas, for exam-
ple, bedrooms, and rooms that are connected without wall
separation, e.g. living rooms, corridors, dining rooms, etc.
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The partition of rooms without explicit separating walls
is ambiguous. From the perspective of floorplan design-
ers, a good room region is usually as regular and rectan-
gular as possible; thus interior designers usually partition
room space with extended wall structures as illustrated in
Fig. 2(I). In this work, we follow this intuition and heuris-
tically extend line segments so that the design space is di-
vided into a set of polygonal regions (details about region
partition are given in the supplementary). In this way, we
can avoid rasterization and achieve semantic segmentation
directly by classifying the room type of each partitioned re-
gion.

To learn the segmentation based on the spatial relation
between wall structures and region layouts, we construct
graphs to encode it. We represent the input capturing line
structures with a primal graph G = {V, E}, where V de-
notes the set of end points of line segments, and E de-
notes the set of line segments as shown in Fig. 2 (I). A ver-
tex vk ∈ V has 2D coordinates vk ∈ R2, while an edge
eij ∈ E connecting vertex vi and vj is encoded by the tu-
ple (vi, vj , cos (θeij ), ceij ), where θeij ∈ [−π

2 ,
π
2 ] is the an-

gle between eij and the x-axis and ceij ∈ {0, 1} indicates
whether eij is an extended line segment or an original line
segment in vector floorplan. Note that ce is significant, as
a line segment from the input is highly likely to represent a
wall and room boundary, while an extended line segment is
only a possible room boundary.

We capture the partitioned polygonal room regions with
a dual graph where the regions are represented by nodes and
their adjacencies are defined by edges. The dual graph is de-
fined as G∗ = {V∗, E∗} as demonstrated in Fig. 2(I). A ver-
tex v∗ ∈ V∗ in the dual graph denotes the polygonal region,
which corresponds to a sub-graph Gv∗ = {Vv∗ , Ev∗} ⊂ G
from the primal graph that bounds the region. For simplic-
ity, we take the mean value of primal vertex attributes (i.e.
2D coordinates) of Gv∗ as the attribute of the dual vertex v∗.
An edge e∗ij ∈ E∗ in the dual graph indicates the adjacency
of two polygonal regions and we obtain its attribute as the
concatenation of attributes of its two endpoints (v∗i , v

∗
j ).

We note there is a correspondence between primal and
dual edges as well. If v∗i , v

∗
j ∈ V∗ has an edge e∗ij , their

corresponding polygonal regions Gv∗
i

= {Vv∗
i
, Ev∗

i
} and

Gv∗
j

= {Vv∗
j
, Ev∗

j
} would share primal line segment ex-

pressed as Ev∗
i
∩ Ev∗

j
. On the other hand, without loss of

generality, we assume a primal edge e ∈ Ev∗
i
∩ Ev∗

j
is adja-

cent to regions v∗i , v
∗
j , and it has a corresponding dual edge,

which is exactly e∗ij . To summarize, we define the dualiza-
tion operation ∗(·) on edges by

∗(e∗ij) = Ev∗
i
∩ Ev∗

j

∗e = e∗ij , e ∈ ∗(e∗ij)
(1)

Theoretically speaking, Ev∗
i
∩Ev∗

j
only contains a single pri-

mal edge. We keep the set expression in Eq. 1 since there

may be extra vertices separating a straight wall into multi-
ple primal edges. Please refer to the supplementary for an
illustration of such exceptions.

3.2. Input Embedding

After constructing two graphs, we embed vertex and
edge attributes as input features to the two-stream GNN. In
addition, despite the equivalence of raster images and vec-
tor floorplans in depicting room layout, we find that using
features obtained from the raster image as additional input
helps perceive larger spatial receptive field and improves
the performance (Sec. 4.5); thus we use both image features
and geometric features for vertex embedding.

The embedding for primal graph vertices V is given by

fv = xv + pev, v ∈ V (2)

where xv ∈ RC denotes the feature vector indexed by the
coordinates of v from the rasterized floorplan image feature,
and pev ∈ RC is the sinusoidal positional encoding of ver-
tex positions following [31]; please refer to supplementary
for more details.

The embedding of a dual vertex v∗ ∈ V∗ should capture
the features of a polygonal region. Thus we compute it as
the average feature of points sampled from the polygonal re-
gion enclosed by Gv∗ = {Vv∗ , Ev∗}. First, Vv∗ is selected to
maintain the corner information. Also, we sample interior
points Iv∗ by using the centers of Delaunay triangles [25]
within Gv∗ . The features of Iv∗ are calculated in the same
form as Eq. 2. The dual vertex embedding feature f∗

v is
calculated as

fv∗ =
1

|Vv∗ ∪ Iv∗ |
∑

v∈Vv∗∪Iv∗

fv, v∗ ∈ V∗ (3)

The sampling strategy and average aggregation are illus-
trated in the lower right inset of Fig. 2 (Dual Input Embed-
ding). We use this sampling strategy for its simplicity, any
other strategies are also permitted (e.g. uniform sampling).

We embed the primal and dual edges by mapping their
attributes to input features. Since a primal edge e ∈ E con-
tains attributes other than endpoint positions (see Sec. 3.1),
we map the coordinates and additional attributes to C-dim
features by separate learnable projection matrices We,Wθ:

feij = We(pevi ||pevj ) +Wθ(cos(θeij )||ceij ), eij ∈ E (4)

where || denotes feature concatenation. For dual edges E∗

which mostly depict the adjacency of dual vertices and lack
additional attributes, we compute their feature embeddings
simply from dual vertex coordinates:

fe∗ij = We∗(pev∗
i
||pev∗

j
), e∗ij ∈ E∗ (5)

where We∗ ∈ RC×2C is a learnable projection matrix.
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3.3. The Two-Stream Graph Neural Network

After embedding input features of two graphs, we feed
them to a two-stream graph neural network to learn high-
level semantic features. The two streams address comple-
mentary tasks, i.e., boundary line classification and polyg-
onal region classification, which attacks the segmentation
problem from dual aspects and should enhance each other.

For example, if two vertices in the dual graph G∗ are as-
signed different labels, the shared line segments of their cor-
responding polygonal regions in G should be room bound-
ary lines. Meanwhile, if an edge in the primal graph G is
predicted as room boundary, regions that are separated by
the edge are likely to have different room types. To facili-
tate such edge based modulation, we devise a novel modu-
lated GAT layer that learns vertex features in one stream by
taking edge features from the other stream into account.

As shown in Fig. 2, the two-stream graph neural network
takes feature embeddings of the primal and dual graphs as
input and applies two parallel graph neural networks, each
with L = 6 modulated GAT layers. For the lth-level mod-
ulated GAT layer the vertex feature f l

vi in the primal (dual)
stream accumulates features from its neighboring vertices
Nvi as follows:

f l+1
vi = f l

vi +Θγ(αiiWvf
l
vi +

∑
vj∈Nvi

αijWvf
l
vj ) (6)

where Θγ denotes an MLP layer, Wv ∈ RC×C is a learn-
able projection matrix, and αij is an adaptive weight to bal-
ance neighborhood features.

We compute αij as:

αij =
exp

(
[Wqf

l
vi ]

T · g(f l
∗eij ) · [Wkf

l
vj ]

)
∑

vm∈Nvi
∪{vi}

exp
(
[Wqf l

vi ]
T · g(f l

∗eim) · [Wkf l
vm ]

)
(7)

where Wq,Wk ∈ RC×C are learnable parameters and
g(·) : RC → RC×C maps the dual edge feature from
the other stream to a weight matrix, which we use to mod-
ulate the similarity between two vertices. For simplicity,
we implement g(f l

∗eij ) = Wgf
l
∗eij , with a learnable tensor

Wg ∈ R(C×C)×C . Moreover, for the degenerate case of eii,
we simply set g(f l

∗eii) = I , where I is the identity matrix.
The dual edge features are obtained by the correspon-

dence established in Eq. 1. Specifically, for a primal edge
e, the dual edge ∗e ∈ E∗ is unique and its feature is directly
obtained from the dual stream GNN. For a dual edge e∗, its
corresponding primal edges are represented by a set ∗(e∗)
and we obtain the feature as the average of all primal edges
in this set.

After the feature aggregation on vertices, we update the
edge features of two streams in the lth-level modulated GAT

layer by:

f l+1
eij = f l

eij +Θe(f
l
vi ||f

l
vj ), eij ∈ E ∪ E∗ (8)

where Θe denotes an MLP layer.
The output features of the two-stream GNN are used for

prediction tasks. The edge features in G produced by the
primal stream are fed into a binary classification head to
predict whether or not an edge in G separates different room
regions. The vertex features in G∗ from the dual stream are
projected into the probabilities of the vertices belonging to
different room types.

3.4. The Objective Function

We optimize the two-stream network by minimizing the
boundary classification loss for lines Lp and room type clas-
sification loss for regions Lr. Lp classifies primal line seg-
ments as lying on the boundaries of rooms by the binary
cross entropy. Lr classifies dual polygonal regions into cor-
responding room types by the cross entropy, which also
gives the semantic segmentation of vector floorplans. We
employ the focal loss on Lr for better performance. The
overall loss L is defined as L = λp · Lp + Lr, where the
hyper-parameter λp is set to 0.5 empirically.

4. Experiments
4.1. Datasets

We conduct experiments on two datasets including
R2V [19] and CubiCasa-5k [15]. R2V is a floorplan seg-
mentation dataset covering 10 semantic categories (i.e.,
wall, door, window, washing room, bedroom, closet, bal-
cony, hall, kitchen, other room, background) and consisting
of 870 images, where 770 images are used as training data
and the remaining 100 images are used for testing. We con-
vert each image to its corresponding roughcast vector floor-
plan by extracting the contours of wall masks as closed line
loops and converting line primitives into SVG commands.

CubiCasa-5k is a large-scale floorplan dataset with both
vector graphics (SVG format) and rendered images, in
which annotations of 12 room types (background included)
and 11 furniture types are available. As we focus on rough-
cast floorplan segmentation, we only keep the walls as in-
put and the room annotations as ground truth. We further
remove data items with unlabeled rooms, thus having 4192
items for training, 399 for validation, and 400 for testing.

4.2. Implementation Details

Input We rescale the longer side of a raster floorplan to
256 and keep its aspect ratio, and pad the short side with
white color, to form an input image with size of 256×256
for feature extraction. 2D coordinates of graph vertices are
correspondingly uniformly scaled to the range [0, 255].
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Figure 3. Illustration of our proposed RI metric for room predic-
tion integrity.

Training Our implementation is based on prevalent GNN
code base PyG [11]. We train the network with a batch size
of 8. We use the SGD optimizer with momentum µ = 0.9
and set weight decay to 0.0005. The CNN image feature
backbone is loaded with pre-trained weights provided by
mmsegmentation [7] and fine-tuned during training. Train-
ing data is randomly flipped with a probability of 0.5 as data
augmentation. The network is trained for 200 epochs with
a learning rate initialized as 0.01 and scheduled with the
cosine annealing strategy [21].

4.3. Evaluation Metrics

Following existing works on floorplan segmentation [23,
39], we employ mean Intersection over Union (mIoU) and
class-wise mean Accuracy (mAcc). However, these met-
rics count pixels and are insensitive to fragmented and
noisy segments which severely affects the room integrity
and boundary smoothness (Fig. 1). These artifacts, how-
ever, pose great difficulty for downstream applications like
3D modeling. The proposed RI metric is proposed to penal-
ize fragmented segments. It accounts for room integrity by
treating regions with consistent labels as rooms (see Fig. 3),
so that the outlier fragments would be penalized by being
exposed as independent rooms.

First, we build a match between the predicted rooms
and ground truth rooms. Since the predicted rooms P
and the ground truth rooms G are sets with possibly dif-
ferent cardinalities, we use the optimal bipartite match-
ing to build correspondence [24], where the cost metric
C(p, g) = 1 − IoU(p, g) is defined for each pair of pre-
diction p ∈ P and ground truth g ∈ G. Given the bipartite
correspondence σ : P → G ∪ {ϕ}, we say a predicted
room p ∈ P is matched to a ground truth room σ(p) ∈ G
if IoU(p, σ(p)) is greater than 0.5 and p and σ(p) have the
same room type.

Formally, we define RI (ranged [0,1]) as the product of
the average IoU of matched rooms and F1-score:

RI =

∑
(p,g)∈TP IoU(p, g)

|TP |
· 2 precision · recall

precision+ recall

=

∑
(p,g)∈TP IoU(p, g)

|TP |+ 1
2 |FP |+ 1

2 |FN |
,

(9)

where TP are matched prediction and ground truth pairs,
FP are predicted rooms without matched ground truth, and

Methods Backbone Params(M) GFLOPs mIoU mAcc RI

DFPR [39] VGG-16 28.91 223.39 69.47 81.5 50.96
Ours – 22.57 91.63 75.56 87.32 80.48

DeepLabV3+ [6] ResNet-50 43.59 176.76 74.59 83.46 49.99
DNL [36] – 50.02 200.16 71.61 81.90 51.99

UperNet [35] – 66.41 237.02 73.23 83.84 63.46
Ours – 33.29 115.15 79.77 88.41 84.67

OCRNet [38] ResNet-101 55.51 231.11 77.98 85.34 70.82
Ours – 51.39 193.01 81.38 89.86 86.20

Table 1. Comparison results on R2V.

Methods Backbone val-set test-set
mIoU mAcc RI mIoU mAcc RI

DFPR [39] VGG-16 49.68 60.37 38.44 47.73 58.68 38.57
Ours – 60.27 72.32 66.89 57.48 69.89 64.09

DeepLabV3+ [6] ResNet-50 60.46 73.18 38.41 58.18 71.75 35.16
DNL [36] – 59.61 72.15 42.38 55.29 68.36 40.49

UperNet [35] – 59.31 72.22 45.90 57.04 70.50 44.71
Ours – 63.09 75.48 69.74 61.35 74.45 67.99

OCRNet [38] ResNet-101 60.44 72.94 43.99 57.13 70.62 41.89
Ours – 64.36 76.98 69.55 62.49 75.48 67.51

Table 2. Comparison results on CubiCasa-5k.

FN are ground truth without matched predicted rooms.
The average IoU measures the segmentation quality of
matched pairs, while the F1-score evaluates segmentation
integrity by counting matched/unmatched regions rather
than pixels. To this end, we show in Fig. 3 that results with
fragmented regions harmful to the room integrity are much
more penalized in RI metrics.

4.4. Comparison

We compare our method with prevalent image-based se-
mantic segmentation methods, e.g., DeepLabV3+ [6] and
OCRNet [38], which are also widely used in floorplan seg-
mentation, as well as DFPR [39] that specializes for floor-
plans. We report the results in Tab. 1 & 2. The quantita-
tive results show that our proposed method based on vector
floorplans outperforms all other baselines in terms of mIoU,
mAcc and room integrity (RI) under different image back-
bones, and shows remarkable strength on RI, despite that
our network has the least amount of parameters. The reason
for the poor RI performance of baselines is that they tend
to produce many fractured regions with noisy semantics as
shown in Fig. 4. Under RI, the outlier patches on one hand
become false positives and yield a larger denominator in
Eq. 9, and on the other hand prevent correct matching pairs
and increase false negatives, all contributing to lower RI.

The qualitative comparison is provided in Fig. 4, the
color bar of room categories is displayed in the supple-
mentary. Although DeepLabV3+ and OCRNet (column
(d)&(e)) expand receptive fields and integrate contextual
features to improve the performance, their outputs still suf-
fer from aliasing boundaries and inconsistent segmentation.
DFPR integrates boundary information to assist room seg-
mentation, but its performance on roughcast floorplans is
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(a) Input (b) Label (c)Ours (d) DeepLabV3+ (e) OCRNet (f) DFPR

Figure 4. The qualitative comparison with image-based floorplan segmentation methods on two datasets. The first two rows are examples
from R2V and the last row is from Cubicasa.

Vertex Embedding Architecture mIoU mAcc RI
pos. vertex samp. backbone p-stream GAT Ours

45.92 60.30 53.45
✓ 59.01 73.29 65.12
✓ ✓ 61.32 75.03 67.35
✓ ✓ ✓ 75.60 85.34 81.03

✓ ✓ ✓ ✓ 77.08 85.77 83.04
✓ ✓ ✓ ✓ ✓ 79.77 88.41 84.67

Table 3. Ablation studies on vertex embedding and the network architecture. pos.: us-
ing sine positional encodings in Eq. 2. vertex samp.: using interior sampling (Eq. 3) to
compute the dual vertex embedding. backbone: adding image features from rasterized
floorplans. p-stream: with the primal stream that predicts boundary lines. GAT Ours:
using the modulated GAT layer that enables feature interaction between two streams; if
not marked, the GAT layer degrades to vanilla similarity-based attention [31] by replacing
the learnt weight matrix g(f l

∗eij ) in Eq. 7 with an identity matrix. If none of the above
is marked, pev of Eq. 2 is set to zero, and xv is a learnable embedding indexed by vertex
category (i.e. primal vertex or sampled vertex). We(·) and We∗(·) of Eqs. (4,5) are also
set to zero.

dual map edge ini. mIoU mAcc RI

77.38 86.37 83.95
✓ 78.22 87.67 83.06
✓ ✓ 79.77 88.41 84.67

Table 4. Ablation studies on edge features. dual
map: using dual edge features from the other
stream (cf. Fig. 2(III)); if not marked, the mod-
ulated GAT in each stream uses edge features
from its own stream instead. edge ini.: using the
edge embeddings of Eq. 4 and 5; if not marked,
the edge embeddings are set to zero.

greatly degraded as no interior textures or text symbols are
available for shortcut semantic inference. When zoomed
in, the predicted boundaries show serious sawteeth patterns,
which would impose additional burdens on post-processing
and down-stream applications. By contrast, our method
takes advantage of the regular line segments and regions to
generate smooth boundaries and consistent room segmenta-
tion.

4.5. Ablation Studies

In this part, we analyze the effectiveness of vertex em-
bedding, architectural designs of the two-stream GNN, as
well as edge features. We use ResNet-50 as the backbone

in all ablation studies.
Vertex Embedding for primal and dual graphs involves po-
sitional encodings and image features (Sec. 3.2). Results in
Tab. 3 upper part reveal their significance for good perfor-
mance. In particular, an alternative to the embeddings of
dual vertices in Eq. 3 is to consider the region centroid only
instead of interior sampling, and results show the sampling
strategy works better.
The Two-Stream GNN consists of a necessary dual stream
for segmentation prediction, and a primal stream for bound-
ary line classification that can be removed, with their in-
teractions implemented by our proposed modulated GAT
layer. Results in Tab. 3 lower part suggest that the inclusion
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Input Label

Figure 5. Visualization of attention weights generated by the
modulated GAT (second row) and vanilla similarity-based atten-
tion [31] (third row), where from left to right are segmentation re-
sults, the attention visualization and their zoom-ins. For attention
visualization, the dual graph G∗ is superimposed on room bound-
aries (green lines); an edge e∗ij ∈ E∗ is colored by corresponding
attention weights α∗

ij and α∗
ji. Since α∗

ij ̸= α∗
ji are asymmetric,

we split the edge at the middle and draw two parts with colors en-
coding α∗

ij and α∗
ji. Warmer color means larger attention. Best

viewed by zooming in.

of the primal stream and the modulated GAT layer both im-
prove the performance significantly (4.17% in mIoU, 2.97%
in mAcc and 3.64% in room integrity), which means that on
one hand the boundary classification task enhances segmen-
tation through their shared embedding layers, and on the
other hand the modulated GAT layer facilitates such mutual
enhancement further.
Edge Features are a critical detail for the modulated GAT
layer communicating between two GNN streams. First, we
find the edge embedding (Eqs. 4 and 5) contributes to the
boundary prediction in the primal stream and room segmen-
tation in the dual stream, because by fixing other network
settings and only setting the edge embedding to zero, the fi-
nal segmentation results shown in the second row of Tab. 4
degrade. On top of that, we find the modulation by dual
edges in GAT layers is important too, because by switching
the modulation in primal(dual) stream to edge features of
their streams, the results also degrade as shown in the first
row of Tab. 4.

4.6. Discussion

Visual Analysis on the Modulated GAT To demonstrate
how feature interaction between two-stream GNN works,
we visualize the attention weights in the last GNN layer of
the dual stream in Fig. 5. The visualization results show that

the attention weights can capture clear region and boundary
patterns under dual edge feature modulation. For example,
the attention weights are small if two connected vertices
lie in different rooms, confirming that the feature interac-
tion between vertices is suppressed; contrarily, the attention
weights become greater when they are in the same room. In
comparison, GAT layers with vanilla attention (i.e. replac-
ing g(f l

∗eij ) in Eq. 7 with an identity matrix) do not show
such obvious adaptiveness, which explains the performance
difference in Tab. 3 lower part.
Limitations Despite producing superior results compared
with image-based floorplan segmentation methods, our
method cannot give accurate predictions in several scenar-
ios. For example, for extremely small regions within a floor-
plan, our method tends to assign wrong labels, partly be-
cause these regions have few meaningful interior samples
to produce good vertex embedding features. Another case is
the misclassification of similar categories (e.g. wall blocks
and railings), which we may leverage more detailed shape
priors like door and window features to tackle in the future.
Besides, our method can only handle line primitives and
use polylines as a substitution for curves at present, which
makes it difficult to process complex curves, e.g., B-Spline
and Bezier curves. Illustrations of discussed limitations can
be found in the supplementary.

5. Conclusion
In this work we present a novel semantic segmentation

problem on a typical kind of vector graphics, i.e., to pro-
cess vector roughcast floorplans directly and produce com-
pact and regular segmentation. While existing image-based
segmentation methods are not directly applicable, we pro-
pose a two-stream graph attention network directly working
on vector graphics and cast the problem into dual tasks of
room boundary classification and partitioned region clas-
sification. A novel modulated GAT module is devised to
enable efficient interactions between the two streams, and
therefore their mutual enhancement. Results and new met-
rics show our method achieves superior performance and
produces much more regular and integral floorplan segmen-
tation. Considering the importance of vector graphics for
industrial design, we hope this work can inspire future re-
search on vector graphics based deep learning for intelligent
industrial design and analysis.
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