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Abstract

Open World Object Detection (OWOD) is a new and
challenging computer vision task that bridges the gap be-
tween classic object detection (OD) benchmarks and ob-
ject detection in the real world. In addition to detecting
and classifying seen/labeled objects, OWOD algorithms are
expected to detect novel/unknown objects - which can be
classified and incrementally learned. In standard OD, ob-
ject proposals not overlapping with a labeled object are
automatically classified as background. Therefore, simply
applying OD methods to OWOD fails as unknown objects
would be predicted as background. The challenge of detect-
ing unknown objects stems from the lack of supervision in
distinguishing unknown objects and background object pro-
posals. Previous OWOD methods have attempted to over-
come this issue by generating supervision using pseudo-
labeling - however, unknown object detection has remained
low. Probabilistic/generative models may provide a solu-
tion for this challenge. Herein, we introduce a novel prob-
abilistic framework for objectness estimation, where we al-
ternate between probability distribution estimation and ob-
jectness likelihood maximization of known objects in the
embedded feature space - ultimately allowing us to estimate
the objectness probability of different proposals. The result-
ing Probabilistic Objectness transformer-based open-world
detector, PROB, integrates our framework into traditional
object detection models, adapting them for the open-world
setting. Comprehensive experiments on OWOD benchmarks
show that PROB outperforms all existing OWOD methods
in both unknown object detection (∼ 2× unknown recall)
and known object detection (∼ 10% mAP). Our code is
available at https://github.com/orrzohar/PROB.

1. Introduction

Object detection (OD) is a fundamental computer vi-
sion task that has a myriad of real-world applications, from
autonomous driving [18, 25], robotics [4, 32] to health-
care [6, 12]. However, like many other machine learning
systems, generalization beyond the training distribution re-

Figure 1. Comparison of PROB with other open world object de-
tectors. (a) Query embeddings are extracted from an image via
the deformable DETR model. (b) other open-world detectors at-
tempt to directly distinguish between unlabeled ‘hidden’ objects
and background without supervision (red). (c) PROB’s scheme of
probabilistic objectness training and revised inference, which per-
forms alternating optimization of (i) Embeddings distribution es-
timation and (ii) likelihood maximization of embeddings that rep-
resent known objects. (d) Qualitative examples of the improved
unknown object detection of PROB on the MS-COCO test set.

mains challenging [5] and limits the applicability of exist-
ing OD systems. To facilitate the development of machine
learning methods that maintain their robustness in the real
world, a new paradigm of learning was developed – Open
World Learning (OWL) [8–10, 16, 17, 21, 27, 29–31, 34]. In
OWL, a machine learning system is tasked with reason-
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ing about both known and unknown concepts, while slowly
learning over time from a non-stationary data stream. In
Open World Object Detection (OWOD), a model is ex-
pected to detect all previously learned objects while simul-
taneously being capable of detecting novel unknown ob-
jects. These flagged unknown objects can be sent to an
oracle (human annotator), which labels the objects of in-
terest. The model is then expected to update itself without
catastrophically forgetting previous object classes [10].

While unknown object detection is pivotal to the OWOD
objective, existing OWOD methods have very low unknown
object recall (∼10%) [8, 10, 30, 34]. As such, it is clear that
the field has much to improve to meet its actual goal. The
difficulty of unknown object detection stems from a lack of
supervision as, unlike known objects, unknown objects are
not labeled. Hence, while training OD models, object pro-
posals that include an unknown object would be incorrectly
penalized as background. Thus far, most OWOD methods
have attempted to overcome this challenge by using differ-
ent heuristics to differentiate between unknown objects and
background during training. For example, OW-DETR [8]
uses a pseudo-labeling scheme where image patches with
high backbone feature activation are determined to be un-
known objects, and these pseudo-labels are used to super-
vise the OD model. In contrast, instead of reasoning about
known and unknown objects separately using labels and
pseudo-labels, we take a more direct approach. We aim
to learn a probabilistic model for general “objectness” (see
Fig. 1). Any object – both known and unknown – should
have general features that distinguish them from the back-
ground, and the learned objectness can help improve both
unknown and known object detection.

Herein, we introduce the Probabilistic Objectness Open
World Detection Transformer, PROB. PROB incorporates
a novel probabilistic objectness head into the standard de-
formable DETR (D-DETR) model. During training, we al-
ternate between estimating the objectness probability dis-
tribution and maximizing the likelihood of known objects.
Unlike a classification head, this approach does not re-
quire negative examples and therefore does not suffer from
the confusion of background and unknown objects. Dur-
ing inference, we use the estimated objectness distribution
to estimate the likelihood that each object proposal is in-
deed an object (see Fig. 1). The resulting model is simple
and achieves state-of-the-art open-world performance. We
summarize our contributions as follows:

• We introduce PROB - a novel OWOD method. PROB
incorporates a probabilistic objectness prediction head
that is jointly optimized as a density model of the im-
age features along with the rest of the transformer net-
work. We utilize the objectness head to improve both
critical components of OWOD: unknown object detec-
tion and incremental learning.

• We show extensive experiments on all OWOD bench-
marks demonstrating the PROB’s capabilities, which
outperform all existing OWOD models. On MS-
COCO, PROB achieves relative gains of 100-300%
in terms of unknown recall over all existing OWOD
methods while improving known object detection per-
formance ∼ 10% across all tasks.

• We show separate experiments for incremental learn-
ing tasks where PROB outperformed both OWOD
baselines and baseline incremental learning methods.

2. Related Works

Open World Object Detection. The Open World Object
Detection task, recently introduced by Joseph et al. [10], has
already garnered much attention [8, 18, 25, 29–31, 34] due
to its possible real-world impact. In their work, Joseph et
al. [10] introduced ORE, which adapted the faster-RCNN
model with feature-space contrastive clustering, an RPN-
based unknown detector, and an Energy Based Unknown
Identifier (EBUI) for the OWOD objective. Yu et al. [31] at-
tempted to extend ORE by minimizing the overlapping dis-
tributions of the known and unknown classes in the embed-
dings feature-space by setting the number of feature clusters
to the number of classes, and showed reduced confusion
between known and unknown objects. Meanwhile, Wu et
al. [29] attempted to extend ORE by introducing a second,
localization-based objectness detection head (introduced by
Kim et al. [11]), and reported gains in unknown object re-
call, motivating objectness’s utility in OWOD.

Transformer-based methods have recently shown great
potential in the OWOD objective when Gupta et al. [8]
adapted the deformable DETR model for the open world
objective - and introduced OW-DETR. OW-DETR uses a
pseudo-labeling scheme to supervise unknown object detec-
tion, where unmatched object proposals with high backbone
activation are selected as unknown objects. Maaz et al. [19]
reported on the high class-agnostic object detection capabil-
ities of Multi-modal Vision Transformers (MViTs). They
proceeded to utilize MViTs in the supervision of ORE’s
unknown object detection and reported significant (∼ 4×)
gains in its performance. While Maaz et al.’s work focused
on class-agnostic object detection and did not introduce an
OWOD method, their work motivates the possible general-
ization potential of MViTs and transformer-based models.
Recent work in OWOD motivates the use of transformer-
based models [8] and the integration of objectness [29] for
robust OWOD performance. While previous methods at-
tempted to use objectness estimation [8, 29], none directly
integrated it into the class prediction itself. Unlike previous
works, we both introduce a novel method for probabilisti-
cally estimating objectness and directly integrate it into the
class prediction itself, improving unknown object detection.
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Class Agnostic Object Detection. Class agnostic object
detection (CA-OD) attempts to learn general objectness
features given a limited number of labeled object classes.
These general features are then used to detect previously
unseen object classes. CA-OD methods are expected to lo-
calize objects in a class-agnostic fashion. Current SOTA
objectness detection [11, 23] all address the same issue;
datasets are not densely labeled, and therefore one cannot
simply decide that a proposed detection is wrong if it does
not overlap with any ground truth label. Saito et al. [23]
addressed this issue by introducing a custom image aug-
mentation method, BackErase, which pastes annotated ob-
jects on an object-free background. Kim et al. [11] explored
the effect of different losses on learning open-world propos-
als and found that replacing classification with localization
losses, which do not penalize false positives, improves per-
formance. Unfortunately, the direct integration of CA-OD
methods has shown poor OWOD performance. For exam-
ple, the direct integration of Kim et al.’s [11] localization-
based objectness method into ORE, as presented by Wu et
al. [29], resulted in a 70% drop in unknown object recall.
Although indirectly, our work integrates insights from CA-
OD, e.g., the lack of penalization of false positives.

3. Background
Problem Formulation. Let us begin by introducing the
notations for standard object detection before extending
them to the open-world objective. During training, a
model f is trained on a dataset D = {I,Y}, which con-
tains K known object classes. The dataset contains N
images and corresponding labels, I = {I1, I2, . . . , IN}
and Y = {Y1,Y2, . . . ,YN}, respectively. Each label
Yi, i ∈ [1, 2, ..., N ] is composed of J annotated objects
Yi = {y1, ...yJ} ∈ Y , which is a set of object labels, each
of which is a vector containing bounding box coordinates
and object class label, i.e., yj = [lj , xj , yj , wj , hj ] where
lj ∈ {0, 1}K is a one-hot vector.

Let us now extend this formulation to the open-world ob-
jective. We follow the formulation introduced by Joseph et
al. [10]. Given a task/time t, there are Kt known
in-distribution classes, and an associated dataset Dt =
{It,Yt}, which contains N t images and corresponding la-
bels. Unlike before, the object class label is now a Kt + 1
- dimensional vector lj ∈ {0, 1}K

t+1, where the first ele-
ment is used to represent unknown objects. There may be
an unbounded number of unknown classes, but of these, U t

are classes of interest (unknown classes we would like de-
tect). The model then sends the discovered unknown object
objects to an oracle (e.g., a human annotator), which will
label the new objects of interest. These newly labeled ob-
jects are then used to produce Dt+1 (which only contains
instances of the U t newly introduced object classes). The
model is then updated, given only Dt+1, f t, and a limited

subset of Di, i ∈ {0, 1, . . . , t} to produce f t+1 that can de-
tect Kt+1 = Kt + U t object classes. This cycle may be
repeated as much as needed.

DETR for Open World Learning. DETR-type mod-
els [1, 35] have transformed the object detection field due
to their simplified design, which has less inductive bias.
These models utilize a transformer encoder-decoder to di-
rectly transform spatially-distributed features, encoded us-
ing some backbone network, into a set of Nquery object pre-
dictions (which can include background predictions). The
decoder utilizesNquery learned query vectors, each of which
queries the encoded image and outputs a corresponding
query embedding, q ∈ RD, i.e., Q = f tfeat(I) ∈ RNquery×D.
Each query embedding is then input into the bounding
box regression (f tbbox) and classification (f tcls) heads (see
Fig. 2, bottom). The classification head takes each query
embedding and predicts whether it belongs to one of the
known objects or background/unknown object. The exten-
sion of this formulation to open-world object detection is
non-trivial, as the model needs to further separate the back-
ground/unknown objects from each other, which is unsuper-
vised (the unknown objects are not labeled). To solve this,
OW-DETR [8] incorporated an attention-driven pseudo-
labeling scheme where the unmatched queries were scored
by the average backbone activation, and the top uk(=5) of
them were selected as unknown objects. These pseudo-
labels were used during training to supervise unknown ob-
ject detection, with the inference remaining unchanged.

4. Method

We propose PROB, which adapts the deformable DETR
(D-DETR) [35] model for the open world by incorporat-
ing our novel ‘probabilistic objectness’ head. In Sec. 4.1,
we describe how the objectness head is trained and used in
inference. In Sec. 4.2, we describe how the learned object-
ness is incorporated in incremental learning; namely, how
to learn about new classes in a new task without forgetting
old classes. Fig. 2 illustrates the proposed probabilistic ob-
jectness open-world object detection transformer, PROB.

4.1. Probabilistic Objectness

The standard D-DETR produces a set of Nquery query
embedding for every image, each of which is used by the
detection heads to produce the final predictions. The exten-
sion of D-DETR to the open world objective requires the
addition of another class label, “Unknown Object”. How-
ever, unlike the other objects, unknown objects are not la-
beled – and therefore, one cannot distinguish between them
and background predictions while training. Therefore, most
OWOD methods attempt to identify these unknown objects
and assign them pseudo-labels during training. Rather than
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Figure 2. Overview of the proposed PROB for open-world object detection. (top) Probabilistic objectness module. The probability
distribution parameters of all of the query embeddings, θ, are first estimated via the exponential moving average of the mean and covariance
estimators. The Mahalanobis distance is then calculated, and the sum of matched query embeddings (green dots in scatterplots and white
‘X’ on query embeddings) are penalized (Lo). This causes the query embeddings of objects to slowly migrate towards the mean, i.e.,
increased likelihood. (bottom) Overview of the entire method. The base architecture of PROB is the deformable DETR (D-DETR)
model. Query embeddings are produced by the D-DETR model and subsequently used by the classification, bounding box, and objectness
heads. The classification head is trained using a sigmoid focal loss (Lc), while the bounding box head is trained with L1 and gIoU losses
(Lb). For class prediction, the learned objectness probability multiplies the classification probabilities to produce the final class predictions.

directly attempting to identify unknown objects, we propose
to separate the object (o) and object class (l|o) predictions.
By separately learning about objectness, p(o|q) and object
class probability p(l|o, q), we no longer need to identify un-
known objects while training. The modified inference:

p(l|q) =
∑
i=1,0

p(l|o = i, q) · p(o = i|q)

= p(l|o = 1, q) · p(o = 1|q). (1)

As p(l|o = 0, q) = 0. The classification head, f tcls(q) can
now operate under the assumption that it already knows if a
query embedding represents an object or not, and it learns
to imitate p(l|o, q). Meanwhile, our objectness head (intro-
duced below) learns to estimate p(o|q). Our final class pre-
diction, in the notations of our modified D-DETR model:

p(l|q) = f tcls(q) · f tobj(q), (2)

Theoretically, given a query that represents only back-
ground, the objectness head should predict a very low prob-
ability of it being an object (i.e., f tobj(q) ≈ 0) and sup-
press the prediction of any objects. Conversely, if the query
contains an object, then the objectness prediction should be
high (i.e., f tobj(q) ≈ 1), and the task of classifying the query

into any of the known objects or an unknown object is left to
the classification head. Our challenge now becomes learn-
ing a good objectness model.

To build a robust objectness model, we turn to proba-
bilistic models. We parametrize the objectness probability
to be a multivariate Gaussian distribution in the query em-
bedding space, i.e., o|q ∼ N (µ,Σ). To predict objectness,
we simply calculate the objectness likelihood, or:

f tobj(q) = exp
(
− (q − µ)TΣ−1(q − µ)

)
(3)

= exp
(
− dM (q)2

)
, (4)

where dM denotes the Mahalanobis distance for the query
embeddings. This design choice is well motivated by the
current out-of-distribution (OOD) detection literature [13,
15, 26], where class-conditional Gaussian distributions are
used to model the feature distribution and detected outliers.
However, rather than using class-conditional Gaussian dis-
tributions to model the embedded feature space, we use a
class-agnostic Gaussian distribution – as we aim to learn
general object features that are shared across all classes.

Training is done in an alternating, two-step process -
where we (i) estimate the distribution parameters and (ii)
maximize the likelihood of matched embeddings (Fig. 2).
To estimate the query embedding distribution parameters,
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we estimate the batch- mean, µ ∈ RD, and covariance,
Σ ∈ RD×D of all the query embeddings Q using the em-
pirical mean and covariance estimators with exponential av-
eraging. On the other hand, to maximize the likelihood of
matched embeddings, we penalize the squared Mahalanobis
distance, dM (qi)

2, of matched query embeddings, i ∈ Z.
The objectness loss is, therefore, defined as:

Lo =
∑
i∈Z

dM (qi)
2. (5)

4.2. Objectness for Incremental Learning

In the OWOD objective, models are expected to incre-
mentally learn newly discovered objects without catastroph-
ically forgetting previously seen objects. To do so, OWOD
methods keep a small set of images, or exemplars, to miti-
gate catastrophic forgetting [8, 10, 29, 31, 34]. While previ-
ous methods randomly selected instances/object classes, we
believe that actively selecting instances based on their ob-
jectness score has the potential to further improve OWOD
performance. Note, this does not require any extra infor-
mation since we are only using existing labels, unlike in
classic active learning where a model queries an oracle for
additional labels. Specifically, we select instances that had
either low/high objectness as exemplars. Instances with low
objectness are expected to be relatively difficult instances,
as the model was unsure of whether they were an object,
and learning them is expected to improve the model per-
formance on newly introduced objects. This is in line with
current state-of-the-art active learning methods [28]. Mean-
while, instances with high objectness are expected to be
highly representative of that object class. The selection of
these instances is expected to impede catastrophic forget-
ting, as shown in the incremental learning field [3, 22, 33].
Specifically, after training on a particular dataset Dt, we
compute the objectness probability of every matched query
embedding. We then select the top/bottom 25 scoring ob-
jects per object class. In our experiments, to avoid having
an unfair advantage, if more images are selected than in pre-
vious works [8,10], we randomly sub-sample the exemplars
to match previous works.

5. Experiments & Results
We performed extensive experiments on all OWOD

benchmarks, comparing PROB to all reported OWOD
methods (Sec. 5.1). Extensive ablations show the impor-
tance of each one of PROB’s components while shedding
additional light on their function (Sec. 5.2). Finally, we test
our model’s incremental learning performance on the PAS-
CAL VOC 2007 benchmark compared to other OWOD and
incremental learning methods (Sec. 5.3).

Datasets. We evaluate PROB on the benchmarks intro-
duced by Joseph et al. [10] and Gupta et al. [8], which we

will reference as “superclass-mixed OWOD benchmark”
(M-OWODB) and “superclass-separated OWOD bench-
mark” (S-OWODB) respectively. Briefly, in M-OWODB,
images from MS-COCO [14], PASCAL VOC2007 [7], and
PASCAL VOC2012 are grouped into four sets of non-
overlapping Tasks; {T1, · · · , T4} s.t. classes in a task Tt
are not introduced until t is reached. In each task Tt, an ad-
ditional 20 classes are introduced - and in training for task
t, only these classes are labeled, while in the test set, all the
classes encountered in {Tλ : λ ≤ t} need to be detected.
For the construction of S-OWODB, only the MS-COCO
dataset was used and a clear separation of super-categories
(e.g., animals, vehicles) was performed. However, to keep
the superclass integrity, a varying number of classes is in-
troduced per increment. For more, please refer to Joseph et
al. [10] and Gupta et al. [8], respectively.

Evaluation Metrics. For known classes, mean average
precision (mAP) is used. To better understand the quality of
continual learning, mAP is partitioned into previously and
newly introduced object classes. As common in OWOD, we
use unknown object recall (U-recall), which is the ratio of
detected to total labeled unknown objects [8, 19, 29, 31, 34],
as mAP cannot be used (not all the unknown objects are
annotated). To study unknown object confusion, we report
Absolute Open-Set Error (A-OSE), the absolute number of
unknown objects classified as known, and Wilderness Im-
pact (WI). For additional details, see Gupta et al. [10].

Implementation Details. We use the deformable
DETR [35] model utilizing multi-scale features extracted
via a DINO-pretrained [2] Resnet-50 FPN backbone [8].
The deformable transformer then extracts Nquery = 100
and D = 256 dimensional query embeddings as discussed
above. The embedding probability distribution is estimated
by calculating the exponential moving average of the
mean and covariance of the query embeddings over the
mini-batches (with a batch size of 5), with a momentum of
0.1. Additional details are provided in the appendix.

5.1. Open World Object Detection Performance

PROB’s OWOD performance, compared with all other
reported OWOD methods on their respective benchmarks,
can be seen in Tab. 1. While all methods reported results
on M-OWODB, OWOD performance on the recently in-
troduced S-OWODB is only reported by OW-DETR. S-
OWODB is expected to be a more difficult benchmark
for unknown object detection, as there is complete super-
category separation across the Tasks (i.e., it is more diffi-
cult to generalize from animals to vehicles than from dogs
to cats). PROB shows substantial improvement in unknown
object recall (U-Recall), with additional improvements in
known object mAP compared to all other OWOD methods.
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Table 1. State-of-the-art comparison for OWOD on M-OWODB (top) and S-OWODB (bottom). The comparison is shown in terms
of unknown class recall (U-Recall) and known class mAP@0.5 (for previously, currently, and all known objects). For a fair comparison in
the OWOD setting, we compare with the recently introduced ORE [10] not employing EBUI (EBUI relies on a held-out set of unknown
images, violating the OWOD objective, as shown in [8, 34]). PROB outperforms all existing OWOD models across all tasks both in
terms of U-Recall and known mAP, indicating our models improved unknown and known detection capabilities. The smaller drops in
mAP between Previously known and Current known from the previous task exemplify that the exemplar selection improved our models’
incremental learning performance. Note that since all 80 classes are known in Task 4, U-Recall is not computed. Only ORE and OW-DETR
are compared in S-OWODB, as other methods have not reported results on this benchmark. See Sec. 5.1 for more details.

Task IDs (→) Task 1 Task 2 Task 3 Task 4

U-Recall mAP (↑) U-Recall mAP (↑) U-Recall mAP (↑) mAP (↑)

(↑) Current
known (↑) Previously

known
Current
known Both (↑) Previously

known
Current
known Both

Previously
known

Current
known Both

ORE* [10] 4.9 56.0 2.9 52.7 26.0 39.4 3.9 38.2 12.7 29.7 29.6 12.4 25.3
UC-OWOD [30] 2.4 50.7 3.4 33.1 30.5 31.8 8.7 28.8 16.3 24.6 25.6 15.9 23.2
OCPL [31] 8.26 56.6 7.65 50.6 27.5 39.1 11.9 38.7 14.7 30.7 30.7 14.4 26.7
2B-OCD [29] 12.1 56.4 9.4 51.6 25.3 38.5 11.6 37.2 13.2 29.2 30.0 13.3 25.8
OW-DETR [8] 7.5 59.2 6.2 53.6 33.5 42.9 5.7 38.3 15.8 30.8 31.4 17.1 27.8
Ours: PROB 19.4 59.5 17.4 55.7 32.2 44.0 19.6 43.0 22.2 36.0 35.7 18.9 31.5

ORE* [10] 1.5 61.4 3.9 56.5 26.1 40.6 3.6 38.7 23.7 33.7 33.6 26.3 31.8
OW-DETR [8] 5.7 71.5 6.2 62.8 27.5 43.8 6.9 45.2 24.9 38.5 38.2 28.1 33.1
Ours: PROB 17.6 73.4 22.3 66.3 36.0 50.4 24.8 47.8 30.4 42.0 42.6 31.7 39.9

Table 2. Impact of progressively integrating our contributions into the baseline. The comparison is shown in terms of known mean
average precision (mAP) and unknown recall (U-Recall) on M-OWODB. All models shown include a finetuning step to mitigate catas-
trophic forgetting. PROB-Obj is our model without objectness likelihood maximization. PROB-L2 is our model with an L2 loss instead
of Mahalanobis distance (same as Mahalanobis distance under the assumption of µ = 0,Σ = I). PROB-IL is our model without active
exemplar selection. For context, we also include the performance of deformable DETR and the upper bound as reported by Gupta et al. [8].
As all classes are known in Task 4, U-Recall is not computed. Additional ablations can be found in Tab. 5 of the appendix.

Task IDs (→) Task 1 Task 2 Task 3 Task 4

U-Recall mAP (↑) U-Recall mAP (↑) U-Recall mAP (↑) mAP (↑)

(↑) Current
known (↑) Previously

known
Current
known Both (↑) Previously

known
Current
known Both

Previously
known

Current
known Both

Upper Bound 31.6 62.5 40.5 55.8 38.1 46.9 42.6 42.4 29.3 33.9 35.6 23.1 32.5
D-DETR [35] - 60.3 - 54.5 34.4 44.7 - 40.0 17.7 33.3 32.5 20.0 29.4

PROB-Obj 21.1 39.3 18.9 41.0 23.5 32.3 22.2 34.7 16.3 28.6 29.2 13.4 25.2
PROB -L2 22.9 53.4 19.8 49.4 28.5 39.4 21.9 37.4 15.7 30.2 30.7 14.8 26.7
PROB-IL 19.4 59.5 15.9 54.7 32.2 43.5 18.4 42.6 20.7 35.3 34.7 17.4 30.4
Final: PROB 19.4 59.5 17.4 55.7 32.2 44.0 19.6 43.0 22.2 36.0 35.7 18.9 31.5

Unknown Object Detection. Across all four Tasks and
both benchmarks, PROB’s unknown object detection capa-
bility, quantified by U-Recall, is 2-3x of those reported in
previous state-of-the-art OWOD methods. This result ex-
emplifies the utility of the proposed probabilistic object-
ness formulation in the OWOD objective. Other OWOD
methods have attempted to integrate objectness, most no-
tably OW-DETR [8] with their class-agnostic classifica-
tion head, and 2B-OCD [29], with its localization-based
objectness head (which was first reported by Kim et al.).
As reported by Kim et al. [11], indeed, the utilization of
their localization-based objectness estimation improves un-
known object recall by ∼ 4-point improvement between
2B-OCD and OW-DETR. However, PROB outperformed
both methods in terms of U-Recall and known mAP across

all Tasks. This shows the relative robustness of our prob-
abilistic framework compared to other methods that incor-
porated objectness for improved unknown object detection
in the OWOD setting. When looking at Sup. Tab. 4,
it becomes evident that PROB not only detects more un-
knowns (higher U-Recall), but it also does so much more
accurately, as quantified by the reduction in A-OSE. For
example, PROB had an A-OSE of 5195, 6452, and 2641 to
OW-DETR’s 10240, 8441, 6803 for Tasks 1-3, respectively.

Known Object Detection and Incremental Learning.
PROB progressively outperforms all previous state-of-the-
art OWOD methods in terms of known object mAP. Com-
pared to OW-DETR, the method with the closest perfor-
mance to ours, PROB increased known object mAP by 0.3,
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Figure 3. Qualitative results on example images from MS-COCO test set. Detections of PROB (top row) and OW-DETR (bottom row)
are displayed, with Green - known and Blue - unknown object detections. Across all examples, PROB detected more unknown objects
than OW-DETR, for example, tennis racket in the right column and zebras in the left column. Interestingly, when OW-DETR does detect
unknown objects, the predictions have very low confidence, e.g., the surfing board in the center-left column.

1.1, 5.2, and 3.7 on M-OWODB Tasks 1-4 (Tab. 1, top), and
1.9, 6.6, 3.5, and 6.8 on S-OWODB Tasks 1-4 (Tab. 1, bot-
tom). The improvement in mAP, even in Task 1, suggests
that the learned objectness also improved OWOD known
object handling. The relatively smaller drops between ‘pre-
viously known’ and the previous task’s ‘both’ (e.g., on M-
OWODB, between Tasks 1-2 OW-DETR’s mAP dropped
5.6 while PROB dropped 3.8) further shows the effective-
ness of PROBs active exemplar selection.

Qualitative Results. Fig. 3 shows qualitative results
on example images from MS-COCO. The detections for
known (green) and unknown (blue) objects are shown for
PROB and OW-DETR. We observe that PROB has better
unknown object performance (e.g., zebras in the left image).
The unknown object predictions themselves are much more
confident (oven and surfing board in the two center images).
In Fig. 4, PROB detected the skateboard in Task 2 and sub-
sequently learned it in Task 3, while OW-DETR missed
both. PROB is also less prone to catastrophically forget-
ting an entire object class, as can be seen on the bottom of
Fig. 4, where OW-DETR catastrophically forgot ‘suitcase’
in between Task 2 and 3, while PROB did not. These results
exemplify that PROB has promising OWOD performance.

5.2. Ablation Study

Tab. 2 shows results from our ablation study. PROB -
Obj disables the objectness likelihood maximization step
during training, and now the objectness head only estimates
the embedding probability distribution. As can be seen in
Tab. 2, this had the effect of slightly increasing the unknown
recall but drastically reducing the known object mAP across

all Tasks. While counterintuitive, this sheds some light on
how our method actually functions. Without maximizing
the likelihood of the matched query embeddings, the ob-
jectness prediction becomes random. As it no longer sup-
presses background query embeddings, the model then pre-
dicts a lot of background patches as unknown objects and
objects – known and unknown – as background. As a result,
the known class mAP drops because some known object
predictions are suppressed by the random objectness pre-
diction. PROB - L2 replaces the Mahalanobis distance
with a standard L2 loss, which is the same as assuming
µ = 0,Σ = I . We found that using a L2 loss resulted in a
worse objectness predictor even when utilizing the same al-
ternating optimization. Interestingly, the unknown object
recall increased even when compared to PROB - Obj,
showing that the model localized object bounding boxes
better. As with PROB - Obj, the known class mAP drops
- however not as severely. This result exemplifies the im-
portance of the proposed probabilistic modeling approach.

PROB - IL disables the active exemplar selection, and
it shows the advantage of using the probabilistic objectness
for exemplar selection. Interestingly, it seems that the ac-
tive selection mostly benefits unknown object recall, with
less significant gains in both previously and currently in-
troduced objects for Tasks 2-4. For Task 1, both methods
are the same, as no exemplar replay is used. In Tab. 2,
we also included the reported performance of two D-DETR
models: a model trained on all classes (both known and un-
known) denoted as the “Upper Bound”, and a model trained
and evaluated only on the known classes. Comparing the
known object mAP of the oracle and D-DETR suggests that
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Figure 4. Qualitative examples of forgetting and improved
OWOD. Detections of PROB (left) and OW-DETR (right) are dis-
played, with Green - known and Blue - unknown object detections.
(top) PROB is able to detect the skateboard as unknown in T2, and
subsequently classify it in T3. (bottom) Example of OW-DETR
catastrophically forgetting a previously known object (suitcase).

learning about unknowns leads to improved known object
detection capabilities. This possibly explains why PROB
had a higher known mAP compared to OW-DETR in Task
1 on both benchmarks. Additional ablations can be found
in Sec. B.3 of the appendix.

5.3. Incremental Object Detection

As reported by Gupta et al. [8], the detection of un-
knowns does seem to improve the incremental learning
capabilities of object detection models. This, combined
with the introduced improved exemplar selection, results in
PROB performing favorably on the incremental object de-
tection (iOD) task. Tab. 3 shows a comparison of PROB
with existing methods on PASCAL VOC 2007, with evalu-
ations performed as reported in [8, 10]. In each evaluation,
the model is first trained on 10/15/19 object classes, and
then an additional 10/5/1 classes are incrementally intro-
duced. Our model had a final mAP of 66.5, 70.1, and 72.6
to OW-DETR’s 65.7, 69.4, and 70.2, respectively. Results
with class-breakdown are in Sup. Tab. 6 of the appendix.

Table 3. State-of-the-art comparison for incremental object de-
tection (iOD) on PASCAL VOC. The comparison is shown in
terms of new, old, and overall mAP. In each setting, the model is
first trained on 10, 15 or 19 classes, and then the additional 10, 5,
and 1 class(es) are introduced. PROB achieves favorable perfor-
mance in all three settings. See Sec. 5.3 for additional details.

10 + 10 setting old classes new classes final mAP

ILOD [24] 63.2 63.2 63.2
Faster ILOD [20] 69.8 54.5 62.1
ORE − EBUI [10] 60.4 68.8 64.5
OW-DETR [8] 63.5 67.9 65.7

Ours: PROB 66.0 67.2 66.5

15 + 5 setting old classes new classes final mAP

ILOD [24] 68.3 58.4 65.8
Faster ILOD [20] 71.6 56.9 67.9
ORE − EBUI [10] 71.8 58.7 68.5
OW-DETR [8] 72.2 59.8 69.4

Ours: PROB 73.2 60.8 70.1

19 + 1 setting old classes new classe final mAP

ILOD [24] 68.5 62.7 68.2
Faster ILOD [20] 68.9 61.1 68.5
ORE − EBUI [10] 69.4 60.1 68.8
OW-DETR [8] 70.2 62.0 70.2

Ours: PROB 73.9 48.5 72.6

6. Conclusions
The Open World Object Detection task is a complex and

multifaceted objective, integrating aspects of generalized
open-set object detection and incremental learning. For ro-
bust OWOD methods to function, understanding and detect-
ing the unknown is critical. We proposed a novel probabilis-
tic objectness-based approach to tackle the OWOD objec-
tive, which significantly improves this critical aspect of the
benchmark. The proposed PROB integrates the introduced
probabilistic objectness into the deformable DETR model,
adapting it to the open-world setting. Our ablations shed
light on the inner workings of our method while motivating
the use of each one of its components. Extensive experi-
ments show that PROB significantly outperforms all exist-
ing OWOD methods on all OWOD benchmarks. However,
much room for improvement remains, both in unknown ob-
ject detection and other aspects of the OWOD task. As
such, probabilistic models may have great potential for the
OWOD objective, creating powerful algorithms that can re-
liably operate in the open world.
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