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Abstract

Prototypical Network is a popular few-shot solver that
aims at establishing a feature metric generalizable to novel
few-shot classification (FSC) tasks using deep neural net-
works. However, its performance drops dramatically when
generalizing to the FSC tasks in new domains. In this study,
we revisit this problem and argue that the devil lies in the
simplicity bias pitfall in neural networks. In specific, the
network tends to focus on some biased shortcut features
(e.g., color, shape, etc.) that are exclusively sufficient to dis-
tinguish very few classes in the meta-training tasks within
a pre-defined domain, but fail to generalize across domains
as some desirable semantic features. To mitigate this prob-
lem, we propose a Local-global Distillation Prototypical
Network (LDP-net). Different from the standard Prototypi-
cal Network, we establish a two-branch network to classify
the query image and its random local crops, respectively.
Then, knowledge distillation is conducted among these two
branches to enforce their class affiliation consistency. The
rationale behind is that since such global-local semantic re-
lationship is expected to hold regardless of data domains,
the local-global distillation is beneficial to exploit some
cross-domain transferable semantic features for feature
metric establishment. Moreover, such local-global seman-
tic consistency is further enforced among different images of
the same class to reduce the intra-class semantic variation
of the resultant feature. In addition, we propose to update
the local branch as Exponential Moving Average (EMA)
over training episodes, which makes it possible to better
distill cross-episode knowledge and further enhance the
generalization performance. Experiments on eight cross-
domain FSC benchmarks empirically clarify our argument
and show the state-of-the-art results of LDP-net. Code is
available in https://github.com/NWPUZhoufei/LDP-Net

*F. Zhou and P. Wang contributed equally in this work.
†Corresponding author.

1. Introduction
Prototypical Network (ProtoNet) [1] is a popular few-

shot classification (FSC) method, which works by establish-

ing a feature metric generalizable to novel few-shot tasks

using deep neural networks. It adopts an episode-based

learning strategy, where each episode, e.g., N -way K-shot,

is formulated as a contrastive learning task to identify the

correct class for each query sample from a set of limited

classes represented by prototypes derived from few sup-

port samples. Thanks to the simplicity of the framework

and appealing few-shot learning performance, ProtoNet has

gained great research attention [2–5].

However, the performance of typical ProtoNet declines

greatly when generalizing to FSC tasks in new domains,

e.g., apply the ProtoNet trained on natural images in mini-
ImageNet [6] to the fine-grained bird images in CUB [7].

This severely restricts the practicality of ProtoNet in real

applications. In this work, we propose to re-inspect the in-

trinsic reason for the limited cross-domain generalization

capability of ProtoNet and revive it in the cross-domain set-

ting with right medicine. Specifically, the key for cross-

domain generalization, especially in few-shot setting with

ProtoNet, lies on exploiting some semantic information of

each class that is invariant across different domains. To

this end, typical ProtoNet resorts to taking advantages of

the great expressive capacity of deep neural networks for

feature learning. Obviously, it fails to exploit the desirable

cross-domain transferable semantic features. In that case,

what feature representation are obtained by the deep neu-

ral network? Some recent works [8–10] may have found

the possible answer, viz., simplicity bias. It has shown that

neural networks exclusively latch on to the simplest feature

(e.g., color, shape, etc.) and tends to ignore the complex

predictive features (e.g., semantics of the object). Inspired

by this, we argue that the limited cross-domain generaliza-

tion capacity of ProtoNet is incurred by the simplicity bias,

viz., it tends to exploit some biased shortcut features that are

exclusively sufficient to distinguish very few classes in the

meta-training tasks within a pre-defined domain, but prone

to be variant across different domains.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20061



To mitigate this problem, we propose a Local-global

Distillation Prototypical Network (LDP-net) to identify im-

age features and metric that can generalize better to FSC

tasks in new domains. The network employs a two-branch

structure. A global branch predicts the class affiliation for

each query image, which is akin to standard ProtoNet. A

local branch works with image patches randomly cropped

from the query image and makes classification predictions

for such local crops. We then perform knowledge distilla-

tion between these two branches to enforce a global image

and its local patches to have consistent class affiliation pre-

dictions. The rationale behind are twofold. Firstly, compar-

ing to biased visual patterns, the semantic relationship be-

tween global image and local patches can hold more gener-

ally regardless of data domains. Secondly, the local-global

distillation enables embedding richer semantic information

from local features into the final global feature representa-

tion, which are proven to be more domain-invariant [11].

Take a step further, we apply such affiliation consistency

constraint across images belonging to the same class. By

doing this, we can reduce the intra-class semantic varia-

tion and further improve the robustness of the image feature

representations. In addition, the local branch is updated as

Exponential Moving Average (EMA) of the global branch

to produce robust classification predictions, which enables

our model to distill cross-episode knowledge and enhance

the generalization performance. Once the model is trained,

only the global branch is retained as a feature extractor for

cross-domain FSC evaluation. Notably, by simply freezing

the feature extractor in a new domain, the proposed method

achieves state-of-the-art results on eight cross-domain FSC

benchmark datasets.

The major contributions of this study can be summarized

as follows:

• We inspect the limited cross-domain generalization ca-

pability of typical ProtoNet from the perspective of

simplicity bias and propose a local-global knowledge

distillation framework to effectively mitigate this prob-

lem.

• The proposed LDP-Net has insightful and innovative

designs and can learn a robust feature metric that gen-

eralizes better to FSC tasks in new domains.

• The proposed LDP-Net achieves state-of-the-art per-

formance on a set of cross-domain FSC benchmarks.

2. Related Work

Few-shot learning. Few-shot learning (FSL) aims to gen-

eralize knowledge learned in some auxiliary base classes

to novel classes with very few labeled samples. Popu-

lar works solve FSL mainly from prototype-based metric

learning [1–3, 6], meta-learning [12–16] and transfer learn-

ing [17–19]. Prototype-based metric learning methods, e.g.,

ProtoNet [1], MatchingNet [6], etc., focus on learning an

embedding space that push samples of the same class to-

gether and separate samples of different classes apart. In

meta-learning based methods, e.g., MAML [12], MetaOpt-

Net [13], etc., focus on fast adaptation through the two-

stage optimization. LEO [14] and HT [15] utilize the hyper-

network [20] to generate task-aware parameters to dynam-

ically handle each few-shot task. Transfer learning based

methods, e.g., S2M2 [18] and Neg-Cosine [21] focus on

learning good feature initialization, and then performing

task-level fine-tuning to improve performance.

Cross-domain few-shot learning. Unlike FSL, cross-

domain FSL (CD-FSL) focuses on learning a model on the

source domain that can effectively generalize to the target

domain. According to the training data used, CD-FSL can

be divided into three types, e.g., training with only a single

source domain [5,22–25], training with multiple source do-

mains [26], and training with both source and target domain

data [27]. Among them, single-source CD-FSL is more

challenging and practical, and thus we focus on it in this

work.

Some recent works have made progress on single-source

CD-FSL. Doersch et al. [4] customize a spatially-aware pro-

totype for each query image based on cross-attention, and

unify self-supervised learning into a meta-learning frame-

work to effectively alleviate domain shift. Since complex

Transformer [28] are used, this method needs to use large-

scale source domain data for training. Li et al. [5] achieve

state-of-the-art performance by calibrating the relative dis-

tance between support samples and query samples in feature

space. Das et al. [25] utilize a feature masker to filter fea-

tures suitable for the target domain few-shot task. Tseng et

al. [29] adopt task-specific affine transformation on features

to achieve domain adaptation. Wang et al. [22] perform gra-

dient updates on input samples to improve robustness to do-

main changes. Guo et al. [23] utilize pre-training combined

with fine-tuning to achieve good performance, even better

than the sophisticated meta-learning algorithms. Liang et

al. [24] devise a feature reconstruction-based loss to fine-

tune each few-shot task and achieved significant perfor-

mance gains. Although these works [5, 22–25] have made

progress, they require fine-tuning the model (i.e., feature ex-

tractor) to alleviate the domain gap when dealing with few-

shot tasks on each target domain. In contrast, the proposed

method focuses on learning a model with strong general-

ization ability, which is able to generalize to wide range of

target domains without fine-tuning.

3. Methodology
Problem formulation. In CD-FSC, the model is trained

on the source domain dataset Ds, and then tested on a series
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Figure 1. Framework of the proposed LDP-net. LDP-net consists of a two-branch network. The global branch extracts global features while

the local branch takes random crops of raw query image as input to extract local features. Then, knowledge distillation is conducted among

these two branches to enforce the local-global semantic consistency. In addition, the local branch is updated as the Exponential Moving

Average (EMA) of the global branch during knowledge distillation, which makes it possible to better distill cross-episode knowledge.

of N -way K-shot episodes randomly sampled in the target

domain dataset Dt. Note that the classes between Ds and

Dt do not overlap. In each episode T (i.e., task) , N repre-

sents the number of classes, and K represents the number

of labeled samples for each class. The N×K labeled sam-

ples are called the support set TS . Besides, each episode

contains the query set TQ for evaluation, which consists of

different samples of the same class as Ts. Usually, in order

to mimic few-shot evaluation scenario, the model training

is also performed in an episode-based way.

3.1. Preliminary knowledge about the ProtoNet

The ProtoNet is a popular few-shot learner. It constructs

a prototype for each class based on its support samples,

and then matches the query sample against all prototypes.

Formally, given a few-shot episode T , the prototype corre-

sponding to each class is calculated as:

Cn =
1

K

K∑

k=1

fθ
(
XSn,k

)
, (1)

where fθ represents the feature extractor, Cn represents the

prototype of class n, and XSn,k
represents the k-th support

sample of class n.

Then, the classification predictions PQi
for query sam-

ple XQi
is obtained by matching against all prototypes:

PQi
= matching (fθ(XQi

), Cn) , n ∈ [1, N ] , (2)

where matching(·) represents the similarity matching be-

tween two features. The label corresponding to the maxi-

mum prediction score is used as the predicted label ŷQi
for

the query sample XQi
.

Finally, the cross entropy loss H(·) can be calculated as:

Lce
XQi

= H(ŷQi
, yQi

), (3)

where yQi
is the ground truth of the query image XQi

.

3.2. The proposed LDP-net

Overview. As shown in Fig. 1, the proposed LDP-net

consists of a two-branch network. Among them, the global

branch is utilized to extract global features from the input

image, and its structure is the same as the feature extrac-

tor in standard ProtoNet. The local branch takes random

crops of raw query image as input to extract local features.

On top of these two branches, we propose a local-global

knowledge distillation module to enforce a consistency con-

straint between the affiliation predictions made from local

and global features, which proves to be invariant across

domains. In addition, we propose to distill cross-episode

knowledge by updating the local branch as the Exponential

Moving Average (EMA) of the global branch over meta-

training episodes.

Global branch. In the global branch, we first extract

global features for each image through a feature extractor
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fθs . In this work, we denote the features corresponding to

the raw image extracted by the global network as global

features. Then, as with the ProtoNet, we customize the pro-

totypes according to Eq. 1. Finally, the classification pre-

dictions PQi
of the query image XQi

can be calculated by

Eq. 2.

Local branch. In the local branch, we extract local fea-

tures for the local crops of the query image, and utilize

the prototypes defined before to calculate the class af-

filiation predictions for each local feature. Some recent

works [30–32] have shown that local information of the im-

age can be obtained efficiently by multi-crop augmentation.

This augmentation first randomly crops the raw image and

then resizes it to a lower resolution to obtain local crop.

Following this, in this work, we obtain local crops corre-

sponding to each query image by multi-crop augmentation.

Specifically, for a given query image XQi
in few-shot

episode T , we first obtain local image crops Xqi,r by multi-

crop augmentation, where r ∈ [1, R], R is the number of

crops. Then, we extract local features fθt
(
Xqi,r

)
through

the local network fθt . Similarly, we calculate the classifi-

cation predictions Pqi,r corresponding to each local feature

fθt
(
Xqi,r

)
based on the prototypes.

Local-global knowledge distillation. We encourage the

global image representations to distill richer semantic in-

formation from local crops. By doing so, we can en-

force the semantic consistency between the local and global

branches. To achieve this goal, we impose consistency con-

straints on the global and local classification predictions of

the query image.

Specifically, for a given query image XQi
, we utilize the

global branch and the local branch to obtain the classifica-

tion predictions, respectively. Then, the self-image local-

global distillation loss can be calculated as:

Lself
XQi

=
1

R

R∑

r=1

H
(
Pqi,r ,PQi

)
, (4)

where PQi and Pqi,r are the global classification predic-

tions and the r-th local classification predictions for the

given query image XQi
, respectively. H(·) represents cross

entropy loss function.

Moreover, in order to reduce the intra-class semantic

variation, we further enforce the local-global semantic con-

sistency between different images from the same category.

In implementation, we found that keeping the local and

global predictions consistent across all query samples of the

same class would lead to the model learning trivial solution,

resulting in model collapse [33]. To avoid this problem,

for a query image XQi
, we randomly select one query im-

age XQj
from same category in the query set to enforce the

cross-image semantic consistency. The cross-image local-

global distillation loss can be calculated as:

Lcross
XQi

=
1

R

R∑

r=1

H
(
Pqj,r ,PQi

)
, j �= i, (5)

where Pqj,r are the local classification predictions for query

image XQj
.

Cross-episode knowledge distillation. In the proposed

method, the feature extraction network in the local branch

has the same structure as that in the global branch. A sim-

ple approach is to update both branch networks simultane-

ously according to the loss function. However, this intro-

duces additional learnable parameters and also leads to in-

efficiencies in the training process. On the other hand, the

episode-based training paradigm updates the parameters of

the model according to the gradient of the current episode.

However, the learning episodes in meta-learning are nor-

mally sampled randomly from an auxiliary dataset, which

means each episode has different combinations of classes.

This is in stark contrast to batch-based training where all the

batches share the same set of classes. Independently solving

such tasks with dramatic semantic space variation enforces

the network to keep switching to different combinations of

visual patterns, which is an inefficient way to accumulate

knowledge across the learning episodes. To mitigate these

problems, we propose to distill cross-episode knowledge

by updating the local branch as the Exponential Moving

Average (EMA) of the global branch during meta-training,

which makes it possible to better learn cross-episode knowl-

edge and further enhance the generalization performance.

Specifically, we update the parameters of the local network

as:

θt ← mθt + (1−m) θs, (6)

where θt is the parameter of the local branch fθt , θs is the

parameter of the global branch fθs , and m is the momen-

tum.

Meta-training. For each query sample, we also compute

a cross-entropy loss Lce
xqi

based on its global predictions to

facilitate prototype learning.

In summary, for a few-shot episode T , the total loss of

the proposed is:

LTS =

I∑

i=1

Lce
XQi

+ λ1 ·
I∑

i=1

Lself
XQi

+ λ2 ·
I∑

i=1

Lcross
XQi

, (7)

where I represents the total number of query samples in T ,

λ1 and λ2 are the weight coefficients of each loss function.

We utilize the total loss to meta-train the global branch. For

the local branch, we update it according to Eq. 6. The de-

tailed meta-training process is summarized in the algorithm
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1. Once the entire meta-training is done, we discard the lo-

cal branch, leaving the global branch as feature extractor for

cross-domain FSC evaluation.

Algorithm 1: Meta-training algorithm of the pro-

posed method.

Input: Source domain Ds, feature extractor of

global branch fθs with parameters θs,

feature extractor of local branch fθt with

parameters θt.
while not converged do

1. Sample a few-shot episode T from Ds;

2. Calculate prototypes according to TS based

on Eq. 1;

for each query image XQi
in TQ do

3. Obtain local image crops Xqi,r based on

multi-crop augmentation;

4. Utilize global branch to calculate the

global predictions PQi
;

5. Utilize local branch to calculate the local

predictions Pqi,r ;

6. Calculate the self-image distillation loss

and cross-image distillation loss according

to Eq. 5 and Eq. 6, respectively;

7. Calculate cross-entropy loss based on

Eq. 3;

8. Calculate the total loss according to Eq. 7,

and update θs based on the total loss;

9. Update θt according to Eq. 6.

Output: Feature extractor of global branch fθs .

Cross-domain FSC evaluation. In cross-domain FSC

evaluation phase, for each few-shot task, we first utilize the

global network to extract features for each image. And then,

we use the support set to train a Logistic Regression Clas-

sifier. Finally, the query samples are classified according to

the trained classifier. Notably, the proposed method does

not require fine-tuning the feature extractor during testing

on the target domain.

4. Experimental Analysis
4.1. Experimental details

Datasets. In this work, we focus on the single source

domain CD-FSL problem. Following the standard bench-

marks [5, 22, 23], we utilize the meta-training set with 64

classes in mini-ImageNet [6] dataset as the source domain

for training. Then, we validate the generalization perfor-

mance on eight target domain datasets, i.e., CUB, Cars,

Places, Plantae, ChestX, ISIC, EuroSAT and CropDis-
ease. Among them, CUB, Cars, Places and Plantae pro-

posed in [29] contain natural images of different properties.

ChestX, ISIC, EuroSAT and CropDisease proposed in [23]

are cross-domain datasets from the domain of medicine,

agriculture and remote sensing, which observe significant

domain shift. All the images are resized to 224×224 pixels

following common practice.

Implementation details. As shown in Fig. 1, the pro-

posed method includes a global branch and a local branch.

For the global branch, following [5,22,23], we use ResNet-

10 as feature extraction network, and pre-train it by tradi-

tional batch-based supervised classification on the source

domain. The feature extraction network in local branch has

the same structure.

We meta-train the network for 100 epochs using Adam

optimizer with learning rate set to be 0.001. In each epoch,

we randomly sample 100 episodes from the source domain.

In each episode, without otherwise stated, we set the num-

ber of classes to 5, the number of support samples of each

class to 5, and the query sample size of each class to 15.

For hyper-parameters, we set λ1=1.0, λ2=0.15, m=0.998,

and R=6. Since we do not have a validation set for model

selection, we use the checkpoint after the last epoch as the

final model. It is worth noting that the proposed method

only needs to meta-train the model once, which can be di-

rectly deployed to target domains without fine-tuning.

Evaluation protocol. We validate the proposed method

following standard CD-FSC evaluation protocols [5,23]. In

each target domain, we randomly sample 600 N -way K-

shot 15-query tasks, and calculate the average accuracy and

95% confidence intervals over these sampled tasks. In all

validation experiments, we set N=5 and K=1 or 5.

4.2. Experimental results

4.2.1 Comparison with the ProtoNet baseline

We first conduct some analytical experiments to compare

the proposed method with the ProtoNet. We follow the ex-

perimental setting in [23] to implement the ProtoNet with

the ResNet-10 as backbone on CD-FSC benchmark. Be-

sides, for a fair comparison, we pre-train the backbone of

the ProtoNet in the same way as the proposed method. We

mark the pre-trained ProtoNet as ProtoNet++.

It is worth noting that, the ProtoNet utilizes the Eu-

clidean distance metric for classification. Therefore, to

maintain a fair comparison, we utilize the same distance

metric for classification in all ablation experiments. We

conduct experiments on two natural image cross-domain

datasets, i.e., CUB and Cars, and two extreme cross-domain

datasets, i.e., EuroSAT and ISIC.

Quantitative comparison. The comparison results be-

tween the proposed method and the ProtoNet are shown in

Table 1. As can be seen, the proposed method outperforms
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Table 1. Ablation study. Average classification accuracies (%) are provided. ♦ indicates that the Euclidean distance metric is used as the

classifier. �indicates that this component is used, vice versa. The best results are in bold.

CUB Cars EuroSAT ISIC

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet 41.77 58.98 29.79 41.16 57.50 74.44 30.65 40.42
ProtoNet++ 40.34 61.94 31.63 46.56 59.11 81.44 31.73 44.01

Ours♦ 47.70 68.94 34.65 51.61 63.70 80.26 33.51 46.42

Self-image Cross-image Cross-episode 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

� � � 43.99 63.80 32.87 49.58 62.31 80.22 32.88 45.00

� � � 44.04 64.01 33.33 49.69 63.03 80.07 33.28 45.35

� � � 47.70 68.94 34.65 51.61 63.70 80.26 33.51 46.42

Table 2. Comparison with state-of-the-art methods in 5-way 1-shot setting. Average classification accuracies (%) are provided. † stands

for exploiting the full data of FSL task. ∗ stands for fine-tuning on target domain. The best results are in bold.

Methods Mark Ft CUB Cars Places Plantae Chest ISIC EuroSAT CropDisease Ave.

MatchingNet [6] NeurIPS-16 � 35.89 30.77 49.86 32.70 - - - - -

RelationNet [34] CVPR-18 � 41.27 30.09 48.16 31.23 21.95 30.53 49.08 53.58 38.24

GNN [35] ICLR-18 � 44.40 31.72 52.42 33.60 21.94 30.14 54.61 59.19 41.00

RelationNet+FT [29] ICLR-20 � 43.33 30.45 49.92 32.57 21.79 30.38 53.53 57.57 39.94

RelationNet+ATA [22] IJCAI-21 � 43.02 31.79 51.16 33.72 22.14 31.13 55.69 61.17 41.23

GNN+FT [29] ICLR-20 � 45.50 32.25 53.44 32.56 22.00 30.22 55.53 60.74 41.53

GNN+ATA [22] IJCAI-21 � 45.00 33.61 53.57 34.42 22.10 33.21 61.35 67.47 43.84

MatchingNet+AFA [36] ECCV-22 � 41.02 33.52 54.66 37.60 22.11 32.32 61.28 60.71 42.90

GNN+AFA [36] ECCV-22 � 46.86 34.25 54.04 36.76 22.92 33.21 63.12 67.61 44.85

LDP-net (ours) - � 49.82 35.51 53.82 39.84 23.01 33.97 65.11 69.64 46.34

TPN+ATA† [22] IJCAI-21 � 50.26 34.18 57.03 39.83 21.67 34.70 65.94 77.82 47.68

TPN+AFA† [36] ECCV-22 � 50.85 38.43 60.29 40.27 21.69 34.25 66.17 72.44 48.05

RDC† [5] CVPR-22 � 47.77 38.74 58.82 41.88 22.66 32.29 67.58 80.88 48.83

LDP-net†(ours) - � 55.94 37.44 62.21 41.04 22.21 33.44 73.25 81.24 50.85

Fine-tuning∗ [23] ECCV-20 � 43.53 35.12 50.57 38.77 22.13 34.60 66.17 73.43 45.54

TPN+ATA∗† [22] IJCAI-21 � 51.89 38.07 57.26 40.75 22.45 35.55 70.84 82.47 49.91

RDC∗† [5] CVPR-22 � 50.09 39.04 61.17 41.30 22.32 36.28 70.51 85.79 50.81

ProtoNe by 3% to 10% on all datasets. Compared with Pro-

toNet++, the proposed method also achieves significant per-

formance gains in most cases. For example, on the CUB
dataset, the proposed method outperforms ProtoNet++ by

7.36% and 7.00% in 1-shot and 5-shot settings, respectively.

On the EuroSAT dataset, although the ProtoNet++ achieves

better results in 5-shot setting, the proposed method outper-

forms ProtoNet++ by 4.6% in 1-shot setting. In short, the

proposed method achieves significant performance gains

compared to ProtoNet and ProtoNet++. This shows that

the proposed method has better cross-domain generalization

ability.

Qualitative analysis. In order to verify that the proposed

method can learn rich semantic information instead of only

focusing on the simplest features, we adopt CAM [37] to

visualize the features. The visualization results are shown

in Fig. 2. It can be seen that ProtoNet++ only pays attention

to some local regions of the object, e.g., Fig. 2 (b), (e), (h),

(k). In contrast, the proposed method can focus on a wider

range of the object, e.g., Fig. 2 (c), (f), (i), (l), which means

that the proposed method can capture more comprehensive

semantic information and thus generalize better.

To further illustrate the generalization advantage of the

proposed method, we visualize the loss landscape of the

model. The loss landscape is a visualization tool proposed

by Li et al. [38] for model generalization verification. In

implementation, we randomly perturb the model trained in

the source domain in 2000 different directions. Then, we

perform inference on the target domain against each per-

turbed model and record the loss value. Finally, we visual-

ize the loss landscape according to the recorded loss values

and orientations. In loss landscape, the contour near center

describes the optimal solution of the model. The smoother

contour and larger the space spanned by the contour corre-

sponding to the optimal solution of the model, indicating

that the model has better generalization [38]. We use the

CUB dataset as the target domain to visualize the loss land-

scape of the model. The comparison between the proposed

LDP-net and ProtoNet++ is shown in Fig. 3. As can be seen,

compared with ProtoNet++, the contour corresponding to
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(a) Raw image (b) ProtoNet++ (c) LDP-net (ours)

(d) Raw image (e) ProtoNet++ (f) LDP-net (ours)

(g) Raw image (h) ProtoNet++ (i) LDP-net (ours)

(j) Raw image (k) ProtoNet++ (l) LDP-net (ours)

Figure 2. Feature visualization for ProtoNet++ and the proposed

LDP-net.

the optimal solution of the proposed method is smoother,

and the space spanned by the contour is larger. This reveals

that the proposed method has stronger generalization abil-

ity. This finding resonates with quantitative experimental

results.

In conclusion, the above quantitative and qualitative ex-

periments show that the proposed method can effectively

alleviate the simplicity bias pitfall in ProtoNet, and learn

transferable semantic knowledge, resulting in better cross-

domain generalization.

4.2.2 Comparison with state-of-the-art methods

State-of-the-art methods usually employ fine-tuning or ex-

ploit the full data in the few-shot task to improve perfor-

mance. Among them, fine-tuning refers to updating the fea-

ture extractor trained on the source domain in each few-shot

task on target domain. Exploiting the full data means that

the samples in the query set are also used but in an unsuper-

vised fashion.

We divide the comparative experiments into three cases

according to whether fine-tuning is required and whether

the full data is used. Case 1: neither fine-tuning is required

nor the full data is used, such as RelationNet+ATA [22],

GNN+AFA [36] and so on. Case 2: fine-tuning is not re-

(a) ProtoNet++ (b) LDP-net (ours)

Figure 3. Loss landscape.

quired, but full data is used, such as TPN+ATA† [22] and

RDC† [5]. Case 3: both fine-tuning and full data are re-

quired, such as TPN+ATA∗† [22] and RDC∗† [5]. In order

to maintain a fair comparison with the methods in Case 2,

the proposed method (LDP-net†) also exploit the full data in

the few-shot task. Specifically, we use a classifier trained on

the support set to make predictions on query samples. Then,

we select some query samples with high confidence as the

augmentation of the support set according to the predic-

tions. Finally, the classifier is re-trained on the augmented

support set. We repeat this process several times, and utilize

the last classifier to test the query samples as the final result.

The experiments are conducted on eight target domains

under 5-way 1-shot setting and 5-way 5-shot setting, respec-

tively. For each setting, we calculate the average results for

the eight target domains as the overall evaluation. The re-

sults of 1-shot and 5-shot are shown in Table 2 and Table 3,

respectively.

For Case 1, the proposed method (LDP-net) achieves

the best performance on most datasets. Overall, in 1-

shot setting, the average result of the proposed method

reaches 46.34%. Compared with the second-best method

(GNN+AFA), the proposed method achieves 1.49% average

improvement. In the 5-shot setting, the proposed method

achieves 62.60% average result, outperforming the second-

best method (GNN+AFA) by 1.02%. For Case 2, in 1-

shot setting, the average result of the proposed method

(LDP-net†) reaches 50.85%. Compared with the second-

best method (RDC†), the proposed method observes an im-

provement of 2.02%. In 5-shot setting, the proposed method

achieves the best performance on all datasets. In terms

of average results, the proposed method (LDP-net†) out-

performs the second-best comparison method (RDC†) by

4.27%. For Case 3, despite freezing the feature extractor

on the target domain, the proposed method ( LDP-net†) still

achieves the best average results under both 1-shot and 5-

shot settings.

In summary, the proposed method achieves the best av-

erage performance in all cases. The performance gains in-

dicate that the proposed method has stronger cross-domain

generalization ability. The reason behind this is that the

proposed method is able to learn more knowledge in the

source domain to promote generalization on the target do-

20067



Table 3. Comparison with state-of-the-art methods in 5-way 5-shot setting. Average classification accuracies (%) are provided.† stands for

exploiting the full data of FSL task. ∗ stands for fine-tuning on target domain. The best results are in bold.

Methods Mark Ft CUB Cars Places Plantae Chest ISIC EuroSAT CropDisease Ave.

MatchingNet [6] NeurIPS-16 � 51.37 38.99 63.16 46.53 22.40 36.74 64.45 66.39 48.75

MAML [12] ICML-17 � - - - - 23.48 40.13 71.70 78.05 -

RelationNet [34] CVPR-18 � 56.77 40.46 64.25 42.71 24.07 38.60 65.56 72.86 50.66

MetaOptNet [13] CVPR-19 � - - - - 22.53 36.28 64.44 68.41 -

GNN [35] ICLR-18 � 62.87 43.70 70.91 48.51 23.87 42.54 78.69 83.12 56.77

RelationNet+FT [29] ICLR-20 � 59.77 40.18 65.55 44.29 23.95 38.68 69.13 75.78 52.17

RelationNet+ATA [22] IJCAI-21 � 59.36 42.95 66.90 45.32 24.43 40.38 71.02 78.20 53.57

GNN+FT [29] ICLR-20 � 64.97 46.19 70.70 49.66 24.28 40.87 78.02 87.07 57.72

GNN+ATA [22] IJCAI-21 � 66.22 49.14 75.48 52.69 24.32 44.91 83.75 90.59 60.89

MatchingNet+AFA [36] ECCV-22 � 59.46 46.13 68.87 52.43 23.18 39.88 69.63 80.07 54.96

GNN+AFA [36] ECCV-22 � 68.25 49.28 76.21 54.26 25.02 46.01 85.58 88.06 61.58

LDP-net (ours) - � 70.39 52.84 72.90 58.49 26.67 48.06 82.01 89.40 62.60

TPN+ATA† [22] IJCAI-21 � 65.31 46.95 72.12 55.08 23.60 45.83 79.47 88.15 59.56

TPN+AFA† [36] ECCV-22 � 65.86 47.89 72.81 55.67 23.47 46.29 80.12 85.69 59.73

RDC† [5] CVPR-22 � 63.39 52.75 72.83 55.30 25.10 42.10 79.12 88.03 59.83

LDP-net† (ours) - � 73.34 53.06 75.47 59.64 26.88 48.44 84.05 91.89 64.10

Fine-tuning∗ [23] ECCV-20 � 63.76 51.21 70.68 56.45 25.37 49.51 81.59 89.84 61.05

NSAE(CE+CE)∗ [24] ICCV-21 � 68.51 54.91 71.02 59.55 27.10 54.05 83.96 93.14 64.03

ConFeSS∗ [25] ICLR-22 � - - - - 27.09 48.85 84.65 88.88 -

TPN+ATA∗† [22] IJCAI-21 � 70.14 55.23 73.87 59.02 24.74 49.83 85.47 93.56 63.98

RDC∗† [5] CVPR-22 � 67.23 53.49 74.91 57.47 25.07 49.91 84.29 93.30 63.21

main. Another advantage of the proposed method is that the

feature extractor can be readily used without fine-tuning,

which shows the practicality of the proposed method.

4.2.3 Ablation study

The proposed method mainly consists of three compo-

nents, self-image distillation (“Self-image”), cross-image

distillation (“Cross-image”), and cross-episode distillation

(“Cross-episode”). We perform the ablation study for each

component. It is worth noting that, we utilize the Euclidean

distance metric for classification in all ablation experiments.

The ablation results are shown in Table 1. Firstly,

compared with ProtoNet++ baseline, the proposed method

performs better in most cases when only using the self-

image distillation. For example, on the CUB dataset, the

self-image distillation improves ProtoNet++ by 3.65% and

1.86% under 1-shot and 5-shot settings, respectively. Af-

ter incorporating the cross-image distillation, the proposed

method can observe performance rise in most cases. In

addition, when the cross-episode distillation is added, the

performance is further boosted. In particular, on the CUB
dataset, the performance can be improved by 3.66% in 1-

shot and 4.93% in 5-shot, respectively. In summary, the

ablation study shows that each component plays an impor-

tant role in the proposed method and all of them contribute

positively to cross-domain generalization.

5. Conclusions

In this study, we inspected the poor cross-domain gener-

alization of standard ProtoNet from the perspective of sim-

plicity bias and proposed a local-global knowledge distil-

lation framework to alleviate this problem in the ProtoNet.

By simultaneously enforcing the class affiliation predictions

between a global image and local patches from both the

same image and other images of the same class, our model

is expected to be able to capture more robust semantic in-

formation desirable for cross-domain generalization. In ad-

dition, we propose a cross-episode knowledge distillation

strategy to further improve the generalization performance

of the learned feature and metric. The proposed method

achieves state-of-the-art results on eight CD-FSC datasets.

Although promising improvement has been achieved for

CD-FSC tasks, the performance is still far from satisfac-

tory when generalizing to domains with significant domain

shift such as chest and ISIC. Possible remedies may include

increasing the diversity of training data to extract more uni-

versal meta-knowledge or proposing smarter model adap-

tation strategy to integrate the extracted knowledge to the

target task in a more data-efficient way. We will leave this

as future work.
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