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Abstract

Artificial light sources are often powered by an elec-
tric grid, and then their intensities rapidly oscillate in re-
sponse to the grid’s alternating current (AC). Interestingly,
the flickers of scene radiance values due to AC illumina-
tion are useful for extracting rich information on a scene
of interest. In this paper, we show that the flickers due to
AC illumination is useful for intrinsic image decomposition
(IID). Our proposed method conducts the light source sepa-
ration (LSS) followed by the IID under AC illumination. In
particular, we reveal the ambiguity in the blind LSS via ma-
trix factorization and the ambiguity in the IID assuming the
diffuse reflection model, and then show why and how those
ambiguities can be resolved via a physics-based approach.
We experimentally confirmed that our method can recover
the colors of the light sources, the diffuse reflectance values,
and the diffuse and specular intensities (shadings) under
each of the light sources, and that the IID under AC illumi-
nation is effective for application to auto white balancing.

1. Introduction

Artificial light sources in our surroundings are often
powered by an electric grid, and therefore their intensities
rapidly oscillate in response to the grid’s alternating current
(AC). Such intensity oscillations cause flickers in the radi-
ance values of a scene illuminated by artificial light sources.
The flickers are usually too fast to notice with our naked
eyes, but can be captured by using cameras with short ex-
posure time settings [32]. It is known that the flickers could
make auto white balance unnatural [15].

Interestingly, the flickers are useful for extracting rich in-
formation on a scene of interest. Sheinin et al. [28] propose
a method for light source separation (LSS) under AC illu-
mination. Their method decomposes an image sequence of
a scene illuminated by multiple AC light sources into the

basis images of the scene, each of which is illuminated by
only one of the light sources, and the temporal intensity pro-
files of the light sources. They make use of their self-built
coded-exposure camera synchronized to AC and the dataset
of temporal intensity profiles of various light sources, and
then achieve LSS even for dark scenes such as a city-scale
scene at night.

In this paper, we show that the flickers due to AC illu-
mination is useful also for intrinsic image decomposition
(IID). Originally, IID recovers the shading and reflectance
images of a scene of interest from a single input image on
the basis of the Retinex theory [2,19]. Those intrinsic prop-
erties of a scene is useful for computer vision applications
such as image segmentation [6], object recognition [25],
and shape from shading [14].

Our proposed method assumes a scene illuminated by
multiple AC light sources, and recovers the intrinsic prop-
erties of the scene and the light sources from an image se-
quence captured by using a consumer high speed camera.
In contrast to the conventional methods for IID, our method
assumes the dichromatic reflection model [27], and then re-
covers the intrinsic properties more than the reflectance and
shading images: the colors of the light sources, the diffuse
reflectance values, and the diffuse and specular intensities
(shadings) under each of the light sources.

Specifically, our proposed method conducts the blind
LSS via matrix factorization followed by the IID assuming
the dichromatic reflection model. In particular, we reveal
the ambiguity in the blind LSS under AC illumination via
matrix factorization [26], and then resolve the ambiguity by
integrating the LSS and the IID assuming the diffuse reflec-
tion model. Furthermore, we reveal the ambiguity in the
IID assuming the diffuse reflection model under AC illumi-
nation, and then resolve the ambiguity on the basis of the
dichromatic reflection model by taking specular highlights
into consideration 1.

1It is analogous to uncalibrated photometric stereo; the GBR ambigu-
ity [3] can be resolved from specularity [8]
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To show the effectiveness of our proposed method, we
conducted a number of experiments using both synthetic
and real images. We confirmed that our method works well,
i.e. can resolve the ambiguities in the LSS and the IID on
real images as well as synthetic images. In addition, we
show that the IID under AC illumination is effective for ap-
plication to auto white balancing.

The main contributions of this study are threefold. First,
we tackle a novel problem of the IID under AC illumination.
We conduct the blind LSS via matrix factorization followed
by the IID assuming the dichromatic reflection model, and
show that the flickers due to AC illumination are useful not
only for LSS but also for IID. Second, we reveal the am-
biguity in the blind LSS via matrix factorization and the
ambiguity in the IID assuming the diffuse reflection model.
Then, we show why and how those ambiguities can be re-
solved via a physics-based approach. Third, we experimen-
tally confirmed that our method can recover the colors of the
light sources, the diffuse reflectance values, and the diffuse
and specular intensities (shadings) under each of the light
sources, and that the IID under AC illumination is effective
for application to auto white balancing.

2. Related Work

2.1. Light Source Separation

Light source separation (LSS) is the problem of separat-
ing an image/images of a scene illuminated by multiple light
sources into the basis images of the scene, each of which is
illuminated by only one of the light sources. In this study,
we address the LSS under AC illumination.

Sheinin et al. [28] find that the flickers due to AC illu-
mination can be used for LSS, and propose a method for
decomposing an image sequence of a scene illuminated by
multiple AC light sources into the basis images and tem-
poral intensity profiles of the light sources. Although their
method has clear advantage that it can be applied even to
dark scenes such as a city-scale scene at night, it requires
the self-build coded-exposure camera synchronized to AC
and the dataset of temporal intensity profiles of various light
sources. Later, Sheinin et al. [29] achieve the LSS under
AC illumination by using a consumer rolling-shutter cam-
era, but still require the dataset of temporal intensity profiles
of various light sources.

Oya et al. [26] solve the LSS under AC illumination
as a problem of blind source separation (BSS). They show
that the LSS under AC illumination results in the problem
of matrix factorization, and experimentally confirmed that
non-negative matrix factorization (NMF) [4] performs bet-
ter than independent component analysis (ICA) [16]. Their
method does not require the self-build camera synchronized
to AC nor the dataset of temporal intensity profiles of vari-
ous light sources. However, as shown in Section 3.1, their

method based on matrix factorization has an ambiguity, and
therefore its accuracy is limited.

In contrast to the former method [28], our proposed
method for the LSS under AC illumination is based on BSS,
and therefore it also does not require the self-built camera
synchronized to AC nor the dataset of temporal intensity
profiles of various light sources. Compared with the latter
method [26], our method resolves the ambiguity of the blind
LSS via matrix factorization by integrating the LSS and the
IID assuming the diffuse reflection model.

2.2. Intrinsic Image Decomposition

Intrinsic image decomposition (IID) [2] is the problem of
decomposing an image/images of a scene into the shading
and reflectance images of the scene. Please refer Grosse et
al. [13] and Garces et al. [12] to comprehensive survey and
experimental comparison.

The IID from a single image is an under-determined
problem because it decomposes a single image into two im-
ages: the reflectance and shading images. Therefore, vari-
ous priors are studied in order to solve an under-determined
problem of the IID from a single image. Conventionally, the
Retinex theory [19] is often used for the IID from a single
image. It considers the large/small gradients in an image of
a scene are caused by the reflectance/shading of the scene.
Later, Funt et al. [11] extend the above method from a gray-
scale image to a color image. Tappen et al. [31] show that
a classifier trained to recognize gray-scale patterns is useful
as the prior for the IID from a single image.

To make the under-determined problem of IID tractable,
we can make use of multiple images of a scene. Weiss [33]
proposes the IID from an image sequence of a scene, i.e.
time-lapse images under varying illumination conditions.
He estimates the single reflectance image and the multiple
shading images of the scene by using the statistics of natu-
ral images. Matsuoka et al. [23] use a pair of flash and no-
flash images of a scene, and then estimate the reflectance
and shading images on the basis of the sparseness of the
reflectance image.

In contrast to the above methods, our proposed method
exploits the flickers due to AC illumination; we show that
IID is tractable just by observing flickers with a short
exposure-time camera. More importantly, our method is
based on the dichromatic reflection model [27], and esti-
mates not only the diffuse reflectance values (reflectance
image) and the diffuse intensity (shading image) under each
of the light sources but also the colors of the light sources
and the specular intensity (shading image) under each of the
light sources. In particular, we reveal that the IID assuming
the diffuse reflection model has an ambiguity, and show that
the ambiguity can be resolved by taking specular highlights
into consideration.

In addition to the IID from a single image or an image
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Figure 1. The flowchart of our proposed method for LSS and IID
under AC illumination; LSS followed by IID.

sequence under varying illumination conditions, intrinsic
video with camera motion [17, 34] and the IID from multi-
view images [18] are proposed. In this study, we assume a
static scene and a static camera, and therefore such camera
motion and multiview images are out of our focus.

Recently, deep learning-based methods [5, 9, 20–22, 24,
30, 35] show impressive results also for IID, but they rely
on supervised learning and require large datasets in general.
In contrast, our proposed method exploits the flickers due to
AC light sources, and achieves the LSS and IID from a sin-
gle image sequence of a scene. The theoretical insights that
reveal the ambiguities in the blind LSS and the diffuse IID
under AC light sources and show why and how those am-
biguities can be resolved are the advantages of our method
over the learning-based methods.

3. Proposed Method
In this section, we propose a method for conducting light

source separation (LSS) followed by intrinsic image decom-
position (IID) from an image sequence taken under AC il-
lumination. Specifically, we reveal the ambiguities in the
LSS and IID under AC illumination, and then explain why
and how those ambiguities can be resolved. Figure 1 is the
flowchart of our proposed method for LSS and IID under
AC illumination.

3.1. Blind LSS and Its Ambiguity

According to the superposition principle of light, an im-
age of a scene taken under multiple light sources is repre-
sented by a convex combination of the basis images, each
of which is the image taken under one of the light sources.
Specifically, the pixel value ipcf of an input image sequence
at the p-the pixel (p = 1, 2, 3, ..., P ) of the c-th channel
(c = 1, 2, 3) and in the f -th frame (f = 1, 2, 3, ..., F ) is
represented as

ipcf =

N∑
n=1

bpcnanf . (1)

Here, N is the number of the light sources (and the number
of the basis images), bpcn is the pixel value at the p-th pixel

of the c-th channel and in the n-th basis image, and anf is
the intensity of the n-th light source in the f -th frame.

We can rewrite eq.(1) in a matrix form as

I = BA, (2)

where I is the 3P ×F matrix consisting of the pixel values
of the input image sequence, B is the 3P ×N matrix con-
sisting of the pixel values of the N basis images, and A is
the N×F matrix consisting of the intensities of the N light
sources. Because those pixel values and light source inten-
sities are all non-negative, the blind LSS results in the prob-
lem of non-negative matrix factorization (NMF) [4]; factor-
izing the matrix I of the input image sequence into the non-
negative matrix B of the basis images and the non-negative
matrix A of the light source intensities. Specifically, LSS
results in the minimization:

min
{B,A}

||I −BA||2F (3)

subject to the conditions that all the elements of the matrices
B and A are non-negative [26]. Here, || ||F stands for the
Frobenius norm of a matrix.

Unfortunately, however, the blind LSS via matrix factor-
ization has an ambiguity since the left-hand side in eq.(2)
is invariant if we put an N × N regular matrix X and its
inverse X−1 such that BX and X−1A are non-negative
between B and A as

I = BXX−1A. (4)

Therefore, the basis images B(e) and light source intensities
A(e) estimated via matrix factorization are represented by
using the unknown matrix X as B(e) = BX and A(e) =
X−1A respectively.

3.2. Diffuse IID and Its Ambiguity

Let us assume that the reflectance properties of a scene
of interest obey the diffuse reflection model 2. Then, the
pixel values, i.e. the RGB values bpn = (bp1n, bp2n, bp3n)

⊤

at the p-th pixel in the n-th basis image is represented as

bpn = dpn

rp1 0 0
0 rp2 0
0 0 rp3

ln1
ln2
ln3


= dpnRpln. (5)

Here, dpn, rp = (rp1, rp2, rp3)
⊤, and ln = (ln1, ln2, ln3)

⊤

are the intensity of the diffuse reflection, the diffuse re-
flectance values at the p-th pixel, and the color of the n-
th light source respectively. Therefore, the IID assuming
the diffuse reflection model is the problem of estimating the

2As explained in Appendix A, we can conduct diffuse-specular separa-
tion if necessary.
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intensity of the diffuse reflection dpn per basis image and
pixel, the diffuse reflectance values rp per pixel, and the
color of the light source ln per basis image. We term the
3 × 3 matrix Rp, whose diagonal elements are the diffuse
reflectance values, the diffuse reflectance matrix.

Unfortunately, however, the IID assuming the diffuse re-
flection model also has an ambiguity in a similar manner to
the blind LSS via matrix factorization. This is because the
left-hand side in eq.(5) is invariant if we put a 3×3 positive
diagonal matrix Y and its inverse Y −1 between Rp and ln
as

bpn = dpnRpY Y −1ln. (6)

Therefore, when we conduct the IID assuming the diffuse
reflection model from the given basis images as described
below, the estimated diffuse reflectance matrix R

(e)
p and the

light source color l(e)n are represented by using the unknown
diagonal matrix Y as R

(e)
p = RpY and l

(e)
n = Y −1ln

respectively.
We can analytically estimate the intensity of the dif-

fuse reflection dpn per basis image and pixel, the diffuse
reflectance values rp per pixel, and the color of the light
source ln per basis image up to the ambiguity of an un-
known diagonal matrix as follows. First, we take the am-
biguity in the light source colors into consideration, and fix
the color of the 1st light source as l1 = (1/3, 1/3, 1/3)⊤

without loss of generality. Second, we estimate the diffuse
reflectance values rp in eq.(5) from the pixel values bp1 in
the 1st basis image and the light source color l1 by element-
wise division. Third, we estimate the light source color ln
in eq.(5) for n ̸= 1 from the pixel values bpn in the n-th
basis image and the estimated diffuse reflectance values rp
by element-wise division. In order to robustly estimate the
light source color against specular highlights and shadows,
we compute the median of the light source colors obtained
from all the pixels if necessary. Here, we normalize rp and
ln so that rp1 + rp2 + rp3 = 1 and ln1 + ln2 + ln3 = 1, and
then put the remaining scale in the intensity of the diffuse
reflection dpn. Note that we could resolve the ambiguity in
scale among dpn, Rp, and ln by using prior knowledge, but
it is out of our focus.

3.3. Resolving Ambiguity in Blind LSS

As shown in Section 3.1, the basis images estimated by
using NMF has the ambiguity; B(e) = BX . Therefore, the
pixel values b(e)pn at the p-th pixel in the n-th estimated basis
image is represented as

b(e)pn =

N∑
m=1

bpmxmn, (7)

where xmn is the element of X at the m-th row and n-th
column. Substituting eq.(5) into eq.(7), we obtain

b(e)pn =

rp1 0 0
0 rp2 0
0 0 rp3

( N∑
m=1

dpmlmxmn

)
. (8)

Comparing eq.(5) and eq.(8), we can see that
∑

dpmlmxmn

corresponds to the light source color.
If the blind LSS via matrix factorization has no ambigu-

ity, i.e. X is equal to the N × N identity matrix EN , we
can show that eq.(8) results in eq.(5) since xmn = δmn

3.
On the other hand, if the blind LSS has the ambiguity, i.e.
X ̸= EN , the light source color

∑
dpmlmxmn depends

on the pixel p. It means that the light source color is non-
uniform across the basis image, and contradicts to the as-
sumption of our proposed method that the basis image is
taken under one of the light sources and as a result the light
source color is uniform. This result suggests that we can re-
solve the ambiguity in the blind LSS by integrating the LSS
with the IID assuming the diffuse reflection model.

In order to resolve the ambiguity, we estimate X from
the estimated basis images B(e) and the reflection model in
eq.(5) by the nonlinear minimization:

min
{X−1,B(r)}

1

P
||B(e)X−1−B(r)||2F+w

1

[det(X−1)]2
(9)

subject to B(e)X−1 ≥ 0 and A(e)X−1 ≥ 0. Here, P is
the number of pixels and w is the weight for balancing the
first and second terms. The matrix B(r) is the basis images
reconstructed from eq.(5), and we actually optimize the un-
knowns in the right-hand side. We use the results of the
diffuse IID described in Section 3.2 as the initial values for
those unknowns. The second term is required for prevent-
ing X from falling into a singular matrix. The initial value
for X−1 is the identity matrix.

3.4. Resolving Ambiguity in Diffuse IID

In Section 3.2, we assume that the reflectance proper-
ties of a scene of interest obey the diffuse reflection model.
Since not only diffuse reflection components but also spec-
ular reflection components are observed on object surfaces
in general, we assume the dichromatic reflection model [27]
here. According to the dichromatic reflection model, the
color of a specular reflection component is independent of
an object surface and is equal to the color of a light source,
while the color of a diffuse reflection component depends
not only on the light source color but also on the spectral
reflectance of the object surface. Then, the pixel values at

3The Kronecker delta δmn is 1 if m = n and 0 if m ̸= n.
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the p-th pixel in the n-th basis image is represented as

bpn = dpn

rp1 0 0
0 rp2 0
0 0 rp3

ln1
ln2
ln3

+ spn

ln1
ln2
ln3


= dpnRpln + spnln. (10)

Here, spn is the intensity of the specular reflection at the
p-th pixel under the n-th light source.

As shown in Section 3.2, the IID assuming the diffuse
reflection model has the ambiguity described by using an
unknown positive diagonal matrix Y ; R

(e)
p = RpY and

l
(e)
n = Y −1ln. Therefore, we can rewrite eq.(10) as

bpn = dpnRpY Y −1ln + spnY
−1ln. (11)

We can see that the first term is invariant since Y Y −1 =
E3, but the second term depends on the diagonal matrix Y .
Therefore, if we can estimate the light source color from
specular highlights, we can fix the unknown matrix Y and
resolve the ambiguity.

In order to robustly estimate the light source color and
resolve the ambiguity, we make use of RANdom SAmple
Consensus (RANSAC) [10]. Here, we assume that the am-
biguity in the blind LSS is resolved in advance as described
in Section 3.3. Please see Appendix for the details on the
light source color estimation.

4. Experiments

To confirm the effectiveness of our proposed method,
we conducted a number of experiments using both syn-
thetic and real images. In particular, we confirmed that our
method can resolve the ambiguities in the blind LSS and the
diffuse IID. For the LSS under AC illumination, we com-
pared the following two methods:

• LSS via NMF: the existing method for the blind LSS
via NMF [26] that has the ambiguity of a regular ma-
trix X as shown in Section 3.1.

• Our LSS: our proposed LSS that resolves the ambigu-
ity in the blind LSS as described in Section 3.3.

For the IID under AC illumination, we compared the fol-
lowing two methods:

• Diffuse IID: the IID assuming the diffuse reflection
model described in Section 3.2. It has the ambiguity
of a diagonal matrix Y as shown in Section 3.2.

• Our IID: our proposed IID assuming the dichromatic
reflection model that resolves the ambiguity in the dif-
fuse IID as described in Section 3.4.

For NMF in eq.(3), we tested multiple initial conditions,
and then found the optimal solution with minimal residual.
We empirically set the weight in eq.(9) as w = 10−2, and
used the interior-point algorithm [7] implemented as fmin-
con in MATLAB for solving the constrained nonlinear min-
imization problem of eq.(9). We used it also for solving the
nonlinear minimization problem of eq.(12). Our proposed
method assumes an arbitrary number of light sources N , but
we used image sequences under two light sources in our ex-
periments because the blind LSS [26] is somewhat prone to
be sensitive to image noises as the number of light sources
increases.

4.1. Synthetic Images

We conducted a number of experiments using synthetic
images for which all the ground truths are available. We
tested four cases: (i) a pear illuminated by two light sources,
(ii) a pear illuminated by two light sources with differ-
ent temporal intensity profiles from (i), (iii) a turtle illu-
minated by two light sources with the same colors and di-
rections as (i), and (iv) a turtle illuminated by two light
sources with different colors and directions from (i). The
image sequences of those scenes were synthesized by using
two datasets: one is for the shapes of the objects [1] and
the other is for the temporal intensity profiles of the light
sources [28]. We added random noises to the synthesized
images; we assumed the zero-mean Gaussian noises with
the standard deviation σ = 0.01 for pixel values normal-
ized to [0,1].

Figure 2 shows the results for the first case, i.e. a pear
illuminated by two light sources: some of the input images,
the first and second basis images, the temporal intensity pro-
files, the diffuse reflection values, and the first and second
diffuse and specular intensities from top to bottom. For the
LSS under AC illumination, we show the ground truths in
(a), and the results obtained by using the LSS via NMF and
our LSS in (b) and (c) respectively. For the IID under AC
illumination, we show the ground truths in (d), and the re-
sults obtained by using the diffuse IID and our IID in (e)
and (f) respectively. The numerical values under the recov-
ered basis images show the PSNRs (Peak Signal-to-Noise
Ratios); the higher the better.

Comparing the results of the LSS, we can see qualita-
tively and quantitatively that (c) our LSS performs better
than (b) the LSS via NMF. Specifically, the PSNRs of the
recovered basis images are improved by using our LSS. We
can also see that (f) our IID performs better than (e) the
diffuse IID. In particular, we can see that the specular re-
flection components are accurately recovered by using our
IID. Note that both the diffuse IID and our IID can recover
the intrinsic properties at a point on the object surface when
it is illuminated by both of the two light sources.

Then, we show the results for the second, third, and the
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Figure 2. The results on the synthetic images of the 1st scene (a
pear illuminated by two light sources): some of the input images,
(a) the ground truths of LSS, (b) the LSS via NMF, (c) our LSS, (d)
the ground truths of IID, (e) the diffuse IID, and (f) our IID. The
numerical values under the recovered basis images are PSNRs.

Table 1. The ambiguity matrix X: the ground truth and the matrix
estimated by using our LSS.

case ground truth our LSS

(i)
(
0.928 0.036
0.072 0.964

) (
0.935 0.065
0.065 0.935

)
(ii)

(
0.914 0.022
0.086 0.978

) (
0.931 0.091
0.069 0.909

)
(iii)

(
0.925 0.090
0.075 0.910

) (
0.958 0.094
0.042 0.906

)
(iv)

(
0.899 0.047
0.101 0.953

) (
0.951 0.065
0.049 0.935

)

fourth cases in Figure A in the supplementary material, Fig-
ure 3, and Figure B in the supplementary material respec-
tively. We can see qualitatively and quantitatively that (c)
our LSS performs better than (b) the LSS via NMF and that
(f) our IID performs better than (e) the diffuse IID, for light
sources with different temporal intensity profiles (Figure A
in the supplementary material), for an object with a complex
shape (Figure 3), and for light sources with different colors

Figure 3. The results on the synthetic images of the 3rd scene (a
turtle illuminated by two light sources with the same colors and
directions as (i)). Please see the caption for Figure 2.

Table 2. The light source colors: the ground truths, the colors
estimated by using the diffuse IID and our IID.

light ground truth diffuse IID our IID
(i) 1 (0.42, 0.35, 0.23) (0.33, 0.33, 0.33) (0.42, 0.37, 0.21)

2 (0.38, 0.19, 0.43) (0.28, 0.16, 0.56) (0.39, 0.20, 0.41)
(ii) 1 (0.42, 0.35, 0.23) (0.33, 0.33, 0.33) (0.41, 0.38, 0.21)

2 (0.38, 0.19, 0.43) (0.28, 0.16, 0.57) (0.38, 0.20, 0.43)
(iii) 1 (0.42, 0.35, 0.23) (0.33, 0.33, 0.33) (0.42, 0.36, 0.22)

2 (0.38, 0.19, 0.43) (0.28, 0.17, 0.56) (0.39, 0.20, 0.41)
(iv) 1 (0.34, 0.40, 0.27) (0.33, 0.33, 0.33) (0.34, 0.39, 0.26)

2 (0.24, 0.33, 0.43) (0.23, 0.27, 0.43) (0.25, 0.34, 0.42)

and directions (Figure B in the supplementary material).
In Table 1, we show the 2 × 2 ambiguity matrix X: the

ground truth and the matrix estimated by using our LSS. In
Table 2, we show the light source color: the ground truth
and the colors estimated by using the diffuse IID and our
IID. Those quantitative results also show that our proposed
method works well for resolving the ambiguities in the blind
LSS and the diffuse IID.

4.2. Real Images

We conducted a number of experiments using real im-
ages of two scenes (A) and (B). The images of those scenes
were captured by using a high-speed camera FASTCAM
Mini UX50 from Photoron with the frame rate of 2,500 fps
with the exposure time of 0.4 ms. The ground truths of the
basis images were captured by turning only one of the light
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Figure 4. The results on the real images of the scene (A): some
of the input images, (a) the ground truths of LSS, (b) the LSS
via NMF, (c) our LSS, (e) the diffuse IID, and (f) our IID. The
numerical values under the recovered basis images are PSNRs.

sources on. The light sources were a halogen lamp and an
LED, and the ground truths of those light source colors were
measured by using a white target for evaluation.

First, Figure 4, shows the results for the scene (A): some
of the input images, the first and second basis images, the
diffuse reflectance values, and the first and second diffuse
and specular intensities from top to bottom. We can see
qualitatively that our proposed method works well for real
images even though the image quality of the high-speed
camera is relatively low and the amplitudes of the light
source intensities are small. In particular, we can see that
the specular highlights observed on the object surfaces un-
der each of the light sources appear in the first and second
specular intensities as expected. Comparing the PSNRs of
the recovered basis images in (b) and (c), we can see quanti-
tatively that our LSS performs better than the LSS via NMF.
As shown in Figure 5, we obtained similar results for the
scene (B).

Second, in Table 3, we show the light source colors: the
ground truths and the light source colors estimated by us-
ing our proposed method. We can see quantitatively that
our method can accurately estimate the light source colors.
Those quantitative results show that our method can resolve
the ambiguities in the LSS and IID under AC illumination.
Limitations: There are two limitations in our proposed
method. First, as is often the case with color-based re-
flectance separation, our proposed IID does not work well

Figure 5. The results on the real images of the scene (B). Please
see the caption for Figure 4.

Table 3. The light source colors: the ground truths, the colors
estimated by using the diffuse IID and our IID.

light ground truth diffuse IID our IID
(A) 1 (0.56, 0.30, 0.14) (0.33, 0.33, 0.33) (0.58, 0.29, 0.13)

2 (0.24, 0.36, 0.40) (0.16, 0.39, 0.45) (0.24, 0.33, 0.44)
(B) 1 (0.56, 0.30, 0.14) (0.33, 0.33, 0.33) (0.57, 0.28, 0.15)

2 (0.24, 0.36, 0.40) (0.16, 0.39, 0.45) (0.20, 0.38, 0.42)

for gray objects since the colors of specular and diffuse
components are the same for such objects. Second, as we
mentioned in Section 4.1, our IID can recover the intrinsic
properties at a point on an object surface if it is illuminated
by multiple light sources. Otherwise, our IID without any
priors becomes an under-determined problem.

4.3. Application to White Balancing

White balancing is a technique for converting an image
taken under unknown light sources as if it were taken un-
der white light sources. In particular, white balancing under
multiple light sources with different colors is a challeng-
ing problem. This is because the illumination color is non-
uniform across the image, in other words, the mixture ratio
of the light source colors spatially varies.

Our proposed method for LSS recovers the basis im-
ages, each of which is illuminated by only one of the light
sources, and our proposed method for IID estimates the
light source color per basis image without any ambiguity.
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Figure 6. The process and the result of white balancing.

Therefore, our proposed LSS and IID are useful for white
balancing; we can change the light source color of each re-
covered basis image, and then combine the white balanced
basis images again. Figure 6 shows the process and the re-
sult of white balancing for the real images of the scenes
(A) and (B): one of the input images, the basis images, the
white-balanced basis images, and the white-balanced input
image. The numerical values under the input/white bal-
anced input images are PSNRs.

5. Conclusion and Future Work

In this paper, we proposed a method for LSS and IID
under AC illumination. Our proposed method conducts the
blind LSS via matrix factorization followed by the IID as-
suming the dichromatic reflection model, and estimates the
intrinsic properties of a scene and light sources from an im-
age sequence under multiple AC light sources. In particular,
we revealed the ambiguity in the blind LSS via matrix fac-
torization and the ambiguity in the IID assuming the diffuse
reflection model, and then showed why and how those am-
biguities can be resolved. We experimentally confirmed that
our method works well on real images as well as synthetic
images, and that the IID under AC illumination is useful for
application to auto white balancing.

Our future work includes LSS and IID under more than
two light sources, the improved accuracy by integrating so-
phisticated noise removal, and the application to image seg-
mentation, object recognition, shape from shading and so
on. We hope that this paper contributes to open a new vista
of passive computer vision with short exposure time obser-
vation.
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A. Light Source Color Estimation
First, we extract the pixels where specular reflection

components are observed in the first or second basis im-
ages. Specifically, we conduct the diffuse IID, and obtain
the light source colors l1 and l2 with the ambiguity as de-
scribed in Section 3.2. Then, we find the outlier pixels with
large errors when the diffuse reflection model is fitted to the
pixel values in the first and second basis images. We con-
sider those pixels as specular pixels.

Second, we randomly select two pixels p′ and p′′ from
the specular pixels, and then estimate the reflectance matrix
Rp′ and Rp′′ . Specifically, we assume that the pixel val-
ues bp′1 and bp′′1 are specular-free, and then estimate the
elements of Rp′ and Rp′′ by element-wise division since
the light source color l1 with the ambiguity is computed as
described above. Then, we obtain the diffuse reflection col-
ors in the second basis image as Rp′l2 and Rp′′l2 by using
the computed light source color l2 with the ambiguity. Note
that there are no ambiguities in those diffuse reflection col-
ors as shown in eq.(11).

Third, we compute the candidate of the diagonal ma-
trix Y . Since the light source color l2 is parallel to both
(bp′2 − ddp′Rp′l2) and (bp′′2 − ddp′′Rp′′l2) and the dif-
fuse reflection colors in the second basis image Rp′l2 and
Rp′′l2 are computed as described above, we find ddp′ and
ddp′′ by the minimization:

min
{ddp′ ,ddp′′}

||(bp′2 − ddp′Rp′l2)× (bp′′2 − ddp′′Rp′′l2)||2.

(12)
Here, × stands for the outer product. Thus, we obtain
the candidate of the light source color l2(p′, p′′), and then
compute the candidate of the diagonal matrix Y (p′, p′′) by
element-wise division.

Forth, we evaluate the errors of eq.(11) when the can-
didate of the diagonal matrix Y (p′, p′′) is used, and then
count the number of inliers. Specifically, we assume that
the pixel values bp1 in the first basis image are specular-free,
and then compute the pixel values in the second basis im-
age and evaluate the error ep2,1 between the observed pixel
values bp2 and the computed pixel values and vice versa.
We evaluate the errors ep2,1 and ep1,2 for all of the specular
pixels p, and consider a pixel as an inlier if ep2,1 or ep1,2 is
smaller than a threshold.

Fifth, we repeat the second through fourth steps, and find
the candidate of the diagonal matrix with the maximal num-
ber of inliers. Finally, we re-compute the diagonal matrix
from those inlier pixels by solving eq.(10) via alternating
least squares.

References
[1] J. Barron and J. Malik. Shape, illumination, and reflectance

from shading. IEEE TPAMI, 38(7):1670–1688, 2015. 5

5742



[2] H. Barrow and J. Tenenbaum. Recovering intrinsic scene
characteristics from images. Computer Vision Systems, pages
3–26, 1978. 1, 2

[3] P. Belhumeur, D. Kriegman, and A. Yuille. The bas-relief
ambiguity. IJCV, 35:33–44, 1999. 1

[4] M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plem-
mons. Algorithms and applications for approximate nonneg-
ative matrix factorization. Computational Statistics & Data
Analysis, 52(1):155–173, 2007. 2, 3

[5] S. Bi, N. Kalantari, and R. Ramamoorthi. Deep hybrid real
and synthetic training for intrinsic decomposition. In Proc.
EGSR2018, 2018. 3

[6] M. Brill. Image segmentation by object color: a unify-
ing framework and connection to color constancy. JOSA A,
7(10):2041–2047, 1990. 1

[7] R. Byrd, M. Hribar, and J. Nocedal. An interior point algo-
rithm for large-scale nonlinear programming. SIAM Journal
on Optimization, 9(4):877–900, 1999. 5

[8] O. Drbohlav and M. Chaniler. Can two specular pixels cal-
ibrate photometric stereo? In Proc. IEEE ICCV2005, pages
II–1850–1857, 2005. 1

[9] Q. Fan, J. Yang, G. Hua, B. Chen, and D. Wipf. Revis-
iting deep intrinsic image decompositions. In Proc. IEEE
CVPR2018, pages 8944–8952, 2018. 3

[10] M. Fischler and R. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analy-
sis and automated cartography. Commun. ACM, 24(6):381–
395, 1981. 5

[11] B. Funt, M. Drew, and M. Brockington. Recovering shading
from color images. In Proc. ECCV92, pages 124–132, 1992.
2

[12] E. Garces, C. Rodriguez-Pardo, D. Casas, and J. Lopez-
Moreno. A survey on intrinsic images: Delving deep into
lambert and beyond. IJCV, 130:836–868, 2022. 2

[13] R. Grosse, M. Johnson, E. Adelson, and W. Freeman.
Ground-truth dataset and baseline evaluations for intrinsic
image algorithms. In Proc. IEEE ICCV2009, pages 2335–
2342, 2009. 2

[14] B. Horn. Obtaining Shape from Shading Information, pages
123–171. MIT Press, 1989. 1

[15] E. Hsu, T. Mertens, S. Paris, S. Avidan, and F. Durand. Light
mixture estimation for spatially varying white balance. ACM
TOG, 27(3):1–7, 2008. 1

[16] A. Hyvärinen and E. Oja. Independent component analysis:
algorithms and applications. Neural Networks, 13(4–5):411–
430, 2000. 2

[17] N. Kong, P. Gehler, and M. Black. Intrinsic video. In Proc.
ECCV2014, pages 360–375, 2014. 3

[18] P.-Y. Laffont, A. Bousseau, and G. Drettakis. Rich intrinsic
image decomposition of outdoor scenes from multiple views.
IEEE TVCG, 19(2):210–224, 2013. 3

[19] E. Land and J. McCann. Lightness and retinex theory. JOSA,
61(1):1–11, 1971. 1, 2

[20] L. Lettry, K. Vanhoey, and L. Van Gool. DARN: a deep ad-
versarial residual network for intrinsic image decomposition.
In Proc. IEEE WACV2018, pages 1359–1367, 2018. 3

[21] Z. Li and N. Snavely. Learning intrinsic image decompo-
sition from watching the world. In Proc. IEEE CVPR2018,
pages 9039–9048, 2018. 3

[22] W. Ma, H. Chu, B. Zhou, R. Urtasun, and A. Torralba. Sin-
gle image intrinsic decomposition without a single intrinsic
image. In Proc. ECCV2018, pages 201–217, 2018. 3

[23] R. Matsuoka, T. Baba, and M. Okuda. Reflectance estimation
and white balancing using multiple images. In Proc. IEEE
ICIP2015, pages 407–411, 2015. 2

[24] T. Narihira, M. Maire, and S. Yu. Direct intrinsics: Learning
albedo-shading decomposition by convolutional regression.
In Proc. IEEE ICCV2015, pages 2992–2992, 2015. 3

[25] S. Nayar and R. Bolle. Reflectance based object recognition.
IJCV, 17:219–240, 1996. 1

[26] R. Oya, R. Matsuoka, and T. Okabe. NMF vs. ICA for
light source separation under AC illumination. In Proc. VIS-
APP2020, pages 460–465, 2020. 1, 2, 3, 5

[27] S. Shafer. Using color to separate reflection components.
COLOR Research and Application, 10(4):210–218, 1985. 1,
2, 4

[28] M. Sheinin, Y. Schechner, and K. Kutulakos. Computational
imaging on the electric grid. In Proc. IEEE CVPR2017,
pages 6437–6446, 2017. 1, 2, 5

[29] M. Sheinin, Y. Schechner, and K. Kutulakos. Rolling shutter
imaging on the electric grid. In Proc. IEEE ICCP2018, pages
1–12, 2018. 2

[30] J. Shi, Y. Dong, H. Su, and S. Yu. Learning non-Lambertian
object intrinsics across shapenet categories. In Proc. IEEE
CVPR2017, pages 1685–1694, 2017. 3

[31] M. Tappen, W. Freeman, and E. Adelson. Recovering intrin-
sic images from a single image. IEEE TPAMI, 27(9):1459–
1472, 2005. 2
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