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Abstract

Deep learning with noisy labels is challenging and in-
evitable in many circumstances. Existing methods reduce
the impact of mislabeled samples by reducing loss weights
or screening, which highly rely on the model’s superior
discriminative power for identifying mislabeled samples.
However, in the training stage, the trainee model is im-
perfect and will wrongly predict some mislabeled samples,
which cause continuous damage to the model training. Con-
sequently, there is a large performance gap between exist-
ing anti-noise models trained with noisy samples and mod-
els trained with clean samples. In this paper, we put forward
a Gradient Switching Strategy (GSS) to prevent the contin-
uous damage of mislabeled samples to the classifier. Theo-
retical analysis shows that the damage comes from the mis-
leading gradient direction computed from the mislabeled
samples. The trainee model will deviate from the correct
optimization direction under the influence of the accumu-
lated misleading gradient of mislabeled samples. To ad-
dress this problem, the proposed GSS alleviates the damage
by switching the gradient direction of each sample based on
the gradient direction pool, which contains all-class gradi-
ent directions with different probabilities. During training,
each gradient direction pool is updated iteratively, which
assigns higher probabilities to potential principal direc-
tions for high-confidence samples. Conversely, uncertain
samples are forced to explore in different directions rather
than mislead model in a fixed direction. Extensive experi-
ments show that GSS can achieve comparable performance
with a model trained with clean data. Moreover, the pro-
posed GSS is pluggable for existing frameworks. This idea
of switching gradient directions provides a new perspective
for future noisy-label learning.

1. Introduction

Recently, Deep Neural Networks (DNNs) have achieved
breakthrough results across various computer vision
tasks [9, 14–16, 20, 34, 36, 49, 50]. The high performance
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Figure 1. Performance comparison of existing methods and the
proposed GSS on CIFAR-10 with 40% noisy labels. The red
dashed line denotes the upper limit, which is the accuracy of mod-
els trained with completely clean labels.

of DNNs requires a large amount of labeled data, but it is
hard to guarantee label quality in many circumstances. As a
matter of fact, many benchmark datasets inevitably contain
noisy labels according to investigation results in [35].

Various types of researches are proposed to address the
noisy-label problem. The mainstream types are robust loss
function [18, 27, 44, 54] and sample screening [30, 37, 40].
These methods deal with mislabeled samples in essen-
tially similar ways, that is, by decreasing the weights of
low-confidence samples, which highly rely on the trainee
model’s discriminative power of identifying mislabeled
samples. However, during training the trainee model is
imperfect and will miss many mislabeled samples, which
will continuously damage the model. That is why there is a
large performance gap between existing anti-noise models
trained with noisy samples and models trained with clean
samples. As shown in Fig. 1, existing anti-noise meth-
ods (denoted by solid lines) have 1.61% ∼ 9.81% accu-
racy gaps compared with the reference upper limit (red dash
line), which denotes the performance of models trained with
clean samples. It raises an important question: how to
prevent the continuous damage of noises to model train-
ing? The theoretical analysis in Section 4 shows that the
noise damage comes from the misleading gradient direc-
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tions caused by noises. Therefore, it is a viable solution to
handle the continuous damage of noises to model training
by eliminating the impact of misleading gradient directions.

In this paper, we put forward a Gradient Switching Strat-
egy (GSS) to prevent the continuous damage of mislabeled
samples to the model training. The core idea is assigning
a random gradient direction to cancel out the negative im-
pact of mislabeled samples, especially for uncertain sam-
ples which could continuously generate a misleading gra-
dient in a single direction. For high-confidence samples,
the model will be optimized using their potential principal
directions with a larger probability. As the model’s dis-
criminative power grows over training time, parts of uncer-
tain samples will become high-confidence samples, which
in turn optimizes the model with their potential principal di-
rections. Finally, the model will be well-trained with almost
all samples in the dataset step by step.

Specifically, we devise a gradient direction pool for each
sample, which contains all-class gradient directions with
different probabilities. The probabilities of different gra-
dient directions are determined based on the original noisy
label, predictions, and partial randomness. In the training
stage, for uncertain samples, the probabilities of different
gradient directions are dominated by randomness. The mul-
tiple random gradient directions prevent a fixed misdirec-
tion from continuously damaging the training.

The high-confidence samples consist of two groups: the
predictions are consistent with original labels (consistent
sample), and the predictions are not consistent with original
labels (non-consistent sample). For consistent samples, the
gradient direction of the original label (potential principal
direction) has a higher probability than those for the remain-
ing gradient directions. For non-consistent samples, two
highest probabilities correspond to the gradient directions
of the original label and model prediction. The model ex-
plores two gradient directions and determines the potential
principal direction during training. In summary, the poten-
tial principal directions of high-confidence samples guide
the optimization of the model.

Experiment results demonstrate that the proposed GSS
can effectively prevent the damage of mislabeled samples
to the model training. The proposed GSS is pluggable
for existing frameworks for noisy-label learning, which can
achieve 1.23% ∼ 9.22% accuracy improvement than SOTA
for high noise rates. Additionally, the model with GSS
trained on noisy samples can achieve comparable perfor-
mance with models trained with clean samples.

Overall, our contributions are summarized as follows:

• This paper is the first to clarify the continuous damage
of the mislabeled samples to model training. Theoreti-
cal analysis shows the continuous damage comes from
the misleading gradient direction derived from misla-
beled samples, which provides a new perspective for

future noisy-label learning research.

• We propose the Gradient Switching Strategy (GSS) to
prevent the continuous gradient damage of mislabeled
samples to the model training. A gradient direction
pool containing gradient directions of all classes with
dynamic probabilities for each sample is devised to al-
leviate the impact of uncertain samples and optimize
the model with the potential principal direction.

• Detailed theoretical analysis and extensive experimen-
tal results show that the proposed GSS can effectively
prevent damage of mislabeled samples. Through com-
bining GSS with existing anti-noise learning methods,
the final classification performance can achieve up to
1.23% ∼ 9.22% accuracy improvement over SOTA
on datasets with severe noise, some of which are even
comparable to the model trained with clean samples.

2. Related Work
Previous researches have proposed various methods for

noisy-label learning, such as label correction [39, 41, 51],
noisy adaptation [5, 32, 42], and meta learning [48, 52, 55].
Among existing methods, the mainstream in this field in-
cludes robust loss function and sample cleaning, which have
been proven effective in various tasks with noisy labels [38].

Robust loss function based methods theoretically prove
that the classifier trained with noisy data can achieve the
same misclassification probability as that trained with clean
data [3,8,31,43]. Symmetric Cross Entropy (SCE) [44] was
proposed to address the under-fitting and over-fitting prob-
lems with noisy datasets. Some researchers [1, 2] proposed
replacing the Softmax layer with the exponential functions,
which allows transitioning between non-convex and convex
losses by different temperature parameters. Based on the
discovery that DNNs are robust to noisy labels in the early
learning stage, Early-learning Regularization (ELR) [25]
was proposed to take past model outputs as targets for im-
proving the robustness of models. Active Passive Loss
(APL) [28] proposed a normalization function to make
any loss robust to noisy labels. Compared to Cross En-
tropy (CE), these loss functions have an anti-noise effect
on model training. However, even though these losses have
been theoretically proven to be robust, there is still a big
gap between the experimental performance on clean data
and that on noisy data. As we analyzed in Section 4.2, the
effects of most robust losses essentially reduce the gradi-
ent weight of uncertain samples. Although the model is
less corrupted by the noise, these methods also reduce the
weights of hard samples and result in low generalization.

Sample cleaning is another common technique devised
for handling noisy labels, which is a special case of sample
weighting (with binary weights) [4,21,29]. MentorNet [13]
attempted to learn data-driven curriculums by re-weighting
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samples for the student model. Co-teaching [10] maintained
two networks with random initialization and cross-updated
the parameters. In every iteration, small-loss samples were
delivered to the peer network. Some researchers [17,46,53]
proposed new sample selection strategies to obtain clean
datasets. Filtering the uncertain samples is a more direct ap-
proach than robust loss, but similarly, it has the side effect
of reducing the sample amount. To address this problem,
semi-supervised method [22, 33, 45, 56] is applied to utilize
mislabeled samples. DivideMix [22] divided the datasets
and treated the low-confidence samples as unlabeled ones.
The semi-supervised method was adopted to train unlabeled
data based on model predictions. However, the model pre-
dictions are unreliable during the training, which can easily
introduce extra noise. Moreover, since this type of noise is
derived from the model predictions, it can hardly be recti-
fied and keep corrupting the training.

3. Preliminaries
Given a training dataset {(x(n), ỹ(n))|1 ≤ n ≤ N},

where N denotes the sample amount, x(n) denotes the n-
th sample, and ỹ(n) ∈ {1, 2, ...,K} denotes the annotated
labels. Assuming the true label of the n-th sample is y(n),
the dataset is noisy if y(n) ̸= ỹ(n),∃n. And the noise ra-
tio of the noisy dataset is η = 1

N

∑N
n=1 1

[
y(n) ̸= ỹ(n)

]
.

1 [·] is the indicator function. The classifier f takes samples
x as the input to compute the logits zk and the probabil-
ities pk of each category k ∈ {1, 2, ...,K}. For the l-th
convolutional layer of classifier f , the kernel weights are
denoted as wl, the output feature map is denoted as ml,
and the corresponding activated feature map is denoted as
al = BatchNorm(σ(ml)), where σ() and BatchNorm()
denote the activation function and Batch Normalization. To
be noted, al is also the input of the (l + 1)-th layer.

4. Theoretical Analysis of Noise Damage
The experimental results given in Fig. 1 show that the

accuracy of a model trained by clean samples is 1.61% ∼
9.81% higher than that of existing methods trained by noisy
labels. Although these methods reduce the influence of
noise, there is still a large gap. This section discusses the
question about How Noisy Labels Affect the Training and
Why Do Existing Methods Have Limited Effects.

4.1. How Noisy Labels Affect the Training

For deep convolution networks, the training process up-
dates the parameters through backward gradients, minimiz-
ing the loss function eventually. For the convolution oper-
ation ml = al−1 ⊗ wl (‘⊗’ denotes the convolution opera-
tion), the calculation of the output can be derived as:

ml
i,j =

∑
i′

∑
j′

wl
i′,j′a

l−1
is+i′,js+j′ , (1)

where i and j are indexes of the output feature map ml,
i′, and j′ are indexes of the convolution kernel wl, and s
denotes the stride. Based on Eqn. (1), the gradient of loss
w.r.t. the convolution kernel weights can be derived as:

∂L(ỹ)
∂wl

i′,j′
=
∑
i

∑
j

∂L(ỹ)
∂ml

i,j

∂ml
i,j

∂wl
i′,j′

=
∑
i

∑
j

dils

(
∂L(ỹ)
∂ml

)
is,js

al−1
i′+is,j′+js, (2)

where L(ỹ) denotes the loss function with the noisy label
ỹ, dils(·) denotes the matrix dilation, and its dilation rate
equals the slide s. By comparing the subscript relationship
with Eqn. (1), the Eqn. (2) can be simplified as:

∂L(ỹ)
∂wl

= al−1 ⊗ dils

(
∂L(ỹ)
∂ml

)
, (3)

where the convolution stride in Eqn. (3) equals 1. Since
∂L(ỹ)
∂ml =

∑
k

(
∂L(ỹ)
∂zk

∂zk
∂ml

)
, the weight update of model

layer l depends on three terms: the activated feature map
of the last layer al−1, the gradient of loss w.r.t. the logits
of each category ∂L

∂zk
, and the gradient of each category’s

logits w.r.t. the output feature map ∂zk
∂ml . The second term

can be regarded as the weight of the k-th category, and the
third term can be regarded as the gradient direction of the
k-th category. In this paper, we refer to these two terms as
the ‘gradient weight’ and the ‘gradient direction’. So the
gradient can be regarded as the weighted sum of each cate-
gory’s gradient directions. For Cross-Entropy (CE) loss, the
gradient weight ∂L(ỹ)

∂zk
= pk−qk, where qk = 1 [ỹ = k]. So

that the gradient weight is negative for the target category
and positive for the others. For samples with wrong labels,
the gradient bias can be derived based on Eqn. (3):

∂L(y)
∂wl

− ∂L(ỹ)
∂wl

= al−1 ⊗

((∂L(y)
∂zy

− ∂L(ỹ)
∂zy

) ∂zy
∂ml

+
(∂L(y)

∂zỹ
− ∂L(ỹ)

∂zỹ

) ∂zỹ
∂ml

)

= al−1 ⊗
( ∂zỹ
∂ml

− ∂zy
∂ml

)
. (4)

It can be seen the gradient bias is related with the difference
of two categories’ gradient directions. Since the labels are
fixed, this bias will accumulate during training and con-
tinuously affect the model.

4.2. Why Do Existing Methods Have Limited Effects

Based on the above analysis, this section demonstrates
the effects of existing methods for noisy-label learning. Af-
ter analyzing from the perspective of gradients, we find
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many methods are essentially similar, including sample
cleaning, reweighting, and robust loss. Sample clean-
ing with various strategies removes the uncertain samples,
equivalent to reweighting with a binary weight. For robust
loss functions, we calculate the gradients and find that they
essentially reduce the gradient weight of uncertain samples.

According to the methodologies of existing methods, we
derive their formulas of feature weight in Table 1, where
GCE [54], SL [44], ELR [25], and Peer Loss [26] belong to
robust loss functions. EG Reweighting [29] and CIW [21]
belong to sample reweighting. Co-teaching [10] and Di-
videMix [22] belong to sample cleaning. The theoretical
deductions of above methods and other recent works are
given in the supplementary materials. Among these meth-
ods, α, β, and γ are positive hyper-parameters, A is set
to a negative constant to replace − log 0, and τ , τ ′, τ ′′ are
cleaning thresholds. In dual branch models Co-teaching and
DivideMix, p and p∗ denote the prediction of the current
branch and the other branch, respectively. GMM denotes
the Gaussian mixture model to predict clean samples.

Based on the above analyses, it can be seen that these
methods have the same characteristics. They are essentially
in enhancing or inhibiting the gradient weight term ∂L

∂zk
.

The gradient weight of these methods can be summarized
as W(pk − qk), where W is positively correlated with the
prediction on the annotated label py . The gradient weight of
samples with low confidence would be reduced to avoid the
influence of noise. That is how existing methods work for
noisy-label learning. However, though these methods avoid
the negative effect of the noise, the positive effect of hard
samples on the model is also suppressed. That is why there
is a big gap between these methods and the model trained
by clean data. For methods that reuse uncertain samples
through SSL, new noise will be introduced since unreliable
predictions are applied to replace the original noisy labels.
And the newly added noise is consistent with the model pre-
dictions and can be hard to rectify. In a word, for samples
that are wrongly distinguished, gradient bias will accumu-
late. The gap between the model trained by clean and noisy
data becomes larger during the training.

5. Methodology

As we discussed above, the problem that existing meth-
ods have not solved is that the misidentified samples have
continuous damage to the model training, which is caused
by the bias of wrong gradient direction. In this paper,
we propose the Gradient Switching Strategy to address the
problem. We introduce the process of the proposed GSS
in Section 5.1, the combination details with various frame-
works in Section 5.2, and the effect of GSS for noisy-label
learning is analyzed in Section 5.3. The pseudo-code given
in the supplements illustrates the full process of GSS.

Method Formula of gradient weight ∂L(ỹ)/∂zk
Cross Entropy pk − qk

GCE [54]
(
−(py)

γ−1
)
(pk − qk)

SL [44] (α+ β|A|py)(pk − qk)

ELR [25] (pk − qk) +
∑

i pip̂i−p̂k

1−
∑

i pip̂i
θpk

Peer Loss [26] (p
(n)
k − q

(n)
k )− (p

(n1)
k − q

(n2)
k )

EG Reweighting [29] wEG (pk − qk)

CIW [21] wCIW (pk − qk)

Co-teaching [10] 1 [L(p∗)y < τ ′] (pk − qk)

DivideMix [22] 1 [GMM (L(p∗)y) > τ ′′] (pk − qk)

Table 1. The summarized gradient weight of existing methods.
Here qk = 1 [ỹ = k].

5.1. Gradient Switching Strategy

Considering that misidentified samples can cause contin-
uous damage in the same gradient direction, the proposed
GSS is to prevent noise damage by gradient switching. In-
stead of switching the gradient into another fixed direction,
the gradient direction pool is conducted for each sample to
randomly select directions with different probabilities. The
probability of selecting each category depends on the pro-
portion in the direction pool:

P (ŷ(n)e = k) = D(n)
k /

∑
k′

D(n)
k′ , (5)

where D(n) ∈ RK denotes the direction pool of the sample
x(n), and ŷe denotes the flipped label in the e-th iteration.
For each sample, the direction pool is used to randomly se-
lect the direction in each iteration. And the gradient direc-
tions are switched through flipping labels. During training,
the gradient direction pool of each sample will update syn-
chronously, and thus appropriate gradient switching strate-
gies can be adjusted at different stages of training. In gen-
eral, the GSS has two additional processes in each iteration,
gradient switching and updating the direction pool.

The updating strategy of the gradient direction pool is
crucial to the effect of gradient switching. For samples with
high predicted confidence, the gradient will be switched to
the principal direction with high probability. The uncertain
samples are encouraged to be trained in various directions,
rather than in a fixed direction to cause continuous damage.
As the model performance improves, these uncertain sam-
ples will gradually generate their principal directions and
participate in the training. Thus, three types of labels are ap-
plied for updating the direction pool, including the original
labels Yor, predicted labels Ypr, and random labels Yrd.
Among them, Yor and Ypr are one-hot vectors, and Yrd is
a K-dimensional vector with all values of 1/K. The corre-
sponding updating weights are denoted as vor, vpr, and vrd,
respectively. During training, the updating weights of each
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sample are set as follows:

vor = pỹ(1− e/E), (6)
vpr = pỹ(λ1e/E), (7)

vrd = λ2e/E, (8)

where pỹ denotes the predicted confidence on noisy labels,
E denotes the total amount of epochs, e denotes the current
epoch, and λ1, λ2 are parameters to determine the impor-
tance of two types of labels. The gradient direction pool of
each sample is updated by the weighted sum in each epoch:

D[e+1] = D[e] + Yorvor + Yprvpr + Yrdvrd, (9)

where D[e] denotes the gradient direction pool of each sam-
ple in the e-th epoch of the training.

This group of updating weights adjusts the tendency for
gradient switching on different training phases. The begin-
ning phase tends to the original labels for fast convergence.
With model predictions more accurate than annotated la-
bels, the later phase tends to the other two types of labels.
During the model training, the weights of predicted labels
are increased to improve label reliability. Also, the random
labels are emphasized to prevent continuous damage caused
by overfitting in the fixed direction.

Thus, the gradient direction pool varies on samples with
confident and uncertain predictions. Whether the annotated
labels are correct or wrong, confident samples have explicit
principal directions. So that mislabeled samples with accu-
rate predictions can be trained in correct directions, rather
than being removed directly. For uncertain samples, the gra-
dients switch more randomly across all categories, which
allows the model to explore in various directions without
being affected by the continuous damage. As the model per-
formance improves through training, these uncertain sam-
ples can generate their principal directions. In summary,
the gradient switching strategy achieves both the utilization
of all samples and the prevention of continuous damage.

5.2. Combination with Existing Frameworks

The proposed GSS is a pluggable technique, which is
simple but can significantly improve the performance of ex-
isting methods. We combine our GSS with three kinds of
frameworks, including the single branch model, dual branch
model, and dual branch model with semi-supervised learn-
ing. For the single branch model, the strategy is given in
Section 5.1 without additional settings. This section will in-
troduce the combination strategies with the other two com-
binations with dual branches.

For the GSS with dual branches (GSS-DB), the differ-
ence between the two models can further prevent the gradi-
ent direction pool updating from being misled by the noise.
In GSS-DB, the models of two branches are denoted as f1,
f2. For each sample x(n), two gradient direction pools D(n)

1

Figure 2. Illustration of gradient directions on various samples
with GSS. During training, the gradient direction pool of each
sample D(n) is updated iteratively. In each epoch, new directions
are selected with different probabilities determined by its direction
pool. Two circumstances of confident and uncertain samples are
illustrated from the early stage e1 to the later stage e2. The exam-
ple samples have the noisy label ỹ = 2 and the true label y = 1.

and D(n)
2 are conducted, which are used to select gradient

directions ŷ(n)1,e and ŷ
(n)
2,e for the training of two models, re-

spectively. Moreover, the updating of direction pools use
the predicted labels of the other model. So that even if one
of the models wrongly predicts some uncertain samples, the
corresponding direction pools will be updated by predic-
tions of the other model. Compared with Co-teaching [10],
GSS-DB prevents noise damage without filtering samples,
making the model trained by more samples.

From dual branches with semi-supervised learning, Di-
videMix [22] removes the labels of uncertain samples and
trains these samples based on the predictions of the other
model. Still, the method of SSL introduces new noise by
using predictions as targets. In this way, the newly added
noise is consistent with predictions and can hardly be cor-
rected, causing continuous damage to the model learning.
Thus, we apply GSS in this type of framework with semi-
supervised learning (GSS-SSL). GSS-SSL also applies the
dual branches so that the main process is consistent with
GSS-DB. Additionally, two updating strategies of gradient
direction pools are used for different purposes. The labeled
samples are more credible than the unlabeled samples, so λ1

is larger than λ2 for labeled samples. On the contrary, λ2 is
larger for unlabeled samples, encouraging these samples to
explore various directions to prevent noise damage. More
details of GSS combinations are given in the supplements.

5.3. Effectiveness analysis of Gradient Switching

To demonstrate the effect of gradient switching, theoreti-
cal and experimental analyses are conducted in this section.
As discussed above, Eqn. 4 denotes the gradient bias of each
sample with the noisy label ỹ and the clean label y. So that
the total gradient bias caused by each sample within a small
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number of iterations E can be derived as:

∆g =

E∑
e

µae ⊗
∣∣deỹ − dey

∣∣ , (10)

where ∆g denotes the gradient bias, dy denotes the short-
hand for the gradient direction ∂zy/∂m

l, and µ denotes the
learning rate. The layer l is omitted in the interest of brevity.
Assuming the activation feature map a and gradient direc-
tion d of the same sample is basically constant in a small
number of iterations (experimental demonstrated in supple-
mentary materials), the total bias can be simplified as:

∆gori = µa⊗
∣∣∣E(dỹ − dy

)∣∣∣, (11)

where dỹ − dy is the fixed bias that misled the model itera-
tively. Conversely, with unfixed directions of GSS, the total
gradient bias can be derived as follows:

∆ggss = µa⊗
∣∣∣ E∑

e

(
dŷe

− dy
)∣∣∣. (12)

The difference between fixed and unfixed directions is that
the latter replaces the accumulated bias E (dỹ − dy) with
the summary bias of various directions

∑E
e (dŷe

− dy).
Through the updating of the gradient direction pool, the se-
lected direction will be more reliable than the original one
without continuous bias. That is the reason unfixed labels
can be robust to noise.

To analyze the gradient bias in existing methods, we as-
sume there is a method to perfectly distinguish all the noise,
which means W = 0 for mislabeled samples. So that
the gradient bias of the ideal sample learning method ∆gsc
equals the gradients with clean labels and can be derived as:

∆gsc = µa⊗
∣∣∣E(−∑

k

∂L(y)
∂zk

dk
)∣∣∣

= µa⊗
∣∣∣E(∑

k ̸=y

pkdk − (1− py)dy
)∣∣∣. (13)

And the gradient bias of SSL methods ∆gssl can be derived
as:

∆gssl = µa⊗
∣∣∣∑

k

((∂Lssl

∂zk
− ∂L(ỹ)

∂zk

) ∂zk
∂ml

)∣∣∣, (14)

where Lssl denotes the semi-supervised loss for unlabeled
samples with MixMatch [6].

Experimental results are conducted in Table 2 to com-
pare the gradient biases among ∆gori, ∆gsc, ∆gssl, and
∆ggss. The same term µa is omitted for simplicity of cal-
culation. The results indicate that GSS has less bias than
sample cleaning (∆gsc) and SSL (∆gssl). It’s worth not-
ing that we assume that samples are perfectly distinguished

Dataset CIFAR-10 CIFAR-100
Epochs 50 100 150 50 100 150

Gradient
Bias

(×102)

∆gori 2.15 5.65 17.62 5.26 13.26 26.91
∆gsc 1.22 2.70 6.67 3.36 7.31 14.52
∆gssl 1.18 2.64 6.71 3.29 7.20 18.34
∆ggss 1.20 2.61 6.53 3.27 7.04 12.19

Table 2. The experimental analysis of various methods’ gradient
biases in different training stages. The results are calculated by
adding the absolute values of gradient biases, and the average bi-
ases of mislabeled samples are shown. The experiments are con-
ducted on CIFAR-10 and CIFAR-100 with 40% symmetric noise.
The minimum biases are marked in bold.

in ∆gsc, so in fact the gradient bias of existing methods is
even larger. SSL has a relatively low bias at the early stage,
but the bias increases more compared to ∆ggss and ∆gsc.
It might be due to the added noise by using predictions as
targets for mislabeled samples.

6. Experiments
Dataset. We evaluate the proposed method on vari-

ous datasets, including CIFAR-10, CIFAR-100 [19], Cloth-
ing1M [47], and WebVision [24]. The first two datasets are
widely used benchmarks that only contain clean labels, so
we generate simulated noise by symmetric and asymmet-
ric approaches. The symmetric noise is generated by ran-
domly flipping labels with uniform distribution, while the
asymmetric noise only occurs between specific categories.
Details of the asymmetric noise are provided in supplemen-
tary materials. The symmetric noisy labels are generated
with a ratio from 40% to 80%, and the asymmetric ones
are generated with a ratio from 20% to 40%. Clothing1M
and WebVision are datasets with real-world noisy labels.
Clothing1M contains a million images with 14 classes of
clothing. The dataset is collected from online shopping
websites with an overall label accuracy of 61.54%. There
are several pairs of confusing classes, making this dataset
very challenging. WebVision contains 2.4 million images
of 1,000 same classes in ImageNet ILSVRC12 [12], which
are crawled from the web with lots of noise. Based on previ-
ous works [7,23], the first 50 classes of the ImageNet subset
are used for comparison.

Implementation Details. ResNet18 [11] is used as the
backbone for CIFAR-10 and CIFAR-100, and ResNet50 is
used as the backbone for Clothing1M and WebVision. All
methods use the same backbones with pre-trained weights.
The SGD with a momentum of 0.9 and weight decay of
5 × 10−4 is adopted. The batch size is set to 128 for all
datasets. The initial learning rate is set to 0.01 for CIFAR-
10 and CIFAR-100 and 0.001 for Clothing1M and WebVi-
sion. The learning rate is decayed in a cosine annealing
manner. The hyper-parameters of existing methods are ad-
justed according to their papers. For the proposed GSS, the
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Dataset Method \Ratio
Symmetric Asymmetric

20% 40% 60% 80% 20% 30% 40%

CIFAR-10

GCE [54] 88.77±0.18 84.66±0.30 78.43±0.25 66.11±0.27 87.28±0.13 84.63±0.15 82.15±0.27
SL [44] 88.98±0.20 84.65±0.28 78.22±0.25 68.53±0.26 84.94±0.19 80.90±0.22 78.71±0.21

ELR+ [25] 87.77±0.30 83.87±0.28 79.19±0.30 62.01±0.32 84.35±0.20 82.36±0.22 80.56±0.29
Co-teaching [10] 89.59±0.09 87.20±0.20 81.40±0.15 72.94±0.21 85.99±0.12 84.23±0.11 79.48±0.12

JoCoR [53] 86.82±0.24 85.31±0.22 76.50±0.23 66.94±0.33 86.73±0.18 79.84±0.17 77.19±0.24
DivideMix [22] 94.26±0.14 92.85±0.19 92.26±0.21 90.07±0.17 92.98±0.15 91.57±0.13 90.59±0.16
GSS-SSL (Ours) 94.31±0.12 94.20±0.11 92.84±0.25 91.61±0.21 93.42±0.10 92.44±0.12 91.82±0.10

CIFAR-100

GCE 69.19±0.24 63.17±0.35 52.45±0.32 22.60±0.40 67.19±0.30 55.41±0.28 49.75±0.28
SL 70.43±0.29 62.28±0.31 53.20±0.45 25.79±0.42 69.11±0.28 57.63±0.30 52.06±0.27

ELR+ 66.77±0.33 63.89±0.26 49.93±0.26 19.81±0.33 64.10±0.28 51.89±0.36 46.78±0.35
Co-teaching 70.35±0.19 64.54±0.20 52.99±0.22 27.05±0.24 69.96±0.23 58.84±0.39 55.74±0.35

JoCoR 65.36±0.27 61.70±0.24 50.33±0.31 18.44±0.40 64.01±0.41 53.40±0.49 48.99±0.48
DivideMix 75.89±0.14 73.90±0.16 67.41±0.16 45.82±0.15 72.20±0.20 69.04±0.19 59.16±0.19

GSS-SSL (Ours) 76.71±0.19 76.10±0.20 71.92±0.21 55.04±0.25 73.81±0.22 72.20±0.27 65.84±0.20

Table 3. Classification results on CIFAR-10 and CIFAR-100 with different ratios of symmetric/asymmetric noise. The experiment com-
pares our GSS-SSL with GCE [54], SL [44], ELR+ [25], Co-teaching [10], JoCoR [46], and DivideMix [22]. The mean accuracies over
five experiments are shown, and the best results are marked in bold (All scores are in %).

Method Clothing1M WebVision ILSVRC12
Top1 Top1 Top5 Top1 Top5

GCE [54] 71.73 61.22 80.81 59.13 79.09
SL [44] 72.05 63.78 84.29 61.56 84.08

ELR+ [25] 71.48 63.61 83.50 60.10 83.13
Co-teaching [10] 72.50 64.09 85.01 62.94 84.76

JoCoR [53] 71.74 60.79 82.48 57.15 81.33
DivideMix [22] 74.59 77.21 91.60 75.23 90.76
GSS-SSL (Ours) 74.88 77.35 93.09 75.18 92.84

Table 4. The classification accuracies (%) of various methods
trained by real-world noisy datasets Clothing1M and WebVision.
The mean accuracies over five experiments are shown, and the best
results are marked in bold (All scores are in %).

weights of updating the gradient direction pool are set as
λ1 = 2.0, λ2 = 1.0 for GSS-SB and GSS-DB. In GSS-
SSL, the weights are set as λ1 = 0.2, λ2 = 0.5 for unla-
beled samples, and λ1 = 0.1, λ2 = 0.0 for labeled samples.

6.1. Quantitative Evaluation

This section evaluates GSS on various benchmark
datasets. The synthetic noisy labels are generated randomly
on CIFAR-10 and CIFAR-100 to evaluate the effects with
different noise ratios. And Clothing1M and WebVision are
used to evaluate the performance with real-world noise.

Experiments on CIFAR-10/CIFAR-100: Tabel 3
shows test accuracy on CIFAR-10 and CIFAR-100 with
synthetic noisy labels. The experiments are conducted with
various ratios of symmetric and asymmetric noise to evalu-
ate the performance under different conditions. Overall, the
proposed GSS significantly improves over state-of-the-art
methods with different noise ratios. Although DivideMix
has achieved high accuracy, our method still greatly im-
proves the performance by up to 9.22%.

Particularly, the performances of robust loss functions
and sample cleaning methods decrease considerably with

the increase of the noise ratio. Since a large amount of noise
reduces the ability to identify clean samples, the model is
more vulnerable to continuous damage. It can be seen that
DivideMix is superior to other existing methods, because
parts of the label noise are rectified through SSL. But there
are still large gaps with the performance trained by clean
labels. Our proposed GSS further reduces these gaps across
all noise ratios. Especially for CIFAR-10 with symmetric
noise less than 40% or asymmetric noise less than 30%, the
gaps are reduced to within 0.5%. The possible explanation
for the gap of DivideMix could be that the rectified labels
by SSL add new noises, which are consistent with model
predictions and regarded as clean samples. With GSS, the
gradient directions are switched in each iteration. Thus con-
tinuous damage caused by wrong predictions can be effec-
tively prevented.

Experiments on Clothing1M/WebVision: Table 4
shows the results of models trained on Clothing1M and We-
bVision. Clothing1M is a challenging dataset with a high
ratio of real-world noise. Comparing to synthetic noise,
some mislabeled samples in Clothing1M contain many sim-
ilar features and are harder to identify. Thus the perfor-
mances of existing methods are much closer. Still, GSS
achieves 0.29% ∼ 3.40% improvement over these methods.
For WebVision and ILSVRC12, the validation sets contain
the same 50 classes of the ImageNet subset, and both top-
1 and top-5 accuracy are shown. It can be seen the GSS
improvement on top-5 accuracy is much higher than that
on top-1 accuracy. This phenomenon is due to the gradient
direction pool allowing the model to be trained in multiple
directions for uncertain samples. Instead of minimizing pre-
dictions on other categories, GSS will be trained in various
possible directions, even if the annotated labels are wrong.
Consequently, for uncertain samples that cannot accurately
predict, the model has a high probability of predicting cor-
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Figure 3. The ablation results with different weights of gradient di-
rection pool updating. The experiments are conducted on CIFAR-
10 with 40% noisy labels with GSS-SB. All results are the average
accuracy with the error bar on the test set over five experiments.

rectly with the top-5 predictions.

6.2. Ablation Study

Effects of Gradient Direction Pool Updating: In this
section, we conduct an ablation study of different strategies
for updating the gradient direction pool. Experiments are
conducted with different weights (λ1 and λ2) to evaluate the
sensitivity of these parameters. λ1 and λ2 are the weights
of predicted labels and random labels, respectively. With
weights λ1/λ2 = 0, the corresponding labels are removed
to explore the effects of each component in updating the
direction pool. The results are illustrated in Fig. 3.

In Fig. 3, the result with weight λ1 = 0.0 (λ2 = 1.0)
is much lower than others, which reflects the importance
of predicted labels in updating the direction pool. Without
adding predicted labels, the training of each sample loses
the principal directions, making the model hard to converge.
With the addition of predicted labels (λ1 > 0), the perfor-
mance improves greatly. From the curve of λ2, it can be
seen the performance is less sensitive than λ1. The result
with weight λ2 = 0.0 is also the lowest, indicating that the
randomness of gradient direction is crucial to GSS. With
random labels, the direction pool can select various direc-
tions for the model rather than a fixed one, which help pre-
vent the continuous damage of label noise.

Effects of Different Combinations: Aiming at the com-
binations of GSS with various frameworks, experiments are
conducted to provide insights into the effects of each com-
ponent, shown in Fig. 4. GSS-SB, GSS-DB, and GSS-SSL
denote GSS with the single branch, double branch, and
semi-supervised learning, respectively. On both datasets
with 40% and 60% noisy labels, GSS-DB achieves im-
provement compared with GSS-SB. The reason is the dual
gradient direction pool further achieves damage prevention
by increasing randomness in selecting gradient directions.

Moreover, GSS-SSL further improves the accuracy, and
this improvement is more pronounced with 60% noisy la-
bels. GSS-SSL solves the problem of continuous damage

Figure 4. The ablation results of GSS combinations with various
frameworks. The experiments are conducted on CIFAR-10 with
40% (a) and 60% (b) noisy labels. All results are the average ac-
curacy on the validation set over five experiments.

from incorrect predictions and enables more efficient learn-
ing of uncertain samples through semi-supervised learning.
For datasets with severe noise, damage from incorrect pre-
dictions and uncertain samples is more common, so GSS-
SSL can have a significant improvement for high-noise data.

7. Conclusion

This paper makes a deep analysis from a new perspec-
tive of gradient directions, demonstrating that label noise
can cause continuous damage throughout the model train-
ing. Although existing methods improve the performance
of noisy-label learning, the damage of misidentified noise
leads to suboptimal performance. To address this problem,
we put forward GSS to reduce the impact of mislabeled
samples. GSS devises a dynamic gradient direction pool
for each sample, which contains various gradient directions
with different probabilities. With GSS, uncertain samples
are forced to explore in different directions rather than mis-
lead model optimization in a fixed direction. Our theoretical
analysis demonstrates that GSS can effectively reduce the
gradient biases caused by label noise. Validated by compre-
hensive experiments, our GSS achieves superior accuracy
over all existing methods on both synthetic and real-world
noisy datasets. Moreover, GSS trained with noisy labels ob-
tains comparable performance with the model trained with
clean labels. The proposed GSS effectively prevents noise
damage by switching gradient directions, providing a new
perspective for future noisy-label learning.

Acknowledgements. This work is funded by the Na-
tional Key Research and Development Project (Grant No:
2022YFB2703100), Starry Night Science Fund of Zhejiang
University Shanghai Institute for Advanced Study (Grant
No. SN-ZJU-SIAS-001), Ningbo Natural Science Foun-
dation (2022J182), Fundamental Research Funds for the
Central Universities (2021FZZX001-23), Alibaba Group
through Alibaba Innovative Research Program, Alibaba-
Zhejiang University Joint Research Institute of Frontier
Technologies, and Zhejiang Lab (No.2019KD0AD01/014).

12061



References
[1] Ehsan Amid, Manfred KK Warmuth, Rohan Anil, and Tomer

Koren. Robust bi-tempered logistic loss based on bregman
divergences. Advances in Neural Information Processing
Systems, 32, 2019. 2

[2] Ehsan Amid, Manfred K Warmuth, and Sriram Srinivasan.
Two-temperature logistic regression based on the tsallis di-
vergence. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 2388–2396. PMLR, 2019.
2

[3] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K.
Mcguinness. Unsupervised label noise modeling and loss
correction. International Conference on Machine Learning,
2019. 2

[4] Noga Bar, Tomer Koren, and Raja Giryes. Multiplicative
reweighting for robust neural network optimization. arXiv
preprint arXiv:2102.12192, 2021. 2

[5] Alan Joseph Bekker and Jacob Goldberger. Training deep
neural-networks based on unreliable labels. In 2016 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2682–2686. IEEE, 2016. 2

[6] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. Advances in
Neural Information Processing Systems, 32, 2019. 6

[7] Pengfei Chen, Ben Ben Liao, Guangyong Chen, and
Shengyu Zhang. Understanding and utilizing deep neural
networks trained with noisy labels. In International Confer-
ence on Machine Learning, pages 1062–1070. PMLR, 2019.
6

[8] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss
functions under label noise for deep neural networks. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 31, 2017. 2

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 1

[10] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-
teaching: Robust training of deep neural networks with ex-
tremely noisy labels. volume 31, 2018. 3, 4, 5, 7

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 6

[12] D. Jia, D. Wei, R. Socher, L. J. Li, L. Kai, and F. F. Li. Im-
agenet: A large-scale hierarchical image database. Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 248–255, 2009. 6

[13] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and
Li Fei-Fei. Mentornet: Learning data-driven curriculum for
very deep neural networks on corrupted labels. In Interna-
tional Conference on Machine Learning, pages 2304–2313.
PMLR, 2018. 2

[14] Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan,
Mingli Song, Xinchao Wang, and Dacheng Tao. Learning

graph neural networks for image style transfer. In ECCV,
2022. 1

[15] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song,
and Dacheng Tao. Amalgamating knowledge from heteroge-
neous graph neural networks. In CVPR, 2021. 1

[16] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song,
and Dacheng Tao. Meta-aggregator: learning to aggregate
for 1-bit graph neural networks. In ICCV, 2021. 1

[17] Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rah-
navard, Ajmal Mian, and Mubarak Shah. Unicon: Com-
bating label noise through uniform selection and contrastive
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9676–
9686, 2022. 3

[18] Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim.
Nlnl: Negative learning for noisy labels. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 101–110, 2019. 1

[19] A Krizhevsky. Learning multiple layers of features from tiny
images. Master’s thesis, University of Tront, 2009. 6

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 1

[21] Abhishek Kumar and Ehsan Amid. Constrained instance and
class reweighting for robust learning under label noise. arXiv
preprint arXiv:2111.05428, 2021. 2, 4

[22] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix:
Learning with noisy labels as semi-supervised learning.
2019. 3, 4, 5, 7

[23] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankan-
halli. Learning to learn from noisy labeled data. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5051–5059, 2019. 6

[24] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc
Van Gool. Webvision database: Visual learning and under-
standing from web data. arXiv preprint arXiv:1708.02862,
2017. 6

[25] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Car-
los Fernandez-Granda. Early-learning regularization pre-
vents memorization of noisy labels. Advances in Neural In-
formation Processing Systems, 33:20331–20342, 2020. 2, 4,
7

[26] Yang Liu and Hongyi Guo. Peer loss functions: Learning
from noisy labels without knowing noise rates. In Interna-
tional Conference on Machine Learning, pages 6226–6236.
PMLR, 2020. 4

[27] Yueming Lyu and Ivor W Tsang. Curriculum loss: Robust
learning and generalization against label corruption. arXiv
preprint arXiv:1905.10045, 2019. 1

[28] Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano,
Sarah Erfani, and James Bailey. Normalized loss functions
for deep learning with noisy labels. In International Confer-
ence on Machine Learning, pages 6543–6553. PMLR, 2020.
2

[29] Negin Majidi, Ehsan Amid, Hossein Talebi, and Manfred K
Warmuth. Exponentiated gradient reweighting for robust
training under label noise and beyond. arXiv preprint
arXiv:2104.01493, 2021. 2, 4

12062



[30] Eran Malach and Shai Shalev-Shwartz. Decoupling ”when
to update” from ”how to update”. volume 30, 2017. 1

[31] Naresh Manwani and PS Sastry. Noise tolerance un-
der risk minimization. IEEE transactions on cybernetics,
43(3):1146–1151, 2013. 2

[32] Ishan Misra, C Lawrence Zitnick, Margaret Mitchell, and
Ross Girshick. Seeing through the human reporting bias:
Visual classifiers from noisy human-centric labels. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2930–2939, 2016. 2

[33] Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi
Phuong Nhung Ngo, Thi Hoai Phuong Nguyen, Laura
Beggel, and Thomas Brox. Self: Learning to filter noisy
labels with self-ensembling. 2019. 3

[34] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.
Learning deconvolution network for semantic segmentation.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 1520–1528, 2015. 1

[35] Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Per-
vasive label errors in test sets destabilize machine learning
benchmarks. 2021. 1

[36] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 779–788, 2016. 1

[37] Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Re-
furbishing unclean samples for robust deep learning. In In-
ternational Conference on Machine Learning, pages 5907–
5915. PMLR, 2019. 1

[38] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin,
and Jae-Gil Lee. Learning from noisy labels with deep neural
networks: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022. 2

[39] Haoliang Sun, Chenhui Guo, Qi Wei, Zhongyi Han, and Yi-
long Yin. Learning to rectify for robust learning with noisy
labels. Pattern Recognition, 124:108467, 2022. 2

[40] Cheng Tan, Jun Xia, Lirong Wu, and Stan Z Li. Co-learning:
Learning from noisy labels with self-supervision. In Pro-
ceedings of the 29th ACM International Conference on Mul-
timedia, pages 1405–1413, 2021. 1

[41] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa. Joint op-
timization framework for learning with noisy labels. IEEE,
2018. 2

[42] Ryutaro Tanno, Ardavan Saeedi, Swami Sankaranarayanan,
Daniel C Alexander, and Nathan Silberman. Learning from
noisy labels by regularized estimation of annotator confu-
sion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11244–11253,
2019. 2

[43] X. Wang, Y. Hua, E. Kodirov, and N. M. Robertson. Imae
for noise-robust learning: Mean absolute error does not treat
examples equally and gradient magnitude’s variance matters.
2019. 2

[44] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng
Yi, and James Bailey. Symmetric cross entropy for robust
learning with noisy labels. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 322–
330, 2019. 1, 2, 4, 7

[45] Zhuowei Wang, Jing Jiang, Bo Han, Lei Feng, Bo An, Gang
Niu, and Guodong Long. Seminll: A framework of noisy-
label learning by semi-supervised learning. arXiv preprint
arXiv:2012.00925, 2020. 3

[46] Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combat-
ing noisy labels by agreement: A joint training method with
co-regularization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13726–13735, 2020. 3, 7

[47] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
6

[48] Youjiang Xu, Linchao Zhu, Lu Jiang, and Yi Yang. Faster
meta update strategy for noise-robust deep learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 144–153, 2021. 2

[49] Xingyi Yang, Zhou Daquan, Songhua Liu, Jingwen Ye, and
Xinchao Wang. Deep model reassembly. In Advances in
Neural Information Processing Systems. 1

[50] Xingyi Yang, Jingwen Ye, and Xinchao Wang. Factorizing
knowledge in neural networks. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, Octo-
ber 23–27, 2022, Proceedings, Part XXXIV, pages 73–91.
Springer, 2022. 1

[51] K. Yi and J. Wu. Probabilistic end-to-end noise correction for
learning with noisy labels. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 2

[52] Kun Yi and Jianxin Wu. Probabilistic end-to-end noise cor-
rection for learning with noisy labels. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7017–7025, 2019. 2

[53] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang,
and Masashi Sugiyama. How does disagreement help gener-
alization against label corruption? pages 7164–7173, 2019.
3, 7

[54] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy
loss for training deep neural networks with noisy labels. vol-
ume 31, 2018. 1, 4, 7

[55] Guoqing Zheng, Ahmed Hassan Awadallah, and Susan Du-
mais. Meta label correction for noisy label learning. In Pro-
ceedings of the 35th AAAI Conference on Artificial Intelli-
gence, 2021. 2

[56] Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Robust cur-
riculum learning: from clean label detection to noisy label
self-correction. In International Conference on Learning
Representations, 2020. 3

12063


