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Abstract

Despite the prominent success of general object detec-
tion, the performance and efficiency of Small Object Detec-
tion (SOD) are still unsatisfactory. Unlike existing works
that struggle to balance the trade-off between inference
speed and SOD performance, in this paper, we propose
a novel Scale-aware Knowledge Distillation (ScaleKD),
which transfers knowledge of a complex teacher model to
a compact student model. We design two novel modules to
boost the quality of knowledge transfer in distillation for
SOD: 1) a scale-decoupled feature distillation module that
disentangled teacher’s feature representation into multi-
scale embedding that enables explicit feature mimicking of
the student model on small objects. 2) a cross-scale assis-
tant to refine the noisy and uninformative bounding boxes
prediction student models, which can mislead the student
model and impair the efficacy of knowledge distillation. A
multi-scale cross-attention layer is established to capture
the multi-scale semantic information to improve the student
model. We conduct experiments on COCO and VisDrone
datasets with diverse types of models, i.e., two-stage and
one-stage detectors, to evaluate our proposed method. Our
ScaleKD achieves superior performance on general detec-
tion performance and obtains spectacular improvement re-
garding the SOD performance.

1. Introduction
Object detection is a fundamental task that has been

developed over the past twenty-year in the computer vi-
sion community. Despite the state-of-the-art performance
for general object detection having been conspicuously
improved since the rise of deep learning, balancing the
complexity-precision for small object detection is still an
open question. Current works strive to refine feature fu-
sion modules [9,21], devise novel training schemes [32,33]

*Corresponding author

to explicitly train on small objects, design new neural archi-
tectures [20,39] to better extract small objects’ features, and
leverage increased input resolution to enhance representa-
tion quality [1, 49]. However, these approaches struggle to
balance detection quality on small objects with computa-
tional costs at the inference stage.

The above reasons incentivize us to design a cost-free
technique at test time to improve SOD performance. In
the spirit of the eminent success of knowledge distillation
(KD) on image data [14], we explore distillation methods
for SOD. Typically, knowledge distillation opts for a com-
plex, high-performance model (teacher) that transfers its
knowledge to a compact, low-performance model (student).
The student model can harness instructive information to
enhance its representation learning ability. Nevertheless,
unlocking this potential in SOD involves overcoming two
challenges: 1) SOD usually suffers from noisy feature rep-
resentations. Due to the nature of small objects, which gen-
erally take over a small region in the whole image, the fea-
ture representations of these small objects can be contami-
nated by the background and other instances with relatively
larger sizes. 2) Object detectors have a low tolerance for
noisy bounding boxes on small objects. It is inevitable that
teacher models make incorrect predictions. Usually, student
models can extract informative dark knowledge [14, 28]
from imperfect predictions from the teacher. However, in
SOD, small perturbations on the teacher’s bounding box can
dramatically impair SOD performance on the student detec-
tor (§3.2).

To this end, we propose Scale-aware Knowledge Distil-
lation for small object detection (ScaleKD). Our proposed
ScaleKD consists of two modules, a Scale-Decoupled Fea-
ture (SDF) distillation module and a Cross-Scale Assistant
(CSA), to address the aforementioned two challenges corre-
spondingly. The SDF is inspired by the crucial shortcoming
of existing feature distillation methods, where the feature
representations of objects with varying scales are coupled
in a single embedding. It poses difficulty for the student
to mimic small objects’ features from the teacher model.
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Figure 1. The overview of Scale-aware Knowledge Distillation. It consists of a Scale-Decoupled Feature distillation module and a Cross-
Scale Assistant module to improve small object detection.

As a result, the proposed SDF aims to decouple a single-
scale feature embedding into a multi-scale feature embed-
ding. The multi-scale embedding is obtained by a paral-
lel multi-branch convolutional block, where each branch
deals with one scale. Our SDF allows the student model
to better understand the feature knowledge from the per-
spective of object scale. Furthermore, we propose a learn-
able CSA to resolve the adverse effect of teachers’ noisy
bounding box prediction on small objects. The CSA com-
prises a multi-scale cross-attention module, where represen-
tations from the teacher and student models are mapped into
a single feature embedding. The multi-scale query-key pair
projects the teacher’s features into multiple sizes, such that
the fine-grained and low-level details can be preserved in
CSA, which helps to produce suitable bounding box super-
vision for the student model.

We demonstrate the effectiveness of our approach on
COCO object detection and VisDrone datasets. The ex-
periments are conducted on multiple types of detectors, in-
cluding two-stage detectors, anchor-based detectors, and
anchor-free detectors, and have proven the generalizability
of our approach. Our work offers a practical approach for
industrial application on SOD as well as introduces a new
perspective on designing scale-aware KD modules to im-
prove object detectors. We further extend our method on
instance-level detection tasks, such as instance segmenta-
tion and keypoint detection, demonstrating the superiority
of our approach to dealing with small objects in vision tasks.

In summary, our contributions are the following:

• We propose Scale-Aware Knowledge Distillation
(ScaleKD), a novel knowledge distillation framework
to improve general detection and SOD performance
without bringing extra computational costs at test time.

• Our proposed ScaleKD not only exceeds state-of-the-
art KD for object detection methods on general de-
tection performance but also surpasses existing ap-
proaches on SOD by a large margin. Extended experi-
ments on instance segmentation and keypoint detection
further strength our method.

2. Related Work

Knowledge Distillation. Knowledge distillation has be-
come one of the most effective techniques for model com-
pression [14]. It first trains a cumbersome teacher model
and then transfers its knowledge to a lightweight student
model. The common knowledge distillation approaches in-
clude distillation on output, logits [14], bounding box [16],
and features [30, 52, 53].

Our work is also closely correlated to object detection,
where knowledge distillation has shown effectiveness in
detection tasks [3, 15, 35, 40, 47, 48]. In particular, Fine-
Grained [5] is the first work to comprehensively present
a KD framework for the object detection task. FKD [44]
is the earliest work to adopt attention mechanisms to do
feature distillation on object detectors. DeFeat [12] decou-
pled the foreground feature and background features based
on the ground-truth binary mask and performed feature
distillation on two features separately. FGFI [41] presents
focal distillation, which combines DeFeat and Zhang et
al. [44] works. ICD [17] considered conditional distillation
of both classification and localization on very instances.
Guo [12] investigates distilling image classifier instead of
object detector to student detector, which complements
existing feature-based distillation methods. Similar to ICD,
GID [7] proposed an instance-selection module to transfer
the teacher’s most informative locations. LGD [45] pro-
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posed a teacher-free framework to distill object detectors
without a concrete teacher model. Nevertheless, existing
methods have largely overlooked the small objects. Our
paper is the first work to design knowledge distillation
specifically targeted to improve general object detection
and small objects’ performance.

Small Object Detection. Recognizing small objects
in the image is challenging, especially when localiza-
tion and per-pixel classification are required. A naive
approach is to increase the resolution [26]. Nevertheless,
it brings tremendous computational costs in inference.
Existing approaches mainly focus on applying strong data
augmentation [18] or oversampling [4], incorporating
context information [9, 21], fusing the features across
layers [10, 38], performing scale-aware training [32, 33],
adjusting resolution at test-time [37], or applying dilated
convolution/large convolution [20, 39] to increase the
receptive field. We refer interested readers for a more
in-depth survey [6].

Our approach is very different from previous methods,
where we seek help with knowledge distillation to boost the
performance of SOD. Our method benefits from the advan-
tage of the distillation method, where 1) no extra computa-
tional costs are introduced at test time, and 2) neural archi-
tectures of the existing model do not need to be modified,
a critical benefit in the practical scenario where engineer-
ing do not want to alter their networks architecture due to
inconvenience on deployment.

3. Scale-aware Knowledge Distillation
This section provides a detailed description of our

proposed distillation methods. Figure 1 gives a brief
overview of ScaledKD, in which we illustrate the modules
as follows: (1) A scale-decoupled feature distillation
module that explicitly transfers representation on diverse
scales to the student detector. (2) A cross-scale assistant
refines the knowledge of object size between complex
teacher and compact student.

Definition. In this section, we provide a notion of
the components that we will use to describe our method.
Considering an object detector GS : Rd → Rk as a student
and another predictor GT : Rd → Rk as a teacher, where
d and k are two feature dimensions. The former is a
computationally efficient network with a relatively lower
detection performance. The latter is a heavy model with
relatively higher detection performance. Giving a training
dataset S = {(xi, yi)

n
i=1} ∼ Pn for distribution P over a

set of instance X . For small object detection, a common
approach to improve SOD is to leverage a high-resolution
image as input. In our case, we only consider using
high-resolution images X hr for the teacher model, while
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Figure 2. The scale-decouple feature module in ScaleKD. Note
that the details of the student’s scale-decoupled feature module
are omitted due to limited space. In practice, it is symmetric to the
teacher’s counterpart.

standard-resolution images are used for the student model.

3.1. Scale-Decoupled Feature Distillation

Preliminary. Modern object detectors harness FPN [21]
to obtain the multi-scale semantic information from differ-
ent levels of the backbone to enhance the model’s feature
learning ability on diverse object scales. A typical distilla-
tion approach is to transfer the knowledge of these features
from teacher to student. Generally, we can formulate such
distillation methods as:

Lfeat = l(FT , f(FS)) (1)

where FT and FS are corresponding feature layers in the
teacher and student model. f(·) is a mapping function to
align the dimension of the feature map in student to teacher,
and l(·) is any bounded loss, i.e., l2 norm distance.

Motivation. Although state-of-the-art KDs for object
detection have developed various techniques, such as focal
distillation [41], to enhance the quality of transferred
knowledge, such methods treat all objects that have varying
sizes equally during distillation. We identify that the key
shortcoming of these methods on SOD is that the feature
representation on diverse objects is entangled. It is a viable
solution when object sizes are not small. However, the size
of objects in the detection task varies significantly. The
feature representation of small objects can be contaminated
by large-region backgrounds and other instances with a
relatively larger size. To resolve the issue, we propose
a Scale-Decoupled Feature (SDF) distillation module to
explicitly disentangled the teacher’s feature map.

Methodology. As aforementioned, our goal is to
disentangle the whole feature representation of the teacher
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Method Perturbation AP APS APM APL

Baseline 0 36.9 21.2 40.8 48.4

Chen et al. [5]
0 38.1 21.9 42.2 50.1

6 pixels 37.7 21.1 42.4 50.2
12 pixels 37.0 19.9 42.1 50.0

Table 1. Noisy and uninformative bounding boxes from the
teacher can severely hurt students’ performance. The perturba-
tion is measured by a number of pixels, and it is added along the
diagonal direction.

object detector into multiple parts, where each part only
deals with similar object sizes. Presumably, such opera-
tions can force student detectors to comprehend not only
the global knowledge of the entire image but also the
scale-specific knowledge.

To be specific, we obtain a feature embedding ZT and
ZS in the last stage of the backbone for both the teacher
and student networks. We intend to fully utilize the feature
representation on diverse input scales. Thus, we adopt a
multi-branch structure, where each branch uses a convolu-
tional layer with different dilated rates. It is worth noting
that the model tends to focus on small objects for the kernel
with a small dilated rate and vice versa. In practice, we use
residual blocks as in ResNet, which consist of three con-
secutive convolutional layers, i.e., 1x1, 3x3, and 1x1, along
with a skip connection. For the 3x3 Conv layer, we use three
different dilated rates {1, 2, 3} on three individual branches.
An adapter layer, typically a multi-layer perception (MLP)
layer, is stacked before this scale-decoupled feature module
to align the dimensionality of feature presentation between
the teacher and student model.

Usually, one can match the knowledge of the teacher
model at a designated branch, i.e., the 3x3 Conv layer with
a dilated rate of 1, to the corresponding feature branch in
the student model via any distance minimization loss. One
drawback is that these operations can be memory intensive.
Therefore, we take inspiration from the weight-sharing net-
work in neural architecture search [25, 34] and adopt a
weight-sharing scale-decoupled feature. This is based on
the fact that all three branches have the same operators. In
practice, we only save a set of weights for three branches,
dramatically reducing the training memory cost.

We also notice that using three individual losses to match
three parallel branches between the teacher and student
model can cause the practicer to spend unnecessary effort
on hyper-parameter tuning. As a result, for each branch, we
use a flattened layer, namely a multi-layer perceptron, and
concatenate three flattened layers together. During the dis-
tillation process, we adopt a sole l2 loss (denoted as Lfeat

in the later section) to minimize the distance of this con-
catenated flattened layer between the teacher and student
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Figure 3. The Cross-Scale Assistant (CSA) module. We adopt a
multi-scale query-key pair to perform cross-attention with feature
embedding in the student model. The learnable weights in CSA
are updated via two separate classification and regression branches
which are supervised by the ground truth label.

model. the overview of the proposed module can be viewed
in Figure 2. Notably, the student’s scale-decoupled feature
module mirrors the teacher’s counterpart.

3.2. Cross-Scale Assistant

Preliminary. Our previous section introduces our proposed
feature distillation to resolve the challenge of SOD. Other
than feature distillation, another practical approach is the
output-based KD, which transfers the teacher’s prediction
on classification and localization to the student as sources
for auxiliary supervision. Our work primarily focuses on
bounding box distillation, which can be considered a re-
gression problem. In general, we can write such regression
distillation as follow:

Lbbox = lbbox(RS ,RT ) (2)

where RS is the regression output of the student network,
RT is the predication of teacher network. This l(·) is
the same as Equation 1, where any bounded loss can be
applied. Conventionally, this bounded loss can be either l1,
smoothed l1 or l2 loss, depending on the level of penalty
that we wise to weight the error between the student’s
predication and the teacher’s output.

Motivation. A key difference between small object
detection and general object detection is that SOD is
sensitive to noisy bounding boxes. Apparently, the teacher
detector is incapable of making perfect predictions on
every object. In general object detection, despite being
inaccurate, student models can still retrieve informative
knowledge from teachers’ predictions on bounding boxes.
Nevertheless, for small objects, noisy bounding box
prediction in the teacher model can confuse the student
model, which decreases the SOD performance. As proof
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of concept, we deliberately add a slight deviation (6 and
12 pixels along the diagonal direction) and compare the
mAP on small-scale objects of a vanilla teacher with a
teacher that is slightly perturbed. As shown in Table 1,
on RetinaNet baseline, the AP of small objects (APS) of
students drops consistently when perturbations are added,
showing the sensitivity of student detector on teacher’s
bounding box prediction in SOD. Therefore, to build a
trustworthy regression distillation module for SOD, one
needs to minimize the adverse effect of poison bounding
box knowledge in teachers. This does not mean that the
teacher’s predictions have to be perfect - otherwise, we
can directly supervise the student with ground truth - we
only need to refine the teacher’s output to ensure that their
knowledge is informative to the student [27, 50].

Methodology. To address the aforementioned issue,
we propose a Cross-Scale Assistant (CSA), which refines
the teacher’s knowledge and enables the student model
to fetch instructive knowledge on objects with different
scales.

Our method is simple - we establish the CSA by a cross-
attention module. During the cross-attention, a sequence
of key and query tokens are generated in calculating KQ-
attention within the teacher’s knowledge and then mapped
with the value tensor, the outputs from the student model,
to obtain attentive regions in the feature with each corre-
sponding query. This process is executed at every student
pyramid scale to retrieve informative region-based features.

A naive choice is to use plain cross-attention [8]. Al-
beit, previous studies [43] identified that the standard cross-
attention could focus on salient regions repetitively on dif-
ferent heads. Consequently, when large objects appear in
the image, the cross-attention will redirect its attention to
these large objects and ignore small objects. To this end, in
contrast to the plain cross-attention, we developed a multi-
scale cross-attention layer, as shown in Figure 3. Notice
that cross-attention extracts global information - for each
query-key pair, a value is generated to highlight the most
responsive region. We then split the query-key pair into
multiple sub-pairs, where each sub-pair represents a set of
object scales. As a result, our multi-scale query-key can en-
force the attention module to focus on regions with diverse
scales, such that all objects, especially the small objects, can
attend to the feature learning process.

Particularly, give an input sequence from teacher FT ∈
Rh×w×c and another input sequence from student FS ∈
Rh×w×c, for simplicity, we assume two tensors have the
same size. The FT is projected into a query (Q) and key
(K), and FS is projected into value (V). The keys K and
values V are down-sampled to different sizes for different
heads indexed by i. Thus, we formulate our multi-scale

cross-attention (MSC) as follows:

Qi = FSWQ
i (3)

Ki = MSC(FT , ri)W
K
i , Vi = MSC(FT , ri)W

V
i , (4)

Vi = Vi + P (Vi) (5)

where MSC(·, ri) is a MLP layer for aggregation in the
i−th head with the down-sampling rate of ri, and P (·) is a
depth-wise convolutional layer for projection. Compared
with the standard cross-attention, more fine-grained and
low-level details that are beneficial to SOD are preserved.
Finally, we calculated the attention tensor by:

hi = Softmax(
QiK

T
i√

dh
Vi) (6)

where dh is the dimension. Remember that the purpose of
CSA is to bridge the cross-scale information between the
teacher and student model to refine the bounding box su-
pervision in KD. Therefore, we stacked head layers with
the classification branch and regression branch to update the
weights of these learnable modules. Our empirical analysis
shows that the proposed CSA can provide more appropriate
supervision on small objects bounding boxes during distilla-
tion. Because this is a learnable module, during distillation,
we perform a weights update prior to the student model at
each iteration through a standard training scheme and de-
tection objectives.

In distillation, instead of transferring the teacher’s out-
put knowledge, we transfer the CSA’s knowledge on both
classification and regression branches to students. For the
output-based distillation objectives, we follow [5] to have
two loss functions Lcls and Lbbox. We note that our method
is also complementary to other output-based methods, such
as LD [46], where all we need to do is simply replace the
distillation objective.

In summary, the total training objective for the student
model is:

Ltotal = αLfeat + βLcls + γLbbox + Ldet (7)

where Ldet is the standard training loss for the detector.
Besides the distillation loss and detection loss for opti-

mizing student detectors, we further ensure the instructive
representation quality and consistency with student repre-
sentations by sharing the detection head for supervision.
Moreover, the CSA combines the feature of both teacher
and student. As a result, a randomly initialized student de-
tector can cause unstable training of CSA. Thus, we first
warm up the student model for 30k iterations since it could
be detrimental when the instructive knowledge is optimized
insufficiently. The student detector backbone is frozen in
early 10k iterations under 1× training schedule and 20k for
2× training schedule.
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Method Backbone AP AP50 AP75 APS APM APL FPS Params (M)

Faster-RCNN [29]
ResNet50

38.4 59.0 42.0 21.5 42.1 50.3
20.1 43.57

+ ScaleKD 43.1 64.0 48.2 26.1 48.0 58.8
Faster-RCNN [29]

MobileNetV2
27.3 44.7 28.9 14.6 29.6 35.7

12.9 32.61
+ ScaleKD 30.8 48.7 32.9 18.8 34.2 42.2
Cascade-RCNN [2]

ResNet50
41.0 59.4 44.4 22.7 44.4 54.3

18.9 71.22
+ ScaleKD 44.9 63.2 48.8 25.7 48.1 59.2
RetinaNet [22]

ResNet50
37.4 56.7 39.6 20.0 40.7 49.7

17.4 37.74
+ ScaleKD 42.8 61.1 44.6 25.9 45.4 54.9
FOCS [36]

ResNet50
38.5 57.7 41.0 21.9 42.8 48.6

23.9 36.15
+ ScaleKD 44.0 61.6 41.6 29.1 46.9 56.2
RepPoints [42]

ResNet50
38.6 59.6 41.6 22.5 42.2 50.4

18.2 36.62
+ ScaleKD 42.9 63.8 46.8 25.7 47.1 56.7

Table 2. Comparison with state-of-the-art methods KD-Det on COCO val2017 datasets. Our approach appear to improve the detection
performance drastically, especially on APS . The FPS is evaluated on a single V100 GPU.

Student Method AP AP50 AP75 AR1 AR10 AR100 AR500

RetinaNet-ResNet50
Baseline 26.21 44.90 27.10 0.52 5.35 34.63 37.21

ZoomInNet [24] 27.11 46.02 28.09 0.53 5.47 34.98 37.66
ScaleKD 29.45 49.28 29.97 0.53 5.98 36.74 38.65

RetinaNet-MobileNetV2
Baseline 21.73 40.01 22.95 0.49 5.11 31.24 34.05

ZoomInNet [24] 22.49 41.14 24.21 0.50 5.15 31.78 34.91
ScaleKD 26.08 44.76 26.98 0.52 5.33 34.48 37.03

Table 3. Experimental results on VisDrone. We use ResNet101 as the teacher model.

4. Experiment

We conduct quantitative analysis on two object detection
datasets: COCO [23] and VisDrone [51]. COCO is a chal-
lenging object detection dataset with 80 categories. Vis-
Drone is a dataset specialized to drone-shot image detec-
tion, in which most of the objects in this dataset are small.

4.1. Implementation Details

For COCO, we adopt the standard 1× schedule and kept
all the hyperparameters for the student model training un-
changed for fair comparisons. The models are evaluated
on validation set 2017. On the VisDrone dataset, we follow
the which equally split one image into four non-overlapping
patches and process them independently during training.
The training procedure is also kept the same as in previ-
ous literature. We use 2x of standard input resolution for
all experiments for the teacher model, useless otherwise in-
dicated. Mean average precision (AP) is used as the major
metric for all experiments. We use an Adam optimizer with
an initial learning rate of 3e-4 and a weight-decay of 1e-4 to
update the CSA module. There are three hyper-parameters
in the total training objectives, we set α = 0.07, β = 0.5,

γ = 0.2 for all two-stage models, and α = 0.01, β = 0.2,
γ = 0.05 for all one-stage models.

4.2. Main Results

In this section, we show the experimental results of the
baseline detectors and our method on COCO and VisDrone
datasets. We compare our approach with state-of-the-art
distillation methods in the next section.

COCO. We conduct extensive experiments on COCO
to validate the effectiveness of ScaleKD. We adopt our
method on multiple mainstream baselines, including
two-stage detection models (i.e., Faster RCNN [29],
Cascade RCNN [2]), and one-stage detection models
(i.e., RetinaNet [22], FCOS [36], Reppoints [42]). For all
experiments, we use the ResNet101 backbone as a teacher
model. The ScaleKD achieves noticeable improvement on
all methods without introducing any extra computational
cost at inference. It is worth noting that the performance
boost on APS is overwhelming. For instance, on FCOS
the APS is increased by 7.2, and on RetinaNet the APS is
increased by 5.9. Also, our approach is not only effective
for SOD but improves the AP in general.
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Task Method Type Resolution APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

Instance Segmentation Mask-RCNN
Teacher High 35.4 56.5 37.9 19.2 38.6 48.4
Baseline Low 31.6 51.2 33.4 10.8 33.6 50.9

Ours Low 33.8+2.2 53.2+2.0 35.7+2.3 13.1+2.3 35.5+1.9 52.3+2.4

Keypoint Detection Mask-RCNN
Teacher High 66.4 87.1 72.8 63.5 72.0 73.6
Baseline Low 62.5 86.1 68.2 56.5 72.9 70.1

Ours Low 64.1+1.6 87.6+1.5 70.1+1.9 58.7+2.2 74.2+1.7 71.2+1.1

Table 4. Performance comparisons with baselines on instance segmentation and keypoint detection. The high resolution means 800px, and
the low resolution represents 400px, both on the short side. The baseline refers to the standard training.

Method AP APS ∆APS APM ∆APM APL ∆APL

GFL ResNet50

Baseline 40.1 23.3 - 44.4 - 52.5 -
FitNet [30] 40.7 23.7 +0.4 44.4 +0.0 53.2 +0.7
OD [5] 41.1 23.3 +0.0 45.4 +1.0 53.1 +0.6
DeFeat [11] 40.8 24.3 +1.0 44.6 +0.2 53.7 +0.5
GID [7] 41.5 24.3 +1.0 45.7 +1.3 53.6 +1.1
LD [46] 42.1 24.5 +1.2 46.2 +1.8 54.8 +2.3
ScaleKD 42.5 25.9 +2.6 46.2 +1.8 54.6 +2.1

RetinaNet ResNet50

Baseline 37.4 20.0 - 40.7 - 49.7 -
FKD [44] 39.6 21.4 +1.4 42.5 +1.8 51.5 +1.8
LGD [45] 38.3 23.2 +3.2 42.0 +1.3 50.0 + 0.3
FGFI [41] 38.6 21.4 +1.4 42.5 +1.8 51.5 +1.8
GID [7] 39.1 22.8 +2.8 43.1 +2.4 52.3 +2.4
CLSD [12] 40.7 23.1 +3.1 44.7 +4.0 53.8 +4.1
ScaleKD 41.7 24.8 +4.8 44.7 +4.0 53.9 +4.2

FCOS ResNet50

Baseline 38.5 21.9 - 42.8 - 49.7 -
LD [46] 40.4 23.7 +1.8 44.3 +1.5 52.2 +2.5
GID [7] 42.0 25.6 +3.7 45.8 +3.0 54.2 +4.5
FGFI [41] 42.1 27.0 +5.1 46.0 +3.2 54.6 +4.9
ScaleKD 42.7 27.8 +5.9 45.7 +2.9 54.7 +5.0

Table 5. Comparison with state-of-the-art methods on COCO
val2017. Our ScaleKD achieves pronounced improvement on
APS compared to SOTA.

VisDrone. We demonstrate the experimental results
on the VisDrone dataset in Table 3. We use ResNet-101 as
the backbone for both experiments. We can clearly observe
that our approach significantly improves the performance
of the student model. Notably, after applying ScaleKD
to RetinaNet-MobileNetV2 [22, 31], we achieve detection
performance that is on par with the RetinaNet-ResNet50
(26.08 AP versus 26.21 AP), which adopt ResNet50, an
8x heavier backbone than MobileNetV2. Our method also
increases both AP for RetinaNet-ResNet-50 [13]. Since
VisDrone is a dataset that contains mostly small objects,

these results support our claim that the proposed ScaleKD
is extremely effective on SOD.

We also make a comparison with ZoomInNet [24],
which combines feature level alignment and layer adapta-
tion to distill a standard teacher to small object detectors.
We evaluate ZoomInNet on both settings, similar to our
approach. Indeed, ZoomInNet can slightly improve the
AP on VisDrone, but the improvement is very marginal.
In contrast, the ScaleKD achieve drastically higher results
than their approach.

Results on Other Instance-Level Tasks with Small
Input Resolution. Input resolution is a critical factor in
achieving good performance on SOD. Typically, reduced
input resolution can result in a considerable performance
drop. Here we verify if our proposed ScaleKD can
improve the SOD performance on instance-level tasks,
even when the input resolution of the student model is
low. The evaluation results are reported in Table 4. We
notice that the low-resolution models trained with our
approach outperform the baseline by a large margin, on
both instance segmentation and keypoint detection, based
on Mask-RCNN. This shows our ScaleKD is particularly
good at predicting small objects, even when the number of
effective pixels is small.

4.3. Ablation Study

Comparison with State-of-the-art knowledge distilla-
tion. In the last section, we validate the effectiveness of our
proposed ScaleKD on two datasets compared to the train-
from-scratch counterpart. This section compares ScaleKD
to state-of-the-art KD methods on the COCO benchmark.
For a fair comparison, we use the standard image resolu-
tion on teacher and the same teacher architecture, such that
the teacher’s performance is the same for all approaches.
We compare ScaleKD to these SOTA methods on General-
ized focal loss (GFL) [19], RetinaNet [22], and FCOS [36],
respectively. All student models use ResNet50 as the back-
bone. We compare eight distillation methods, seven of
them are KD methods that are designed for object detec-
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Method CSA MSC AP APS APM APL

Baseline - - 36.9 21.2 40.8 48.4

ScaleKD
✓ ✗ 40.2 23.5 43.7 52.6
✓ ✓ 41.6 24.8 44.5 53.9

Table 6. Ablation study for Cross-Scale Assistant. MSC: Multi-
scale Cross-Attention.

tion, including FitNet [30], OD [5], LGD [45], DeFeat [11],
GID [7], LD [46], FGFI [41], and CLSD [12].

Table 5 presents the experimental results. We can
observe that ScaleKD achieves superior performance on
most evaluation metrics, i.e., on GFL-ResNet50, ScaleKD
obtained a 2.8 higher AP score compared with baseline
and 0.7 higher AP score compared to second best SOTA
method (LD [46]). Furthermore, as we look at the APS ,
the one that measures AP on small objects, we notice that
our proposed method obtains a significantly better score
than SOTA. For instance, ScaleKD improves APS by 3.4,
4.8, and 5.9 on GFL, RetinaNet, and FCOS, respectively.
These results indicate that ScaleKD helps compact student
detectors on detecting small objects, and it is much more
effective than KD methods designed for general object
detection.

Impact of Cross-Scale Assistant. We investigate
the effectiveness of our proposed Cross-Scale Assistant
module. We use standard image resolution for teachers
in this section. We are primarily eager to know if CSA
improves SOD performance and does the multi-scale
cross-attention helps the student model. Table 6 gives
empirical results. We can observe the CSA dramatically
increase the AP score as well as APS for the student
RetinaNet model. Moreover, the MSC is critical to the
performance. Compared to plain cross-attention, the MSC
can improve the AP by 1.4 and APS by 1.3. It verifies the
advantage of our proposed multi-scale cross-attention over
plain cross-attention in our KD framework.

Ablation study of Scale-Decoupled Feature. Ta-
ble 7 presents the ablation study of the SDF module. We
use standard image resolution for teachers in this section.
We mainly discuss two aspects: whether SDF improves
the performance of SOD and whether the weight-sharing
method is worth using. First, we evaluate SDF on COCO
with RetinaNet-ResNet50 as the baseline model. The
experimental results show that the SDF is indeed effective
in improving overall AP and AP for small objects. Besides,
using separate weights for parallel branches does not bring
noticeable improvement in terms of average AP. Thus, it
is worth using the weight-sharing module to save memory
costs.

Method SDF WS AP APS APM APL

Baseline - - 36.9 21.2 40.8 48.4

ScaleKD
✓ ✗ 41.6 24.9 44.8 53.7
✓ ✓ 41.6 24.8 44.6 53.9

Table 7. Ablation study for Scale-Decoupled Feature module.
WS: weight-sharing.

Method ScaleKD AP APS APM APL

ResNet-18 ✗ 35.8 18.9 38.9 47.9
ResNet-18 ✓ 37.2 20.1 40.2 49.3

ResNet-34 ✗ 38.9 21.5 42.8 51.4
ResNet-34 ✓ 40.8 23.1 45.1 53.7

Table 8. Quantitative results of ScaleKD for diverse model com-
plexity. We use ResNet101 as the teacher model.

ScaleKD for Diverse Model Complexity. We fur-
ther validate the effectiveness of our approach to diverse
model complexity. Specifically, we evaluate COCO for two
different student backbones, ResNet-18 and ResNet-34.
Each model is distilled by a ResNet-101 detector. The re-
sults are presented in Table 8, which show that our method
can effectively and stably improve the student model,
regardless of the model complexity. This observation is
contradicted by previous studies on image classification but
consistent with the report on detection tasks. In particular,
our approach improves the average AP by 1.2 and 2.5 on
ResNet-18 and ResNet-34, respectively. Notably, the per-
formance on small objects (APS) is boosted tremendously
by 2.3 and 2.1. These results verified that our method is
generally effective on varying model sizes.

5. Discussion

Balancing inference speed and detection performance
for small object detection is challenging. In this work, we
propose a Scale-aware knowledge distillation that targets
improving the performance of SOD via designed scale-
decoupled feature distillation and cross-scale assistant. The
former explicitly decouples multi-scale features, and the
latter refines the teacher’s bounding box noise for more
informative knowledge in distillation. We evaluate two
benchmarks, COCO 2017 and VisDrone, to demonstrate
the effectiveness of our approach.

Acknowledgements: This work was partially sup-
ported by the Science and Technology Innovation Action
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