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Abstract

Fair clustering aims to divide data into distinct clusters
while preventing sensitive attributes (e.g., gender, race,
RNA sequencing technique) from dominating the clustering.
Although a number of works have been conducted and
achieved huge success recently, most of them are heuristi-
cal, and there lacks a unified theory for algorithm design.
In this work, we fill this blank by developing a mutual
information theory for deep fair clustering and accordingly
designing a novel algorithm, dubbed FCMI. In brief,
through maximizing and minimizing mutual information,
FCMI is designed to achieve four characteristics highly ex-
pected by deep fair clustering, i.e., compact, balanced, and
fair clusters, as well as informative features. Besides the
contributions to theory and algorithm, another contribution
of this work is proposing a novel fair clustering metric built
upon information theory as well. Unlike existing evalua-
tion metrics, our metric measures the clustering quality
and fairness as a whole instead of separate manner. To
verify the effectiveness of the proposed FCMI, we conduct
experiments on six benchmarks including a single-cell
RNA-seq atlas compared with 11 state-of-the-art methods
in terms of five metrics. The code could be accessed from
https://pengxi.me.

1. Introduction
Clustering plays an important role in machine learning

[19, 27–29, 34, 42, 43], which could partition data into dif-
ferent clusters without any label information. It has been
widely used in many real-world applications such as multi-
view learning [35,39], image segmentation [24], and bioin-
formatics [20]. In practice, however, the data might be con-
founded with sensitive attributes (e.g., gender, race, etc.,
also termed as group information) that probably over-

∗ Equal contribution
† Corresponding author

maximize

minimize

Cluster Information Group Information

Figure 1. Illustration of our basic idea using information diagrams,
where X , G, and C denote the inputs, sensitive attributes, and
clustering assignments, respectively. To cluster data, we expect
the overlap between non-group information and cluster informa-
tion (i.e., the conditional mutual information I(X;C|G)) to be
maximized. Meanwhile, to prevent sensitive attributes from domi-
nating the clustering results, we expect the overlap between group
information and cluster information (i.e., the mutual information
I(G,C)) to be minimized.

whelm the intrinsic semantic of samples (also termed as
cluster information). Taking single-cell RNA clustering
as a showcase, standard methods would partition data based
on sequencing techniques (group information) instead of
intrinsic cell types (cluster information), since cells se-
quenced by different techniques would result in different
expression levels [36] and most clustering methods cannot
distinguish these two kinds of information. The case is sim-
ilar in many automatic learning systems where the clus-
tering results are biased toward sensitive attributes, which
would interfere with the decision-making [9, 12, 18]. No-
tably, even though these sensitive attributes are known in
prior, it is daunting to alleviate or even eliminate their in-
fluence, e.g., removing the “gender” information from the
photos of users.

As a feasible solution, fair clustering aims to hide sen-
sitive attributes from the clustering results. Commonly, a
clustering result is considered fair when samples of different
sensitive attributes are uniformly distributed in clusters so
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that the group information is protected. However, it would
lead to a trivial solution if the fairness is over-emphasized,
i.e., all samples are assigned to the same cluster. Hence,
in addition to fairness, balance and compactness are also
highly expected in fair clustering. Specifically, a balanced
clustering could avoid the aforementioned trivial solution
brought by over-emphasized fairness, and the compactness
refers to a clear cluster boundary.

To achieve fair clustering, many studies have been con-
ducted to explore how to incorporate fairness into luster-
ing [3,4,8,22,23,38,44,46]. Their main differences lie in i)
the stage of fairness learning, and ii) the depth of the model.
In brief, [3, 8] incorporate the fairness in a pre-processing
fashion by packing data points into so-called fairlets with
balanced demographic groups and then partitioning them
with classic clustering algorithms. [22,46] are in-processing
methods that formulate fairness as a constraint for cluster-
ing. As a representative of post-processing methods, [4]
first performs classic clustering and then transforms the
clustering result into a fair one by linear programming. Dif-
ferent from the above shallow models, [23, 38, 44] propose
performing fair clustering in the latent space learned by
different deep neural networks to boost performance. Al-
though promising results have been achieved by these meth-
ods, almost all of them are heuristically and empirically de-
signed, with few theoretical explanations and supports. In
other words, it still lacks a unified theory to guide the algo-
rithm design.

In this work, we unify the deep fair clustering task un-
der the mutual information theory and propose a novel
theoretical-grounded deep fair clustering method accord-
ingly. As illustrated in Fig. 1, we theoretically show that
clustering could be achieved by maximizing the condi-
tional mutual information (CMI) I(X;C|G) between in-
puts X and cluster assignments C given sensitive attributes
G. Meanwhile, we prove that the fairness learning could
be formulated as the minimization of the mutual informa-
tion (MI) I(G;C). In this case, sensitive attributes will be
hidden in the cluster assignments and thus fair clustering
could be achieved. To generalize our theory to deep neu-
ral networks, we additionally show a deep variant could be
developed by maximizing the mutual information I(X;X ′)
between the input X and its approximate posterior X ′. No-
tably, some deep clustering methods [17,26] have been pro-
posed based on the information theory. However, they are
remarkably different from this work. To be exact, they ig-
nored the group information. As a result, the group infor-
mation will leak into cluster assignments, leading to unfair
partitions. In addition, we prove that our mutual informa-
tion objectives intrinsically correspond to four characteris-
tics highly expected in deep fair clustering, namely, com-
pact, balanced, and fair clusters, as well as informative fea-
tures.

Besides the above contributions to theory and algorithm,
this work also contributes to the performance evaluation.
To be specific, we notice that almost all existing methods
evaluate clustering quality and fairness separately. How-
ever, as fair clustering methods usually make a trade-off be-
tween these two aspects, such an evaluation protocol might
be partial and inaccurate. As an improvement, we design
a new evaluation metric based on the information theory,
which simultaneously measures the clustering quality and
fairness. The contribution of this work could be summa-
rized as follows:

• We formulate deep fair clustering as a unified mu-
tual information optimization problem. Specifically,
we theoretically show that fair clustering could be
achieved by maximizing CMI between inputs and clus-
ter assignments given sensitive attributes while mini-
mizing MI between sensitive attributes and cluster as-
signments. Moreover, the informative feature extrac-
tion could be achieved by maximizing MI between the
input and its approximate posterior.

• Driven by our unified mutual information theory, we
propose a deep fair clustering method and carry out ex-
tensive experiments to show its superiority on six fair
clustering benchmarks, including a single-cell RNA at-
las.

• To evaluate the performance of fair clustering more
comprehensively, we design a novel metric that mea-
sures the clustering quality and fairness as a whole
from the perspective of information theory.

2. Related Work
To alleviate or even eliminate the influence of sensitive

attributes, many efforts have been devoted on fair cluster-
ing [1, 5, 7, 11, 21, 30]. Based on how fairness is incor-
porated, the existing works could be roughly divided into
three categories, namely, pre-processing, in-processing, and
post-processing methods. In brief, the pre-processing meth-
ods endow classic clustering methods with hand-craft fair-
ness constraints. For example, Chierichetti et al. [8] first
divide data points into several subsets (i.e., fairlets) with
the fairness constraint, and then employ a classic cluster-
ing algorithm on these fairlets to obtain the data parti-
tion. However, the fairlets construction requires at least
quadratic running time, which is daunting in practice. To
improve the scalability, Backurs et al. [3] employ a tree met-
ric to approximate the fairlets construction in nearly linear
time. Different from the pre-processing methods, the in-
processing methods recast fairness as a constraint for joint
optimization with the clustering objective. For example,
Kleindessner et al. [22] recast the fairness as a linear con-
straint and embed it into the spectral clustering. Ziko et
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al. [46] propose a variational framework by integrating fair-
ness as a Kullback-Leibler (KL) term into the classic clus-
tering methods. Opposite from the pre-processing methods,
the post-processing methods [4] aim to transform the given
clustering result into a fair one by solving a linear program-
ming problem.

Motivated by the success of deep clustering [13, 14, 25,
37,41], some studies have been carried out on deep fair clus-
tering. For example, Wang et al. [38] propose learning a
fair embedding by forcing the cluster centers to be equidis-
tant from group centers, which could handle an arbitrary
number of sensitive attributes. Li et al. [23] make a step
forward to explore fair clustering on large-scale and high-
dimensional visual data by incorporating fairness through
adversarial training. Very recently, Zhang et al. [44] gener-
ate fair pseudo cluster assignments to guide the model opti-
mization.

Although promising results have been achieved by these
methods, their success partially relies on some tricks like
pre-clustering and data augmentation which are clumsy in
practical use. Besides, most existing works are designed
heuristically and empirically, with few theoretical explana-
tions and supports. Different from these studies, the pro-
posed FCMI is built upon information theory, of which the
working mechanism is interpretable. We reveal that deep
fair clustering could be achieved by maximizing i) the mu-
tual information I(X;X ′) between the input X and its ap-
proximate posterior X ′, and ii) the conditional mutual in-
formation I(X;C|G) between X and cluster assignments
C given sensitive attributes G, while minimizing the mutual
information I(G;C). Both theoretical analysis and experi-
mental results demonstrate the effectiveness of our method.

3. Method
In this section, we first give the mathematical definition

of fair clustering. After that, we elaborate on how to learn
compact, balanced, and fair clusters, as well as informative
features through a unified information theory. Finally, we
summarize the implementation of the proposed algorithm.

3.1. Problem Definition

For a given dataset X = {x1, x2, . . . , xN} with sensi-
tive attributes G = {g1, g2, . . . , gN}, fair clustering aims to
partition X into K disjoint clusters with cluster assignments
C = {c1, c2, . . . , cN} by alleviating or even eliminating the
influence of G, where gi ∈ [1, 2, . . . , T ], ci ∈ [1, 2, . . . ,K],
gi = j means that sample xi belongs to the j-th group, N
is the data size, and T is the group number. As pointed out
by [23], a clustering result is considered absolutely fair if
the cluster assignments only depend on the semantics and
are independent of the sensitive attributes. Based on such a
heuristic definition, we mathematically formulate fair clus-
tering as follows.

Definition 1 Fair Clustering. Let g̃t = {xi|gi = t} and
c̃k = {xi|ci = k} be the set of samples belonging to group
t and cluster k respectively, and pg̃t,c̃k = 1

N |g̃t ∩ c̃k| be the
joint probability density of groups and clusters, the cluster-
ing result is absolutely fair if

pg̃t,c̃k = pg̃tpc̃k ,∀t, k (1)

where pg̃t = 1
N |g̃t| and pc̃k = 1

N |c̃k| denote the marginal
probability densities of groups and clusters respectively.

Notably, fairness could be trivially achieved by assign-
ing all samples to the same cluster, but obviously, it is
not a reasonable solution. Hence, in addition to fairness,
a good fair clustering method is also expected to embrace
compactness and balance. Specifically, a clustering result
is compact if the within-cluster distance is much smaller
than the between-cluster distance, and a balanced clustering
could avoid the aforementioned trivial solution due to over-
emphasized fairness. For a deep fair clustering method,
apart from the above three clustering characteristics, it also
aims to learn informative features with redundancy removal
for better clustering performance.

3.2. Deep Fair Clustering via Maximizing and Min-
imizing Mutual Information

As mentioned above, deep fair clustering has four objec-
tives, namely, compact, balanced, fair clusters, and infor-
mative features, which are daunting to formulate and op-
timize jointly. In this paper, we theoretically show that
these four diverse objectives could be derived from a uni-
fied theory, i.e., maximizing and minimizing mutual infor-
mation. In brief, fairness could be achieved by minimizing
the mutual information between sensitive attributes G and
cluster assignments C, i.e., I(G;C); compact and balanced
clusters could be obtained by maximizing the conditional
mutual information I(X;C|G); and informative features
could be learned through maximizing the mutual informa-
tion I(X;X ′), where X ′ denotes the approximate posterior
from the prior. In the following, we will present the math-
ematical details for fair clustering and informative feature
learning in turn.

3.2.1 Fair Clustering via max I(X;C|G) and
min I(G;C)

We begin with the discussion about conditional mutual in-
formation I(X;C|G) and mutual information I(G;C). In
the following, we will prove why simultaneously maximiz-
ing I(X;C|G) and minimizing I(G;C) can make clusters
compact, balanced, and fair. First, we formulate the objec-
tive function as follows:

max I(X;C|G)− γI(G;C), (2)
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Figure 2. Overview of the proposed FCMI. In brief, FCMI extracts informative features by maximizing the mutual information I(X;X ′)
between samples X and the corresponding posterior X ′, implementing as an auto-encoder. To learn compact and balanced clusters in
the hidden space, we maximize the conditional mutual information I(X;C|G) between X and the cluster assignments C given sensitive
attributes G. Meanwhile, we minimize the mutual information I(G;C) to endow the clusters with robustness against sensitive attributes.

where γ > 0 is a trade-off parameter. By the definition of
mutual information, we have

I(X;C|G)− γI(G;C)

= H(C|G)−H(C|X,G)− γI(G;C)

= (H(C)− I(G;C))−H(C|X,G)− γI(G;C)

= −H(C|X,G) +H(C)− (1 + γ)I(G;C).

(3)

Due to the over-high computational complexity, the first
term H(C|X,G) is intractable. To overcome this chal-
lenge, we theoretically show that H(C|X,G) is exactly
H(C|X) which is more computationally efficient. Specifi-
cally, as sensitive attributes G are known in prior, we have
H(G|X) = H(G|C,X) = 0. Hence, H(C|X,G) could be
rewritten as:

H(C|X,G) = H(C|X)− I(G;C|X)

= H(C|X)− (H(G|X)−H(G|C,X))

= H(C|X) = − 1

N

∑
i,k

cik log cik,

(4)
where cik is the probability of sample xi being assigned
to the k-th cluster, which is computed according to its dis-
tance to the cluster centers (more details provided later in
Supplementary Sec. 2). As can be seen, the minimization of
H(C|X,G) pushes each sample to its corresponding cluster
center and away from the others, i.e., the model is encour-
aged to produce compact clusters.

The second term H(C) is the entropy of cluster assign-
ments over all samples, namely,

H(C) = −
∑
k

pc̃k log pc̃k , (5)

where pc̃k = 1
N

∑
i cik refers to the marginal probability

density function of clusters. The maximization of H(C)
punishes over-large or small clusters to avoid trivial solu-
tions due to over-emphasized fairness, which leads to bal-
anced clusters.

The third term I(G;C) refers to the mutual information
between the cluster assignments and the sensitive attributes,
which is computed as

I(G;C) =
∑
t,k

pg̃t,c̃k log
pg̃t,c̃k
pg̃tpc̃k

, (6)

where pg̃t = 1
N

∑
i 1xi∈g̃t is the group marginal probabil-

ity density function, and pc̃k,g̃t = 1
N

∑
i 1xi∈g̃tcik denotes

the joint probability density function of clusters and groups.
Notably, I(G;C) is a convex function and it reaches the
minimum point I(G;C) = 0 i.f.f. pg̃t,c̃k = pg̃tpc̃k , which
exactly corresponds to the absolute fairness defined in Def-
inition 1. Hence, the minimization of I(G;C) encour-
ages the data partition to be fair against sensitive attributes,
thus leading to fair clusters. Note that solely optimizing
I(X;C|G) would not lead to fair clustering, see Fig. 1.

Based on the above analyses, Eq. 2 could be decomposed
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into the following two objectives, namely,

Lclu = −H(C) +H(C|X,G)

=
∑
k

pc̃k log pc̃k − 1

N

∑
i,k

cik log cik,
(7)

and

Lfair = I(G;C) =
∑
t,k

pg̃t,c̃k log
pg̃t,c̃k
pg̃tpc̃k

. (8)

3.2.2 Informative Feature Learning via max I(X;X ′)

The above theoretical analysis has shown that compactness,
balance, and fairness could be derived from the unified per-
spective of mutual information. In this section, we reveal
that the informative feature could also be learned via maxi-
mizing the mutual information I(X;X ′) between the prior
X and the corresponding approximate posterior X ′. With-
out loss of generality, we take X ′ as the auto-encoder re-
construction for the given X in the following analysis and
our implementation.

To be specific, given I(X;X ′) = H(X) − H(X|X ′),
the maximization of I(X;X ′) is equivalent to the
minimization of the conditional entropy H(X|X ′) =
−Ep(X,X′)[log p(X|X ′)], since H(X) is a constant. How-
ever, as the probability density function p(X|X ′) cannot be
accessed directly, we alternate to minimize its upper bound,
i.e.,

− Ep(X,X′)[log q(X|X ′)]

≥ −Ep(X,X′)[log q(X|X ′)]−DKL (p(X|X ′)||q(X|X ′))

= −Ep(X,X′)[log p(X|X ′)],
(9)

where q(X|X ′) could be any distribution with a known
probability density function and DKL is KL divergence.
Without loss of generality, we assume it obeys Gaussian
distribution N(X;X ′, σ2I), then

−Ep(X,X′)[log q(X|X ′)] ∝ Ep(X,X′)[||X −X ′||2] + a,
(10)

where a is a constant. As a result, the upper bound could be
optimized by minimizing the following reconstruction loss,
i.e.,

Lrec = ||X −X ′||2 = ||X − Φ(θ(X))||2, (11)

where θ denotes a shared encoder, and Φ denotes a multi-
branch decoder that reconstructs samples with different at-
tributes separately. Formally, Φ(hi) = ϕgi(hi), gi ∈
[1, 2, . . . , T ], where ϕgi is the group-specific decoder which
reconstructs samples from the gi-th group, and hi = θ(xi)
denotes the feature extracted by the encoder. In other words,
we use a multi-branch decoder to recover the group infor-
mation that has been removed in the hidden space by Lfair
for better reconstruction.

As I(X;X ′) ≤ I(X;h), the maximization of I(X;X ′)
intrinsically increase the lower bound of I(X;h), and thus
help the auto-encoder to extract informative features h
from the raw inputs.

3.3. The Objective Function and Algorithm Details

To summarize, we unify the deep fair clustering task
from the perspective of information theory. With the above
theoretical analyses, we arrive at our loss by combining
Eq. 7, 8 and 11, i.e.,

L = Lrec + α(Lclu + (1 + γ)Lfair)

= Lrec + αLclu + βLfair,
(12)

3.4. The Proposed Evaluation Metrics for Fair Clus-
tering

To evaluate the fairness of clustering results, most exist-
ing studies adopt the Balance (Bal.) metric [8, 38] which is
defined as the ratio between the largest and smallest sensi-
tive groups in a cluster. However, the distributions of other
groups are ignored when there are more than two groups
(e.g., if there were 3, 4, 18, 20 samples from each group,
the Bal. will be 3/20 which is the same when it becomes
3, 11, 11, 20.) To address this issue, we propose a novel
fairness measurement, dubbed Minimal Normalized Condi-
tional Entropy (MNCE) as below.

Definition 2 Minimal Normalized Conditional Entropy
(MNCE). Given N data points X with sensitive groups G
from clusters C, MNCE is defined as the minimal group en-
tropy in each cluster divided by the global group entropy.
Formally,

MNCE =
min
k

(H (G|c̃k))

H(G)

=
min
k

(
−
∑

t
|g̃t∩c̃k|
|c̃k| log |g̃t∩c̃k|

|c̃k|

)
−
∑

t
|g̃t|
N log |g̃t|

N

∈ [0, 1],

(13)

where g̃t = {xi|gi = t} and c̃k = {xi|ci = k} denote the
set of samples belonging to the t-th group and k-th cluster
respectively, H(G|c̃k) is the conditional entropy of sensitive
attributes given the cluster assignments, and H(G) denotes
the entropy of sensitive attributes.

As H(G) is a constant for the given dataset, we derive
the following proposition from Eq. 13:

Proposition 1 The cluster assignments are independent of
the sensitive attributes if and only if MNCE = 1.

Proof 1 Suppose the cluster assignments are independent
of the sensitive attributes, we have pg̃t,c̃k/pc̃k = pg̃t , where
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pc̃k,g̃t denotes the joint probability density function of clus-
ters and groups, pg̃t and pc̃k are the marginal probability
density function of group and clusters, respectively. From
the Bayes’ theorem, one have pgt|ck = pgt,ck/pck , and thus
pgt|ck = pgt . Further,

H(G|c̃k) = −
∑
t

pg̃t|c̃k log pg̃t|c̃k = −
∑
t

pg̃t log pg̃t

= H(G),∀k ∈ {1, 2, . . . ,K}.
(14)

As a result, min
k

(H(G|c̃k)) = H(G) and MNCE = 1.

Notably, the above deductions hold reversely as H(G|c̃k) ≤
H(G),∀k.

From Proposition 1, MNCE reaches the maximum point
MNCE = 1 i.f.f. the cluster assignments are absolutely fair
as defined in Definition 1. Hence, a larger MNCE indicates
a fairer clustering result.

However, a separate evaluation is less attractive as fair
clustering methods usually make a trade-off between clus-
tering quality and fairness. Alternatively, we propose the
following metric to simultaneously measure the clustering
quality and fairness,

Definition 3 Fβ: An overall measure for clustering qual-
ity and fairness. Let u and v denote the clustering metric
NMI and the fairness metric MNCE, Fβ is defined as the
harmonic mean of u and v, i.e.,

Fβ = 1/

(
β2

1 + β2

1

v
+

1

1 + β2

1

u

)
=

(1 + β2)uv

β2u+ v
∈ [0, 1] (u, v ∈ [0, 1]),

(15)

where β ∈ [0,+∞) is a hyper-parameter to adjust the
weight of clustering quality and fairness. A larger β cor-
responds to more focus on fairness. In general, we recom-
mend β = 1 to treat these two terms equally.

4. Experiments
In this section, we evaluate our FCMI on six fair cluster-

ing benchmarks, compared with both the classical (non-fair)
and state-of-the-art fair clustering methods. In addition, we
carry out a series of qualitative analyses and ablation studies
to investigate the effectiveness and robustness of FCMI.

4.1. Experimental Setups

Dataset: We adopt six datasets confounded with var-
ious types of sensitive attributes for evaluations (summa-
rized in Supplementary Table 1). Among them, the first
five datasets including MNIST-USPS1, Reverse MNIST,

1http://yann.lecun.com/exdb/mnist, https://www.
kaggle.com/bistaumanga/usps-dataset

HAR [2], Office-31 [33], and MTFL [45] are commonly
used in fair clustering studies [23,38]. To explore the poten-
tial in practical applications, we additionally evaluate FCMI
on the single-cell mouse atlas dataset that is widely used
in biological analysis, where the sensitive attributes corre-
spond to different sequence techniques [10, 15].

Implementation Details: Consistent with the previ-
ous works [23], we use a convolutional auto-encoder for
MNIST-USPS and Reverse MNIST, and a fully-connected
auto-encoder for handing other datasets. For MTFL and
Office-31, the features extracted by ResNet50 [16] are used
as the inputs. In all experiments by default, we fix the hyper-
parameter α = 0.04, β = 0.20 in Eq. 12 across all the
datasets. The only exception is that we remove the balance
constraint (i.e., set β = 0) on the single-cell mouse atlas
since the cells of different types are highly unbalanced. The
model is trained for 300 epochs using the Adam optimizer
with an initial learning rate of 1e − 4 for all datasets, with
a warm-up in the first 20 epochs using the reconstruction
loss defined in Eq. 11. All experiments are conducted on a
Nvidia A10 GPU on the Ubuntu 18.04 platform.

Baselines: Both classic clustering methods and state-of-
the-art fair clustering methods are used for comparisons.
Specifically, for the classic methods, we select auto-encoder
+ k-means [37], DEC [40], DAC [6] and ClGAN [32]
as baselines. For the shallow fair clustering methods,
ScFC [3], SpFC [22], VFC [46], FAlg [4] are used for com-
parisons. For the deep fair clustering methods, we could
only investigate the performance of DFC [23] since the
code of DFDC [44] and Towards [38] are unavailable. As
an alternative, we present the original results reported in
their paper on the common datasets for reference. Notably,
ScFC [3] and DFC [23] only support two groups and they
are impractical on the HAR dataset, while other methods
including our FCMI could be generalized to arbitrary group
numbers.

Evaluation Metrics: In our experiments, the widely-
used ACC and NMI metrics are used to investigate the clus-
tering quality. And the previous Balance (Bal.) metric and
the proposed MNCE metric are used to evaluate the fair-
ness. In addition, we adopt the proposed measurement Fβ

for a comprehensive evaluation.

4.2. Quantitative Comparisons

In this section, we carry out quantitative experiments by
comparing FCMI with 11 baselines. As shown in Tab. 1,
although the classical clustering methods achieve competi-
tive clustering performance in terms of ACC and NMI, they
show poor results in terms of fairness. On the contrary, fair
clustering methods inject fairness into clustering, leading
to a debiased data partition. However, some shallow fair
clustering methods such as ScFc [3] guarantee the fairness
explicitly at the cost of clustering quality. Compared with

23991

http://yann.lecun.com/exdb/mnist
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.kaggle.com/bistaumanga/usps-dataset


Table 1. Comparisons of FCMI with both standard and fair clustering methods on six benchmarks. The best and the second best results are
marked in bold and underline, respectively. Some results are unavailable since the codes for DFDC and Toward are unpublished, and DFC
and ScFC are unable to handle the HAR dataset which is consisted of multiple (≥ 3) sensitive groups.

MNIST-USPS Color Reverse MNIST HAR

Method ACC NMI Bal MNCE Fβ ACC NMI Bal MNCE Fβ ACC NMI Bal MNCE Fβ

AE 76.3 71.8 0.0 0.0 0.0 41.0 52.8 0.0 0.0 0.0 66.3 60.7 0.0 86.9 71.5
DEC 60.0 59.4 0.0 0.0 0.0 40.7 38.2 0.0 0.0 0.0 57.1 65.5 0.0 93.7 77.1
DAC 76.3 69.9 0.0 0.0 0.0 31.4 27.1 0.0 0.0 0.0 38.2 31.5 0.0 32.4 31.9
ClGAN 38.3 35.7 0.1 1.9 3.6 20.1 9.1 2.2 14.9 11.3 52.7 44.3 0.4 0.0 0.0

ScFC 14.2 1.3 11.2 95.0 2.6 51.3 49.1 100.0 100.0 65.8 - - - - -
SpFC 20.1 15.5 0.0 0.0 0.0 11.0 2.1 0.0 0.0 0.0 19.0 0.4 0.0 0.0 0.0
VFC 58.1 55.2 0.0 0.0 0.0 38.1 42.7 0.0 0.0 0.0 62.6 66.2 25.6 98.7 79.3
FAlg 58.4 53.8 9.5 85.8 66.1 26.9 14.3 66.6 97.1 24.9 56.6 58.6 43.2 99.2 73.7
Towards 72.5 71.6 3.9 - - 42.5 50.6 43.0 - - 60.7 66.1 16.6 - -
DFC 85.7 83.4 6.7 68.2 75.0 49.9 68.9 80.0 99.1 81.3 - - - - -
DFDC 93.6 87.6 11.9 - - 58.9 69.0 94.6 - - 86.2 84.5 46.8 - -
FCMI(Ours) 96.7 91.8 10.7 94.5 92.0 88.4 86.4 99.5 99.9 92.7 88.2 80.7 40.7 99.3 89.0

Office-31 MTFL Mouse Atlas

Method ACC NMI Bal MNCE Fβ ACC NMI Bal MNCE Fβ ACC NMI Bal MNCE Fβ

AE 63.8 66.8 0.0 0.0 0.0 67.2 16.0 67.8 97.3 27.5 56.1 54.5 0.6 5.7 10.3
DEC 63.3 68.6 0.0 0.0 0.0 56.7 0.6 78.0 98.9 1.1 61.5 63.2 0.7 6.3 11.4
DAC 14.0 25.2 0.0 0.0 0.0 58.9 1.4 81.5 87.9 2.7 48.3 40.3 36.0 86.4 54.9
ClGAN 52.2 54.9 0.0 0.0 0.0 72.9 12.6 79.1 99.0 22.4 48.3 50.8 0.8 7.2 12.6

ScFC 38.0 60.7 26.7 97.7 74.9 52.1 15.1 100.0 100.0 26.3 31.2 16.0 63.6 99.9 27.5
SpFC 9.3 11.4 0.0 0.0 0.0 65.5 0.1 75.0 98.5 0.2 21.3 3.8 0.0 0.0 0.0
VFC 65.2 69.7 20.3 86.0 77.0 68.8 8.4 88.9 99.8 15.6 45.4 49.8 0.0 0.0 0.0
FAlg 67.1 70.7 20.4 86.4 77.8 63.2 16.7 60.1 96.3 28.5 52.2 58.5 45.2 92.7 71.7
DFC 69.0 70.9 11.9 64.2 67.4 72.8 17.6 97.4 99.9 30.0 60.0 59.1 21.4 69.7 63.9
FCMI(Ours) 70.0 71.2 22.6 90.6 79.7 70.2 19.1 90.4 99.8 32.0 65.8 65.4 38.1 88.1 75.0

0 epoch (NMI=14.2) 25 epoch (NMI=79.3) 50 epoch (NMI=83.5) 0 epoch (MNCE=18.9) 25 epoch (MNCE=89.0) 50 epoch (MNCE=91.6)

Clusters Groups

Figure 3. Visualization of the hidden representation on MNIST-USPS with the increasing training epoch. The left and right three figures
are colored by classes and groups, respectively. For more visualization and comparison, please see Supplementary Fig 1.

shallow ones, deep fair clustering methods achieve a more
elegant trade-off between clustering quality and group fair-
ness. Besides the superior performance of our FCMI on
clustering and fairness metrics, we would like to highlight
that FCMI achieves dominance in terms of Fβ . Specifically,
FCMI outperforms the best competitor by 17.0%, 11.4%,

9.7%, 1.9%, 2.0%, and 3.3% in terms of Fβ on six datasets
respectively.

4.3. Visualization

To help understand the working mechanism of FCMI, we
first visualize the hidden representation of MNIST-USPS by
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MNIST USPS

Raw Input

Standard 
Reconstruction

Switched 
Reconstruction

Figure 4. Visualization of the reconstructions outputted by group-
specific decoders on MNIST-USPS. The rows from top to bottom
refer to the raw inputs, the reconstructions from the corresponding
decoder, and the reconstructions from the switched decoder.
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Figure 5. The influence of α and β on ACC and MNCE on MNIST-
USPS. The stable performance of FCMI demonstrates its robust-
ness against hyper-parameters.

Table 2. Ablation study of Lclu and Lfair on MNIST-USPS.

Lclu Lfair ACC NMI Bal MNCE Fβ

✓ ✓ 96.7 91.8 10.7 92.3 92.0
✓ 95.2 89.9 8.2 77.9 83.5

✓ 89.6 79.2 9.0 86.1 81.1

performing UMAP [31] on the learned features across the
training process. As shown in Fig. 3, the data shows the
group information evenly distributes in the initial feature
space. As the training goes on, more compact, balanced,
and fairer clusters are learned by FCMI.

Recalling in our implementation, a multi-branch decoder
is used to recover the group information for better recon-
struction. To verify the effectiveness of such a multi-branch
decoder, we conduct experiments on MNIST-USPS and
switch the decoder for different groups to reconstruct im-
ages. As shown in Fig. 4, the group information is success-
fully transferred from USPS to MNIST, and vice versa. In
other words, this result proves that the encoder could extract
the semantic information and each branch of the decoder
could capture the group information.

4.4. Parameter Analysis and Ablation Study

In this section, we investigate the influence of the hyper-
parameters α and β on the MNIST-USPS dataset. As shown
in Fig. 5, the performance of FCMI is stable under dif-
ferent choices of α and β, which demonstrates its robust-
ness against the hyper-parameters. However, when one of
the mutual information I(X;C|G) and I(G;C) is removed

w/   and w/  , w/o  w/o  , w/  w/o   and 

Figure 6. The evolution of mutual information I(C,X|G) and
I(C,G) across the training process with and without Lclu and
Lfair .

(i.e., without Lclu or Lfair), our model encounters a signif-
icant drop in clustering or fairness performance as shown in
Table 2. Such an ablation study verifies the effectiveness of
our information theory-driven losses.

To further investigate the effectiveness of Lclu and
Lfair, we visualize the evolution of mutual information
I(X;C|G) and I(G;C) across the training process on the
HAR dataset. For comparisons, we compute the mutual in-
formation when we remove one or both losses. As demon-
strated in Fig. 6, both I(X;C|G) and I(G;C) increase
in the first 20 epochs since the informative features con-
tain the cluster and group information at the preliminary
learning stage. After that, with Lclu and Lfair (red line),
the model becomes more powerful to differentiate different
clusters while alleviating the influence of the group infor-
mation, compared with the baseline when only Lrec is used
(blue line). Without Lfair (green line), group information
will leak into the cluster assignments resulting in unfair data
partitions. Without Lclu (orange line), the model would col-
lapse by solely minimizing mutual information I(G;C).

5. Conclusion

In this paper, we build a novel deep fair clustering
method (FCMI) and theoretically show that it could achieve
compact, balanced, and fair clusters, as well as informative
features. In addition, we design a novel evaluation metric
that measures the clustering quality and fairness as a whole.
Extensive experimental results demonstrate the superiority
of our method over 11 baselines on six benchmarks includ-
ing a single-cell RNA-seq atlas.
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