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A. Detailed CIFAR Benchmark Results

Table S.1 and Table S.2 are detailed results of CIFAR-10
and CIFAR-100 benchmark experiments (detailed results
for Table 1 in the main text). For both tables, all the re-
sults except DICE + ReAct and LINe are taken from Sun et
al. [11]. We choose hyperparameters for DICE + ReAct as
sparsity p = 90 and ReAct threshold = 1.0, as in [10, 1 1].

B. LINe on Other Models

In this section, we show LINe also works well with other
models. In the main text, we show LINe with pre-trained
DenseNet [4] and ResNet-50 [2] on CIFAR and ImageNet
datasets, respectively. In this section, we show LINe can
be used for MobileNetV2 [9], which is pre-trained on the
ImageNet-1k dataset from PyTorch. Experiment settings
are the same in Section 4.2. We choose hyperparameters
for LINe as pruning percentile p,, = p, = 10 and clip-
ping threshold = 0.6. As shown in Table S.3, our method
implemented on MobileNetV?2 outperformed all the other
methods.

C. LINe with Other Shapley-value Approxima-
tion

We use the Taylor approximation in the main text to com-
pute the Shapley value. To see the difference of changing
approximation to compute the Shapley value, we use Int-
Grad approximation, which is also introduced in [5]. For
input ! € D, where 2! denotes the sample of class / from
dataset D, a contribution(i.e., Shapley value) of ¢-th neuron
a; in class [, sli is calculated as
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Contribution matrix Cj;,,; can be defined with contribution
calculated by Equation S.1. With this contribution matrix
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Cing, we can apply LINe. Table S.4 show the result of LINe
with Taylor and IntGrad approximation. The results of both
methods are the same. Calculated contributions from both
methods are different, but the order of rop-k neurons is still
the same. However, the precomputing time of IntGrad is
almost 11 times larger than the Taylor approximation, so it
is better to choose Taylor as an approximation method.

D. Additional Theoretical Analysis

The outstanding performance of LINe is grounded on
three different groups of papers in the related work section
(Sec 2.1-2.3). In Network Dissection [1] and HINT [12],
neurons in the deep layer (e.g., penultimate layer) repre-
sent a specific concept (e.g., window, mammal). Also, in
Khazar et al. [5], neurons with high Shapely values have
critical fragments of the encoded input information. We
draw an insight from the above studies that a group of neu-
rons in the penultimate layer with high Shapley values for
a specific class has essential concepts for classifying that
class. We call this group of neurons class-specific neurons.
Therefore, we can select important class-specific neurons
and mask less important neurons by ranking the contribu-
tion of neurons. The pruning parts in LINe (i.e., AP and
WP) improve the performance by masking less important
neurons which trigger noisy outputs. Since class-specific
neurons are activated only for essential concepts for each
class, OOD samples with different visual features (i.e., con-
cept) cannot activate most of the class-specific neurons.
This simple idea motivates AC by limiting the size of acti-
vation, which makes AC treat class-specific features equally
and improves OOD detection performance.



Table S.1. Comparison on CIFAR-10 benchmark. Table shows comparison with competitive post-hoc OOD detection methods on
CIFAR-10 benchmark. All values in this table are percentages. The average over six OOD test datasets is also reported.

OOD Datasets Average
Method SVHN Textures iSUN LSUN LSUN-Crop Places365
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

MSP [3] 47.24 93.48 64.15 88.15 42.31 94.52 42.10 94.51 33.57 95.54 63.02 88.57 48.73 92.46
ODIN [7] 25.29 94.57 57.50 82.38 3.98 98.90 3.09 99.02 4.70 98.86 52.85 88.55 24.57 93.71
Mahalanobis [0] 6.42 98.31 21.51 92.15 9.78 97.25 9.14 97.09 56.55 86.96 85.14 63.15 31.42 89.15
Energy [8] 40.61 93.99 56.12 86.43 10.07 98.07 9.28 98.12 3.81 99.15 39.40 91.64 26.55 94.57
ReAct [10] 41.64 93.87 43.58 92.47 12.72 97.72 11.46 97.87 5.96 98.84 43.31 91.03 26.45 94.67
DICE [11] 25.99 95.90 41.90 88.18 4.36 99.14 3.91 99.20 0.26 99.92 48.59 89.13 20.83 95.24
DICE + ReAct [11]  12.49 97.61 25.83 94.56 5.27 99.02 3.95 99.14 0.43 99.89 50.94 89.63 16.48 96.64
LINe (Ours) 11.38 97.75 23.44 95.12 4.90 99.01 4.19 99.09 0.61 99.83 43.78 91.12 14.72 96.99

Table S.2. Comparison on CIFAR-100 benchmark. Table shows comparison with competitive post-hoc OOD detection methods on
CIFAR-100 benchmark. All values in this table are percentages. The average over six OOD test datasets is also reported.

OOD Datasets Average
Method SVHN Textures iSUN LSUN LSUN-Crop Places365
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95S AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

MSP [3] 81.70 75.40 84.79 71.48 85.99 70.17 85.24 69.18 60.49 85.60 82.55 74.31 80.13 74.36
ODIN [7] 41.35 92.65 82.34 71.48 67.05 83.84 65.22 84.22 10.54 97.93 82.32 76.84 58.14 84.49
Mahalanobis [6] 22.44 95.67 62.39 79.39 31.38 93.21 23.07 94.20 68.90 86.30 92.66 61.39 55.37 82.73
Energy [8] 87.46 81.85 84.15 71.03 74.54 78.95 70.65 80.14 14.72 97.43 79.20 77.72 68.45 81.19
ReAct [10] 83.81 81.41 77.78 78.95 65.27 86.55 60.08 87.88 25.55 94.92 82.65 74.04 62.27 84.47
DICE[!1] 54.65 88.84 65.04 76.42 48.72 90.08 49.40 91.04 0.93 99.74 79.58 77.26 49.72 87.23
DICE + ReAct[11] 55.52 88.02 41.54 86.26 44.32 91.44 54.44 89.84 7.56 98.61 94.05 56.26 49.57 85.07
LINe (Ours) 31.10 91.90 39.29 87.84 24.07 94.85 25.32 94.63 5.72 98.87 88.50 63.93 35.67 88.67

Table S.3. LINe with MobileNetV2 on ImageNet benchmark. Results compared with competitive post-hoc OOD detection methods on
ImageNet benchmark are reported. All values in this table are percentages and averaged over four OOD test datasets. | indicates smaller
value means higher performance and 1 indicates vice versa.

OOD Datasets

Method iNaturalist SUN Places Textures Average
FPR95| AUROC?T FPR95| AUROC{T FPR95] AUROCT FPR95| AUROCYT FPR95] AUROC 1

MSP [3] 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN [7] 55.39 87.62 54.07 85.88 57.36 84.71 49.96 85.03 54.20 85.81
Mabhalanobis [6] 62.11 81.00 47.82 86.33 52.09 83.63 92.38 33.06 63.60 71.01
Energy score [8] 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91
ReAct [10] 42.40 91.53 47.69 88.16 51.56 86.64 38.42 91.53 45.02 89.47
DICE [11] 43.09 90.83 38.69 90.46 53.11 85.81 32.80 91.30 41.92 89.60
DICE + ReAct [1 1] 32.30 93.57 31.22 92.86 46.78 88.02 16.28 96.25 31.64 92.68
LINe (Ours) 24.95 95.53 33.19 92.94 47.95 88.98 12.30 97.05 29.60 93.62

Table S.4. Comparison on different approximation methods. Results with different Shapley value approximation are reported on
CIFAR-10, CIFAR-100, ImageNet benchmarks. All values in this table are percentages and averaged. | indicates smaller value means
better performance and 7 indicates vice versa.

Method CIFAR-10 CIFAR-100 ImageNet
FPR9S | AUROCT?T | FPR95| AUROCT | FPR9S | AUROC t

Taylor 14.71 96.99 35.67 88.67 20.70 95.03
IntGrad 14.71 96.99 35.67 88.67 20.70 95.03
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