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Abstract

Optical flow has achieved great success under clean
scenes, but suffers from restricted performance under foggy
scenes. To bridge the clean-to-foggy domain gap, the ex-
isting methods typically adopt the domain adaptation to
transfer the motion knowledge from clean to synthetic foggy
domain. However, these methods unexpectedly neglect the
synthetic-to-real domain gap, and thus are erroneous when
applied to real-world scenes. To handle the practical optical
flow under real foggy scenes, in this work, we propose a
novel unsupervised cumulative domain adaptation optical
flow (UCDA-Flow) framework: depth-association motion
adaptation and correlation-alignment motion adaptation.
Specifically, we discover that depth is a key ingredient to in-
fluence the optical flow: the deeper depth, the inferior optical
flow, which motivates us to design a depth-association mo-
tion adaptation module to bridge the clean-to-foggy domain
gap. Moreover, we figure out that the cost volume correlation
shares similar distribution of the synthetic and real foggy im-
ages, which enlightens us to devise a correlation-alignment
motion adaptation module to distill motion knowledge of the
synthetic foggy domain to the real foggy domain. Note that
synthetic fog is designed as the intermediate domain. Under
this unified framework, the proposed cumulative adaptation
progressively transfers knowledge from clean scenes to real
foggy scenes. Extensive experiments have been performed
to verify the superiority of the proposed method.

1. Introduction
Optical flow has made great progress under clean scenes,

but may suffer from restricted performance under foggy
scenes [15]. The main reason is that fog weakens scene
contrast, breaking the brightness and gradient constancy
assumptions, which most optical flow methods rely on.

To alleviate this, researchers start from the perspective
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Figure 1. Illustration of the main idea. We propose to transfer
motion knowledge from the source domain (clean scene) to the
target domain (real foggy scene) through two-stage adaptation.
We design the synthetic foggy scene as the intermediate domain.
As for the clean-to-foggy domain gap (fog), we transfer motion
knowledge from the source domain to the intermediate domain via
depth association. As for the synthetic-to-real domain gap (style),
we distill motion knowledge of the intermediate domain to the
target domain by aligning the correlation of both the domains.

of domain adaptation, which mainly seeks the degradation-
invariant features to transfer the motion knowledge from the
clean scene to the adverse weather scene [14–16, 40]. For
example, Li [15,16] attempted to learn degradation-invariant
features to enhance optical flow under rainy scenes in a su-
pervised manner. Yan et al. [40] proposed a semi-supervised
framework for optical flow under dense foggy scenes, which
relies on the motion-invariant assumption between the paired
clean and synthetic foggy images. These pioneer works have
made a good attempt to handle the clean-to-foggy domain
gap with synthetic degraded images through one-stage do-
main adaptation. However, they lack the constraints to guide
the network to learn the motion pattern of real foggy domain,
and fail for real foggy scenes. In other words, they have un-
expectedly neglected the synthetic-to-real domain gap, thus
limiting their performances on real-world foggy scenes. In
this work, our goal is to progressively handle the two domain
gaps: the clean-to-foggy gap and the synthetic-to-real gap in
a cumulative domain adaptation framework in Fig. 1.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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As for the clean-to-foggy gap, we discover that depth is a
key ingredient to influence the optical flow: the deeper the
depth, the inferior the optical flow. This observation inspires
us to explore the usage of depth as the key to bridging the
clean-to-foggy gap (seeing the fog gap in Fig. 1). On one
hand, depth physically associates the clean image with the
foggy image through atmospheric scattering model [26]; on
the other hand, there exists a natural 2D-3D geometry pro-
jection relationship between depth and optical flow, which is
used as a constraint to transfer motion knowledge from the
clean domain to the synthetic foggy domain.

As for the synthetic-to-real gap, we figure out that cost
volume correlation shares similar distribution of synthetic
and real foggy images. Cost volume stores correlation value,
which can physically measure the similarity between adja-
cent frames, regardless of synthetic and real foggy images.
Therefore, cost volume benefits to bridging the synthetic-to-
real domain gap (seeing the style gap in Fig. 1). We align
the correlation distributions to distill motion knowledge of
the synthetic foggy domain to the real foggy domain.

In this work, we propose a novel unsupervised cumulative
domain adaptation optical flow (UCDA-Flow) framework for
real foggy scene, including depth-association motion adapta-
tion (DAMA) and correlation-alignment motion adaptation
(CAMA). Specifically, in DAMA stage, we first estimate
optical flow, ego-motion and depth with clean stereo images,
and then project depth into optical flow space with 2D-3D
geometry formula between ego-motion and scene-motion
to enhance rigid motion. To bridge the clean-to-foggy gap,
we utilize atmospheric scattering model [26] to synthesize
the corresponding foggy images, and then transfer motion
knowledge from the clean domain to the synthetic foggy do-
main. In CAMA stage, to bridge the synthetic-to-real domain
gap, we transform the synthetic and real foggy images to the
cost volume space, in which we align the correlation distri-
bution to distill the motion knowledge of the synthetic foggy
domain to the real foggy domain. The proposed cumulative
domain adaptation framework could progressively transfer
motion knowledge from clean domain to real foggy domain
via depth association and correlation alignment. Overall, our
main contributions are summarized as follows:

• We propose an unsupervised cumulative domain adapta-
tion framework for optical flow under real foggy scene,
consisting of depth-association motion adaptation and
correlation-alignment motion adaptation. The proposed
method can transfer motion knowledge from clean domain
to real foggy domain through two-stage adaptation.

• We reveal that foggy scene optical flow deteriorates with
depth. The geometry relationship between depth and opti-
cal flow motivates us to design a depth-association motion
adaptation to bridge the clean-to-foggy domain gap.

• We illustrate that cost volume correlation distribution of
the synthetic and real foggy images is consistent. This

prior benefits to close the synthetic-to-real domain gap
through correlation-alignment motion adaptation.

2. Related Work
Optical Flow. Optical flow is the task of estimating per-pixel
motion between video frames. Traditional methods [33] of-
ten formulate optical flow as an energy minimization prob-
lem. In recent years, the learning-based optical flow ap-
proaches [1,2,4,6–8,10,13,17,23,28,30,34,35,44,45] have
been proposed to improve the feature representation. PWC-
Net [35] applied warp and cost volume to physically estimate
optical flow in a coarse-to-fine pyramid. RAFT [36] was
an important development of PWC-Net, which replaced the
pyramid architecture with GRU [3] and constructed 4D cost
volume for all pairs of pixels. To improve the motion feature
representation, GMA [9] incorporated transformer into op-
tical flow estimation and achieved better performance than
RAFT. Furthermore, to relieve the dependency on synthetic
datasets, the authors [11, 18, 24, 30, 42, 44, 47] proposed the
unsupervised CNN optical flow methods with photometric
loss or data distillation loss. Although they have achieved
satisfactory results in clean scenes, they would suffer from
degradation under foggy scenes. In this work, we propose an
unsupervised optical flow framework for real foggy scenes.
Optical Flow under Adverse Weather. The robust opti-
cal flow estimation has been extensively studied for various
adverse weather, such as rain [16], fog [40]. An intuitive
solution to this challenging task is to perform the image
deraining [5, 21, 41, 43, 46] or defogging [20, 27, 29, 31, 38]
with subsequent optical flow estimation. However, exist-
ing derain/defog methods are not designed for optical flow
and the possible over-smoothness or residual artifacts would
contribute negative to optical flow. To bridge the clean-
to-degraded gap, the authors [14–16, 40] have attempted
to design the domain-invariant features to transfer motion
knowledge from clean domain to synthetic degraded domain
through one-stage adaptation. For example, Li et al. [15, 16]
attempted to design rain-invariant features in a unified frame-
work for robust optical flow under rainy scenes with synthetic
degraded images. Yan et al. [40] estimated optical flow un-
der dense foggy scenes via optical flow consistency. Li et
al. [14] resorted to auxiliary gyroscope information which is
robust to degradation for adverse weather optical flow. To
further close the synthetic-to-real domain gap, we propose
a two-stage cumulative domain adaptation framework for
optical flow under real foggy scenes, which can bridge the
clean-to-foggy and synthetic-to-real domain gaps.

3. Unsupervised Cumulative Adaptation
3.1. Overall Framework

The goal of this work is to estimate optical flow under real
foggy scenes. Most existing adverse weather optical flow
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Figure 2. The architecture of the UCDA-Flow mainly contains depth-association motion adaptation (DAMA) and correlation-alignment
motion adaptation (CAMA). The goal of DAMA stage is to bridge the clean-to-foggy domain gap, in which we associate the depth with
optical flow via geometry projection and synthetic foggy images with atmospheric scattering model, and transfer motion knowledge from the
clean domain to the synthetic foggy domain. In CAMA stage, to further close the synthetic-to-real domain gap, we align the correlation
distributions of synthetic and real foggy images to distill motion knowledge of the synthetic foggy domain to the real foggy domain.

methods mainly adopt the one-stage adaptation to transfer
motion knowledge from clean domain to synthetic adverse
weather domain. However, due to the synthetic-to-real do-
main gap that these methods neglect, they cannot generalize
well for real degraded scenes. In this work, we illustrate
that foggy scene optical flow deteriorates with depth, which
can bridge the clean-to-foggy domain gap. Moreover, we
figure out that cost volume correlation shares the similar
distribution of synthetic and real foggy images, benefiting
to bridge the synthetic-to-real domain gap. Motivated by
these analyses, we propose a novel unsupervised cumula-
tive domain adaptation framework for optical flow under
real foggy scenes. As shown in Fig. 2, our framework con-
sists of two main modules: depth-association motion adapta-
tion (DAMA) and correlation-alignment motion adaptation
(CAMA). The DAMA associates depth with optical flow via
geometry projection, renders synthetic foggy images with at-
mospheric scattering model, and transfers motion knowledge
from clean domain to synthetic foggy domain. The CAMA
aligns the correlation distribution of synthetic and real foggy
images to distill motion knowledge of synthetic foggy do-

main to real foggy domain. Under this unified framework,
the proposed framework could progressively transfer motion
knowledge from clean domain to real foggy domain.

3.2. Depth-Association Motion Adaptation

The previous methods [16, 40] have attempted to directly
transfer motion knowledge from clean domain to synthetic
degraded domain. However, different from rain and snow,
fog is a non-uniform degradation related to depth. This
makes us naturally consider whether the optical flow affected
by fog could be related to depth or not.

To illustrate this, we conduct an analysis experiment on
the influence of fog on the image and optical flow along
different depths in Fig. 3. We take clean KITTI2015 [25]
and synthetic Fog-KITTI2015 as the experimental datasets.
Compared to the corresponding clean images, we count the
PSNR and the optical flow EPE of the foggy images at
different depths. As the depth value becomes larger, the
lower the PSNR, the higher the optical flow EPE, which
means that the degradation of the image and optical flow
aggravates with the larger depth. Moreover, we visualize the
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Figure 3. Analysis of fog degradation at different depths. The
deeper the depth, the more severe the image and the optical flow.
Depth is the key to bridging the clean-to-foggy domain gap.

images (Fig. 3 (a1)-(a3)) and optical flows (Fig. 3 (b1)-(b3))
at three depths. We can observe that the contrast of images
and boundaries of optical flows become more blurry with the
increasing of the depth. This inspires us that depth is the key
to bridging the clean-to-foggy domain gap. On one hand,
depth is associated with fog through atmospheric scattering
model [26], which bridges the clean-to-foggy domain gap;
on the other hand, depth could be used to refine optical
flow of clean domain via strict geometry projection, and
serve as a constraint to transfer motion knowledge from the
clean domain to the synthetic foggy domain. Therefore, we
propose a depth-association motion adaptation module to
transfer motion knowledge between both the domains.
Depth Association. Given consecutive stereo images
[Ilt, I

l
t+1, I

r
t , I

r
t+1], we first take RAFT [36] to estimate op-

tical flow F with optical flow photometric loss [44] in an
unsupervised manner as follow,

Lpho
flow =

∑
ψ(Ilt − warp(Ilt+1))� (1−Of )/

∑
(1−Of )

+
∑
ψ(Ilt+1 − warp(Ilt))� (1−Ob)/

∑
(1−Ob),

(1)

where warp is the warping operator, ψ is a sparse Lp norm
(p = 0.4). Of and Ob are the forward and backward oc-
clusion mask by checking forward-backward consistency,
and � is a matrix element-wise multiplication. Similar to
optical flow, stereo depths [Dl

t,D
l
t+1] can be obtained by

DispNet [39] via photometric loss and smooth loss,

Ldepth =
∑
ψ(Ilt − warp(Irt )) + |O2Dl

t|e−|O
2Ilt|

+
∑
ψ(Ilt+1 − warp(Irt+1)) + |O2Dl

t+1|e−|O
2Ilt+1|.

(2)

Here we wish to establish the dense pixel correspondence
between the two adjacent frames through depth. Let pt de-
notes the 2D homogeneous coordinate of an pixel in frame
Ilt and K denotes the camera intrinsic matrix. We can com-
pute the corresponding point of pt in frame Ilt+1 using the
geometry projection equation [48],

pt+1 = KPDl
t(pt)K

−1pt, (3)
where P is the relative camera motion estimated by the pre-
trained PoseNet [12]. We can then compute the rigid flow
Frigid at pixel pt in Ilt by, Frigid(pt) = pt+1 − pt. We fur-

ther enhance motion in rigid regions with the consistency
between the geometrically computed rigid flow and the di-
rectly estimated optical flow,
Lgeo
flow =

∑
||F− Frigid||1 � (1− V )/

∑
(1− V ), (4)

where V denotes the non-rigid region extracted from stereo
clean images by forward-backward consistency check [49] .
Motion Knowledge Transfer. To associate depth with fog,
we synthesize the foggy images [Js

t , J
s
t+1] corresponding to

the clean images using atmospheric scattering model [26],

J =
I−A(1−t(D)

t(D)
, (5)

where A denotes the predefined atmospheric light. t(·) is a
decay function related depth. We then encode the synthetic
foggy images into motion features [fst , f

s
t+1], and compute

the temporal cost volume cvtemp = (fst )
T · w(fst+1), where

T denotes transpose operator and w is the warp operator.
Note that, in order to enable the flow model to have a suitable
receptive field for smooth constraint of motion feature, we
employ a spatial context attention (SCA) module with a non-
local strategy [22]. Specifically, we devise a sliding window
with a learnable kernel on the motion feature fst to match the
non-local similar feature fsim, and generate k similar fea-
tures corresponding to the cropped features from the motion
feature fst during sliding searching, as [f1sim, f

2
sim, ..., f

k
sim].

And then we compute the spatial attention cost volume,

cvspa = 1
k

∑k
i=1 f

i
sim · fst . (6)

The fused cost volume ĉvs is produced by a residual op-
erator as ĉvs = cvtemp + αcvspa, where α denotes a fusion
weight. After that, we decode the fused cost volume to es-
timate optical flow Fsyn of synthetic foggy images. We
further transfer the pixel-wise motion knowledge from clean
domain to synthetic foggy domain via flow consistency loss,

Lconsis
flow =

∑
||Fsyn − F||1. (7)

3.3. Correlation-Alignment Motion Adaptation

Although depth-association motion adaptation can bridge
the clean-to-foggy domain gap and provide a coarse optical
flow for synthetic foggy domain, it cannot help the synthetic-
to-real domain gap. Hence, our method may inevitably suffer
from artifacts under real foggy scenes due to the synthetic-to-
real domain gap. To explore how large the synthetic-to-real
foggy domain gap is, we visualize the feature distributions
of the synthetic and real foggy images via t-SNE [37] in
Fig. 4 (a). The degradation pattern discrepancy between
synthetic and real foggy images is small, but there exists an
obvious synthetic-to-real style gap that restricts the optical
flow performance under real foggy scenes.

Direct motion adaptation from synthetic to real domain is
difficult, since their background is different. Our solution is
to construct an intermediate domain as an adaptation bridge
namely cost volume, physically measuring the similarity be-
tween adjacent frames, not limited by scene difference. We
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Figure 4. Visual distribution of synthetic and real foggy images.
In (a) t-SNE of foggy image patches, the difference of degradation
pattern is small, but there exists an obvious style gap between both
the domains. In (b) correlation histogram of cost volume, the entire
correlation distributions are similar. This motivates us to close the
synthetic-to-real domain gap with correlation distribution.

transform foggy images to cost volume space, and visualize
the correlation distributions of synthetic and real foggy im-
ages via the histogram in Fig. 4 (b). We can observe that both
the domains share a similar correlation distribution. This
motivates us to provide a novel correlation-alignment motion
adaptation module, which can distill motion knowledge of
the synthetic foggy domain to the real foggy domain.
Correlation Distribution Alignment (CDA). We begin
with two encoder Es,Er for the synthetic foggy images
[Js

t , J
s
t+1] and the real foggy images [Jr

t , J
r
t+1], respectively.

We encode them to obtain the cost volume cvs, cvr with
the warp operator and the SCA module. Furthermore, we
randomly sample N correlation values in the cost volumes
cvs, cvr to represent the entire correlation distribution of
cost volume normalized into [0, 1] for both the domains.
According to the range of correlation, we choose threshold
values [δ1, δ2, ..., δk−1] to label the sampled correlation into
k classes, such as high correlation, and low correlation. Then,
the correlation distribution p is estimated by,

p =
n + 1

N + k
, (8)

where n is the number of the sampled correlation of one
category. Note that we add an offset 1 to each category
sampled correlation of Eq. 8 to ensure at least a single
instance could be present in the real foggy domain. Thus, to
align the features of the synthetic and real foggy domains,
we minimize the correlation distribution distance between
the two domains by enforcing Kullback-Leibler divergence,

Lkl
corr =

∑k
i=1 pr,ilog

pr,i
ps,i

, (9)

where ps,i, pr,i denote the i category sampled correlation
distributions of the synthetic foggy domain and the real foggy
domain, respectively. The aligned correlation distributions
represent that both the domains could have similar optical
flow estimation capabilities. Finally, we decode the aligned
cost volume to predict optical flow for real foggy images.
Self-Supervised Training Strategy. To improve the robust-
ness of knowledge transfer, we present a self-supervised
training strategy that attempts to transfer motion knowledge

from the synthetic foggy domain to the real foggy domain
at the optical flow field level. We feed the real foggy im-
ages [Jr

t , J
r
t+1] to the flow network of the synthetic foggy

domain, which outputs the optical flow as the pseudo-labels
Fpseudo (seeing the red arrow in Fig. 2). We then impose a
self-supervised loss on the optical flow Freal estimated by
the flow network of the real foggy domain,

Lself
flow =

∑
||Freal − Fpseudo||1. (10)

During the training process, the encoder Er(f ; θr)
of the real foggy domain is updated with the encoder
Es(f ; θs) of the synthetic foggy domain using the ex-
ponential moving average (EMA) mechanism, namely,
θr ← θr · λ+ θs · (1− λ), where λ controls the window of
EMA and is often close to 1.0. The proposed correlation-
alignment motion adaptation distills motion knowledge of
the synthetic foggy domain to the real foggy domain in the
feature correlation and optical flow dimensions, respectively.

3.4. Total Loss and Implementation Details

Consequently, the total objective for the proposed frame-
work is written as follows,

L = λ1Ldepth + λ2Lphoflow + λ3Lgeoflow

+ λ4Lconsis
flow + λ5Lselfflow + λ6Lklcorr,

(11)

where the first four terms are the unsupervised losses that aim
to transfer knowledge from the clean domain to the synthetic
foggy domain, and the intention of the last two terms is
to build the mathematical relationship between synthetic
and real foggy domains. We empirically set the parameters
{λ1, λ2, λ3, λ4, λ5, λ6} = {1, 1, 0.1, 1, 1, 0.1}. Besides, as
for the parameters of CDA, we set the sample number N as
1000 and the number of categories k as 10. The classification
threshold values δ are set linearly from [0, 1]. The weight λ
of the EMA for self-supervised training strategy is 0.99.

The proposed framework UCDA-Flow consists of three
encoders, two flow decoders, one disp decoder, and one
residual block for SCA. We first train the optical flow net-
work and the disp network of the clean domain via Lpho

flow,
Ldepth and Lgeo

flow. We update the optical flow network of
the synthetic foggy domain via Lconsis

flow . Then we update the
optical flow network of the real foggy domain via Lself

flow and
Lkl
corr with 1000 epochs and 0.0005 learning rate. After that,

we optimize the whole framework via the full loss L with
0.0002 learning rate. At the test stage, the testing model only
needs the optical flow network of the real foggy domain,
including encoder, warp, cost volume, and flow decoder.

4. Experiments
4.1. Experiment Setup

Dataset. We take the KITTI2015 [25] dataset as the repre-
sentative clean scene. We validate the performance of optical
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Table 1. Quantitative results on synthetic Light Fog-KITTI2015 (LF-KITTI) and Dense Fog-KITTI2015 (DF-KITTI) datasets.

Method RobustFlow DenseFogFlow UFlow Selflow SMURF UCDA-Flow- FFA-Net + AECR-Net + - FFA-Net + AECR-Net +

LF-KITTI EPE 23.48 6.82 14.33 14.21 11.66 13.42 13.15 10.06 10.48 5.94
F1-all 81.54% 39.18% 56.96% 56.38% 50.92% 55.37% 54.83% 48.74% 47.60% 34.11%

DF-KITTI EPE 25.32 8.03 16.55 15.97 12.16 15.84 14.93 11.21 11.56 6.29
F1-all 85.77% 41.73% 62.84% 61.69% 53.17% 58.81% 57.06% 50.25% 51.39% 36.25%

(d) UFlow (e) GyroFlow(c) DenseFogFlow (f) UCDA-Flow(a) Foggy images / GT (b) RobustFlow

Figure 5. Visual comparison of optical flows on real Fog-GOF dataset.

Table 2. Quantitative results on real foggy datasets.

Method Robust
Flow UFlow

GMA Dense
FogFlow

Gyro
Flow Ours

- ssl
Fog-
GOF

EPE 12.25 2.97 1.63 1.69 1.78 0.95 0.81
F1-all 80.93% 30.82% 14.25% 15.11% 16.41% 9.13% 7.18%

Dense
-Fog

EPE 13.48 6.21 3.68 3.81 4.32 - 2.94
F1-all 79.31% 62.45% 33.18% 35.20% 41.26% -% 28.67%

flow on one synthetic and three real foggy datasets.
• Fog-KITTI2015. We construct a synthetic foggy KITTI
dataset with different densities of fog (e.g., dense fog and
light fog) onto images of KITTI2015 [25] via atmospheric
scattering model [26]. We select 8400 images of Fog-
KITTI2015 dataset for training and 400 images for testing.
• Fog-GOF. GOF [14] is a dataset containing four different
scenes with synchronized gyro readings, such as regular
scenes and adverse weather scenes. We choose foggy images
of GOF to compose a new foggy dataset, namely Fog-GOF,
of which 1000 images for training and 105 images for testing.
• DenseFog. We seek the real foggy dataset collected by
DenseFogFlow [40], namely DenseFog, of which 2346 im-
ages for training and 100 images for testing.
• Real-Fog World. We collect degraded videos under real
foggy scenes from Youtube, with 1200 and 240 images for
training and testing, respectively.
Comparison Methods. We choose three competing meth-
ods GyroFlow [14], DenseFogFlow [40] and RobustFlow
[15] which are designed for adverse weather optical flow.
Moreover, we select several state-of-the-art supervised
(GMA [9]) and unsupervised (SMURF [32], UFlow [11]
and Selflow [19]) optical flow approaches designed for
clean scenes. The unsupervised methods are first trained
on KITTI2015 for initialization and re-trained on the target
degraded dataset. The supervised method is first trained on

the synthetic dataset, and then trained on target real datasets
via self-supervised learning [32], denoted with ‘ssl’ in Table.
5. As for the comparison on Fog-KITTI2015, we design two
different training strategies for competing methods. The first
is that we directly train the comparison methods on foggy
images. The second is to perform the defogging first via
defog approaches (e.g., FFA-Net [27] and AECR-Net [38]),
and then we train the comparison methods on the defogging
results (named as FFA-Net+ / AECR-Net+).
Evaluation Metrics. We choose average endpoint error
(EPE [4]) and the lowest percentage of flow outliers (F1-
all [25]) as evaluation metrics for the quantitative evaluation.
The smaller the index is, the better the predicted result is.

4.2. Experiments on Synthetic Images

In Table 1, we show the quantitative comparison of the
synthetic light and dense Fog-KITTI2015 datasets. Note
that, we choose unsupervised methods for fair comparison
which all do not need any ground truth. We have two key ob-
servations. First, the proposed UCDA-Flow is significantly
better than the unsupervised counterparts under light and
dense foggy conditions. Since degradation breaks the basic
assumption of optical flow, the competing methods cannot
work well. Second, the pre-processing procedure defogging
(e.g., FFA-Net / AECR-Net + UFlow) is positive to optical
flow estimation. However, since the defog methods are not
designed for optical flow and the defogging images may
be over-smoothness, the performance of optical flow is still
limited. On the contrary, the proposed method could well
handle both light and dense foggy images. The reason is
that the proposed UCDA-Flow bypasses the difficulties of
directly estimating optical flow from degraded images, and
transferring motion knowledge from clean domain to foggy
domain via unsupervised domain adaptation.

9574



(a) Foggy images (b) RobustFlow (c) DenseFogFlow (d) UFlow (e) GMA (f) UCDA-Flow

Figure 6. Visual comparison of optical flows on Real-Fog World.
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(e) t-SNE of optical flow patches
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Figure 7. Effectiveness of cumulative adaptation architecture. (a)
Real foggy image. (b)-(d) Optical flows without DA, with DAMA
only, with DAMA and CAMA, respectively. (e) The t-SNE visual-
ization of each adaptation strategy.

4.3. Experiments on Real Images

In Table 2, the quantitative results on Fog-GOF and
DenseFog verify the superiority of our method. Note that,
the performance barely changes before and after ‘ssl’. The
reason is that fog has unexpectedly broken the photometric
constancy assumption which self-supervised learning optical
flow relies on, thus limiting its capability. In Fig. 5 and 6,
we also show the visual comparison results on Fog-GOF and
Real-Fog World datasets. The optimization-based method
RobustFlow and the unsupervised method UFlow cannot
work well. The supervised method GMA could obtain rela-
tively smooth visualization results, but there exist outliers in
Fig. 6 (e). The hardware-assisted GyroFlow heavily relies on
the camera ego-motion captured by the gyroscope data yet is
less effective for the independent foreground object motion
in Fig. 5 (e). DenseFogFlow only bridges the clean-to-foggy
domain gap, but neglects the synthetic-to-real foggy domain
gap, thus suffers artifacts when applied to real foggy images
in Fig. 5 and 6 (c). On the contrary, the proposed cumulative
adaptation framework can obtain satisfactory results under
real foggy scenes in Fig. 5 and 6 (f).

4.4. Ablation Study

Effectiveness of Cumulative Adaptation Architecture. To
illustrate the effectiveness of cumulative DAMA-CAMA ar-

Table 3. Ablation study on adaptation losses.

Lconsis
flow Lgeoflow Lselfflow Lklcorr

Fog-GOF
EPE F1-all

× × × × 2.92 30.94%
×

√
× × 2.88 30.20%√

× × × 1.59 14.03%√ √
× × 1.35 11.27%√ √ √

× 1.27 10.76%√ √
×

√
0.92 8.81%√ √ √ √
0.81 7.18%

chitecture, in Fig. 7, we show the optical flow estimation
of different adaptation strategies and visualize their low-
dimensional distributions via t-SNE. In Fig. 7 (b), we can
observe that there exist artifacts in the motion boundary with-
out domain adaptation. With DAMA only in Fig. 7 (c), most
of the outliers caused by degradation are removed. with both
DAMA and CAMA in Fig. 7 (d), the motion boundary is
clearer. Moreover, we visualize their corresponding t-SNE
distribution in Fig. 7 (e). The blue, red, and yellow dia-
monds denote the distributions without domain adaptation,
with DAMA only and with DAMA-CAMA, respectively.
The blue distribution is scattered, the red distribution is grad-
ually focused, and the yellow distribution is most concen-
trated, illustrating that the cumulative domain adaptation
could progressively improve real foggy scene optical flow.
Effectiveness of Adaptation Losses. We study how the
adaptation losses of the proposed method contribute to the
final result as shown in Table 3. Lgeo

flow aim to enforce the
optical flow in rigid regions. Lconsis

flow is to transfer motion
knowledge from the clean domain to the synthetic foggy
domain. The goal of Lself

flow and Lkl
corr is to distill motion

knowledge of the synthetic foggy domain to the real foggy
domain. We can observe that the motion consistency loss
Lconsis
flow make a major contribution to the optical flow result,

and the correlation distribution alignment loss Lkl
corr can

further improve the optical flow under real foggy scenes.

4.5. Discussion

How dose the Depth Improve Optical Flow? We study
the importance of depth in transferring motion knowledge
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Table 4. The effect of modules in CAMA stage on optical flow.

EMA SCA CDA Fog-GOF
EPE F1-all

× × × 1.38 12.06%√
× × 1.36 11.43%√ √

× 1.27 10.76%√ √ √
0.81 7.18%
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(c) Optical flow
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Figure 8. Effect of depth association on optical flow. (a) Foggy
image. (b)-(c) Optical flows without depth-association and with
depth-association, respectively. (d) Iteration process. Depth geom-
etry association can improve the rigid motion boundary.

from clean domain to synthetic foggy domain in Fig. 8.
Without depth association in Fig. 8 (b), the rigid motion
boundaries are blurry. With depth association in Fig. 8
(c), the optical flow is global-smooth with sharp boundaries.
Besides, we visualize their training iteration process in Fig.
8 (d). We can observe that depth association can further
improve the optimal value that the proposed model converges
to. Therefore, the depth geometry association can enhance
the rigid motion boundary for synthetic foggy images.
Importance of Correlation Distribution Alignment. In
Table 4, we show the effect of different modules on the
optical flow of real foggy domain. EMA is to prevent the
weights of the network from falling into the local optimum at
the training stage. SCA aims to enhance the motion saliency
in the cost volume. CDA is to transfer motion knowledge
from the synthetic foggy domain to the real foggy domain
by aligning the correlation distributions of both the domains.
As shown in Table 4, EMA and SCA contribute a small
improvement on the optical flow, while the CDA plays a key
role in improving the optical flow of real foggy domain.
Why Associate Depth with Fog? We also study the effect of
different foggy image synthesis strategies on the optical flow
in Table 5. The GAN-based strategy cannot perform well.
The reason is that GAN may erratically produce some new
artifacts during the image translation, but instead exacerbate
the synthetic-to-real foggy domain gap. On the contrary,
since fog is a non-uniform degradation related to depth, it
is reasonable that we use depth to synthesize foggy images.
Note that, the depth estimated by monocular is not accurate
enough due to the weak constraints. We also upsample
the sparse depth in KITTI dataset into the dense depth to

Table 5. Choice of different foggy image synthesis strategies.

Method
Fog-GOF

EPE F1-all
GAN-Based 1.43 13.10%

Depth-Based
Monocular 0.92 8.83%
Pseudo-GT 0.83 7.45%

Stereo (Ours) 0.81 7.18%

D
ep
th

(a) Foggy image (b) GMA (c) UCDA-Flow

Figure 9. Limitation of the proposed method. Compared with the
state-of-the-art optical flow method GMA [9], UCDA-Flow obtains
the clear motion boundary in the nearby regions, but fails for the
too-distant moving objects under foggy scenes.

synthesize the foggy images (pseudo-GT strategy), while
this strategy is slightly inferior to our stereo-based strategy.
The proposed depth association motion adaptation could
make a positive contribution to motion knowledge transfer.
Limitation. In Fig. 9, we discuss the limitation of the
proposed UCDA-Flow. Compared with the SOTA optical
flow method GMA [9], UCDA-Flow obtains the clearer
motion boundary in the too-distantons, but fails for the too
distant moving objects under foggy scenes. There are two
reasons for this problem. First, our framework requires depth
to enhance the optical flow in rigid regions, but it is difficult
for the stereo strategy to obtain accurate depth in distant
regions. Second, degradation is so severe that the details of
the distant moving object are lost. In the future, we attempt
to employ lidar for detecting distant objects.

5. Conclusion

In this work, we propose an unsupervised cumulative
domain adaptation framework for optical flow under real
foggy scenes. We reveal that depth is a key ingredient to
influence optical flow, which motivates us to design a depth-
association motion adaptation to close the clean-to-foggy do-
main gap. We figure out that cost volume correlation shares
a similar distribution of the synthetic and real foggy images,
which enlightens us to devise a correlation-alignment motion
adaptation to bridge the synthetic-to-real domain gap. We
have conducted experiments on the synthetic and real foggy
datasets to verify the superiority of our method.
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