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1. Result Videos

Videos are available in the supplementary mate-
rial and our website: https://vision-robotics-
bridge.github.io.

2. Affordance Model Setup

Data Extraction: Our training setup involves learn-
ing from EpicKitchens-100 Videos [1]. This dataset con-
tains many hours of videos of humans performing different
kitchen tasks. We use each sub-action video (such as ‘open
door’ or ‘put cup on table’) as training sequences. Con-
sider a video (V ) consisting of T frames, V = {I1, ..., IT }.
Using 100 DOH annotations [12] (available alongside the
dataset), we find all of the hand-object contact points and
frames for each hand in the video. As mentioned in Section
3, let model output fhand(It) = {hlt, hrt , olt, ort}, where ol,
or are the contact variables and hl, hr are the hand bound-
ing boxes. We find the first contact timestep and select the
active hand (left or right) as the hand side to consider for
the whole trajectory. This is found by first binning ot and
looking for all types that have contact with ‘Portable’ or
‘Fixed’ objects. These are assigned 1, while all others are
assigned 0. We smooth the set of contact variables using a
Savitzky–Golay filter [11] using a threshold of 0.75 (with
window size 7). This should eliminate any spurious de-
tections. We use the skin segmentation approach from [7],
to find the contact points, {ci}N , at the contact timestep
around the active hand. We then fit a GMM with k = 5 to
the set of contact points to determine µ1, ..., µ5. We found
that learning without a covariance, Σ, was more stable thus
we only aim to learn the µ1. The input image becomes the
first image before the contact where the hand is not visible.
If the contact points or trajectory are not in the frame of this
initial image (if the camera has moved), we then discard
the trajectory. We use crops of size 150x150 (full image
size is 456 x 256), which improves robustness at test time.
We train on around 54K image-trajectory-contact point tu-

⋆equal contribution

ples. We include visualizations of the affordance model out-
puts on our website: https://vision-robotics-
bridge.github.io/.
Architecture:

We use the ResNet18 encoder from [10] as gϕ, as our vi-
sual backbone. Our model has two heads, a trajectory head
and a contact point head. We use the spatial features from
the ResNet18 encoder (before the average pooling layer) as
an input to three deconvolutional layers and two convolu-
tional blocks with kernel sizes of 2 and 3 respectively, and
channels: [256, 128, 64, 10, 5]. We use a spatial softmax to
obtain m̂uk for where k = 1, ..., 5. Our trajectory network
is a transformer encoder with 6 self-attention layers with 8
heads each, and uses the output of the ResNet18 encoder
(flattened), which has dimension 512. The output of the
transformer encoder is used to predict a trajectory of length
5, using an MLP with two layers with hidden size 192.
Training: We train our model for 500 Epochs, using
a learning rate of 0.0001 with cosine scheduling, and the
ADAM [5] optimizer. We train on 4 GPUs (2080Ti) for
about 18 hours.

3. Robotics Setup

Hardware setup: For all the tasks we assume the follow-
ing structure for robot control for each trajectory. We first
sample a rotation configuration for the gripper. The arm
then moves to the contact point c, closes its gripper, and
moves to the points in the post-contact trajectory τ . For the
initial rotation of the Franka, joints 5 and 6 can take values
in [0, 30, 45] degrees, while joint4 is fixed to be 0 degrees.
For the Hello-Robot, the roll of the end-effector is varied
in the range of [0, 45, 90] degrees. Once the orientation
is chosen for the trajectory, we perform 3DOF end-effector
control to move between points. Given two points a and
b, we generate a sequence of waypoints between them to be
reached using impedance control for the Franka. The Hello-
Robot is axis aligned and has a telescoping arm, thus we did
not need to build our own controller. We do not constrain
the orientation to be exactly the same as what was selected
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in the beginning of the trajectory, since this might make
reaching some points infeasible. For all tasks and methods
we evaluate success rate by manual inspection of proximity
to the goal image after robot execution (for imitation learn-
ing, goal reaching and affordance as an action space), and
evaluate coincidental success for exploration using manual
inspection of whether the objects noticeably move over the
course of the robot’s execution trajectory. We provide larger
versions of the result plots of successes presented in the
main paper in Figures 2 and 3.
Affordance Model to Robot Actions Reusing terminology
from Section 3, the affordance model output is fθ(It) =

p̂c, τ̂ , where p̂c =
∑K

k=0 αkN (µ̂k, Σ̂k), and τ̂ = {wi}M .
We can convert this into a 3D set of waypoints using a hand-
eye calibrated camera, and obtain a 3D grasp point from p̂c,
and a set of 3D waypoints from τ̂ .
Imitation from Offline Data Collection - We use our af-
fordance model to collect data for different tasks, and then
evaluate whether this data can be used to reach goal images
using k-NN and Behavior cloning. As mentioned in Sec
3.3.1, given an image It, the affordance model produces
(c, τ) = fθ(I). In addition to storing It, c and τ , we also
store the sequence of image observations (queried at a fixed
frequency) seen by the robot when executing this trajectory
O1:k, where k is the total number of images in the trajec-
tory. k varies across different trajectories (since it depends
on c and τ ). These intermediate images Oi enable us to de-
termine how close a trajectory is to the given goal image.
For each trajectory, the distance to goal image Ig is given
by mini ||ψ(Ig) − ψ(Oi)||22, where ψ is the R3M embed-
ding space. We then use this distance to produce a set of
K trajectories with smallest distances to the goal Ig . For
k-NN, we simply run (c, τ) from each of these filtered tra-
jectories. For Behavior cloning, we first train a policy that
predicts (c, τ) given image I using this set of trajectories,
and then run the policy π on the robot. We summarize this
is Algorithm 1. We fix the number of top trajectories K to
be 10 for k-NN and 20 for behavior cloning. The number
of trajectories for initial data collection used for each task
is listed in 2. For k-NN, the success is averaged across all
K runs on the robot. For behavior-cloning, we parameterize
the policy π using a CVAE, where the image is the context,
the encoder and decoder are 2 layer MLPs with 64 hidden
units and the latent dimension is 4. During inference, we
sample from the CVAE given the current image as context,
and report success averaged across 10 runs. The quality of
data collected by the robot using VRB which is used for im-
itation can be in seen in the videos on our website: https:
//vision-robotics-bridge.github.io/.

Although many of our household object categories might
be present in the videos of Epic-Kitchens [1], specific in-
stances of objects do not appear in training, thus every ob-
ject our approach is evaluated on is new. To test generaliza-

Object VRB Hotspots

VR Controller 0.27 0.13
Chain 0.33 0.20
Hat 0.07 0.20
Tape 0.13 0.00
Cube 0.00 0.00

Sanitizer 0.27 0.20
Stapler 0.53 0.20
Shoe 0.33 0.13

Mouse 0.27 0.00
Hair-Clip 0.47 0.20

Table 1. VRB for grasping held-out “rare” objects

Algorithm 1 Imitation from Offline Data Collection

Require: Dataset of trajectories {(It, O1:k, c, τ )}
Require: Number of top trajectories K
Require: Goal Image Ig
Require: R3M embedding space ψ

1: For each trajectory T , compute
dT = mini ||ψ(Ig)− ψ(Oi)||22

2: Rank trajectories in ascending order of dT . Create set
K = {(c, τ)} of the top K ranked trajectories.

3: if k-NN then
4: Execute K on the robot.
5: else
6: Assert behavior cloning
7: Train a policy π(c, τ |I) using K.
8: Execute c, τ ∼ π(.|I) on the robot.
9: end if

Cabinet Knife Veg Shelf Pot Door Lid Drawer
N0 150 100 50 50 50 50 30 40
Ns 50 50 30 30 30 50 30 40

Table 2. Number of trajectories collected for various tasks, for Ini-
tial Data Collection (N0) and for each subsequent fitting iteration
for either goal reaching or exploration (Ns)

tion to “rare” (held-out) objects and evaluate the grasping
success using VRB’s affordances, see Table 1. VRB consis-
tently outperforms our most competitive baseline, Hotspots
[9].
Exploration & Goal Reaching: We apply our affordance
model in the paradigms of exploration as well as goal reach-
ing, where the robot uses the collected data to improve
its behavior. As described in Section 3.3, we use a en-
vironment change visual model to obtain intrinsic reward
for exploration, while for goal-reaching we use distance
to the goal in a feature space like the R3M embedding
space. For exploration, we want to maximize the change
between the first and last images of the trajectory, since
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(a) VRB - Cabinet (b) HAP - Cabinet (c) VRB - Veggies (d) HAP - Veggies

Figure 1. Visualization for Affordance as an Action Space for VRB and HAP [3], on the Cabinet and Veggies Tasks

Algorithm 2 Exploration / Goal Reaching

Require: Number of iterations J
Require: Number of top trajectories K
Require: Number of initial trajectories N0,

and for subsequent fitting iterations Ns

Require: Affordance model fθ
Require: Tradeoff probability p
Require: Visual change model Φ (only for exploration)
Require: R3M embedding ψ (only for goal reaching)
Require: Goal Image Ig (only for goal reaching)

1: initialize: World model M, Replay buffer D,
2: Execute (c, τ) = fθ(I) on the robot forN0 iterations to

collect initial dataset D = {(I , O1:k, c, τ )}
3: for iteration 1:J do
4: For each trajectory T0:k, compute
5: if exploring then
6: compute ECT = ||ϕ(O1)− ϕ(Ok)||2
7: Rank trajectories in descending order of ECT
8: else
9: Assert goal reaching

10: compute dT = mini ||ψ(Ig)− ψ(Oi)||2
11: Rank trajectories in ascending order of dT
12: end if
13: Create set K = {(c, τ)} of top K ranked trajectories.
14: Compute ĉ, τ̂ = mean(K)
15: For Ns iterations, set (c, τ) = fθ(I) with probability

p, otherwise set (c, τ) = (ĉ, τ̂).
16: Execute (c, τ) on the robot and append data to D
17: end for

greater perturbation of objects can lead to the discovery
of useful manipulation skills. For goal-reaching, we min-
imize the distance between the trajectory and the goal im-
age, since this achieves the desired object state. In each
case (exploration and goal-reaching), we rank the trajecto-
ries in the dataset using the appropriate metric, and then fit
(ĉ, τ̂) to the {(c, τ)} values of the top ranked trajectories.
For subsequent data collection iterations, we use the affor-

Algorithm 3 Affordance as Action Space

Require: Affordance Model fθ
Require: Number of initial queries q
Require: Number of clusters for c, Nc and for τ , Nτ

Require: Goal Image Ig
Require: RL algorithm with discrete action-space RLA
Require: R3M embedding space ψ

1: Query fθ on the image of the scene q times
to obtain a dataset {(c, τ}

2: Fit a GMM Gc with Nc centers to {c}, and
a GMM Gτ and Nτ centers to {τ}

3: Create mapping M from A = [1..Nc*Nτ ] to values in
the cross-product space of the centers of Gc and Gτ

4: Initialize Dataset D = {}, andRLAwith discrete action
space A and random policy π.

5: Run Sampling and Training asynchronously
6: while Sampling do
7: Run π on the image to get ad.
8: (c, τ) = M(ad), execute on the robot and collect

initial and final images I0 and IT
9: Compute reward r = ||ψ(IT )− ψ(Ig)||2.

10: Store (ψ(I0), ad, ψ(IT ), r) in D
11: end while
12: while Training do
13: Sample data ∼ D, pass to RLA for

training and updating π.
14: end while

dance model fθ with some probability p, but otherwise use
(ĉ, τ̂) for execution on the robot. The newly collected data
is then aggregated with the dataset, and the entire process
repeated. We present this procedure in Algorithm 2. The
number of initial trajectories N0 and trajectories for subse-
quent iterations Ns for different tasks are listed in 2. For
all experiments, we set p = 0.35, K = 10, J = 2. We include
videos on our website (https://vision-robotics-
bridge.github.io/) which show that as our system
sees more data, its performance improves for both explo-
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ration and goal-reaching.
Intrinsic Reward Model We train a visual model which

given a pair of images (Ii, Ij), produces a binary image that
captures how objects move, and is not affected by changes
in the robot arm or body position. Specifically, this model
comprises the following -

ϕ(Ii, Ij) = g(||m(Ii)−m(Ij)||2,
||Ψ(m(Ii))−Ψ(m(Ij))||2)

(1)

Here m is a masking network which removes the robot
from the image. We train this using around 100-200 hand-
annotations of the robot in various scenes, and use this data
to finetune a pretrained segmentation model Ψ [4]. We eval-
uate the l2-losses above only on non-masked pixels. Fur-
ther, we also take into account distance in the feature space
of the segmentation model to reduce sensitivity to spurious
visual artifacts. The function g applies heurestics including
gaussian blurring to reduce effects of shadows, and a thresh-
old for the change at each pixel, to limit false positives.
Affordance as an Action Space: For this learning setup,
we parameterize the action space for the robot with the out-
put distribution of our affordance model. We first query the
model a large number of times, and then fit Gaussian Mix-
ture Models (GMMs) separately to the c and τ predictions,
with Nc and Nτ centers respectively. We then define a dis-
crete action space of dimension Nc*Nτ , where each action
maps to a value in the cross-product space of the centers
of the two GMMs. We can now use discrete action-space
RL algorithms. We asynchronously sample from the dis-
crete action-space policy, and train it using the RL algo-
rithm. This procedure is described in Algorithm 3. We note
that it is important to reset the environment so that images
the policy sees are close to the initial image for which the
action space was defined. Across experiments we set Nc

= Nτ = 4, q = 2000. For the RL algorithm RLA we use
the Deep Q-Network (DQN) [8] implementation from the
d3rlpy [13] library. We include a visualization of the action
space by plotting the (c, τ ) values in the cross-product space
of the centers of the two GMMs, for VRB and HAP [3] in
Figure 1. We see that for VRB a larger number of the dis-
cretized actions are likely to interact with the objects.

4. Baselines and Ablations
Baselines The baselines we compare to include the ap-
proaches from from Liu et al. [7] (HOI), Goyal et al. [3]
(HAP) and Natarajan et al., (Hotspots) [9]. In each of these
baselines, we used the provided pretrained model. Spec-
ficially, for Hotspots [9], we employ the model trained on
EpicKitchens [1], as this is what our approach is also trained
on. Similarly, for HAP [3] we use the trained model on
EpicKitchens also. HOI predicts both a contact point and
trajectory, which we execute at test time. The other two

approaches predict likely contact regions, from which we
sample, as well as a random post contact trajectory.

Visual Representation Analysis (Finetuning): For the
visual representation finetuning experiments we performed
in Section 4.5, we use the Imitation Learning Evaluation
Framework from R3M [10], which aims to evaluate the ef-
fectiveness of frozen visual representations for performing
behavior cloning for robotic control tasks. Following their
procedure, we evaluate on three simulated tasks from the
Franka Kitchen environment: (1) microwave, (2) slide-door,
and (3) door-open. We train the policy using left camera
images from their publicly available demonstration dataset,
which is collected by an expert state-based reinforcement
learning agent and then rendered as image observations.

For behavior cloning with the R3M encoder, we freeze
the pretrained R3M encoder (which uses a ResNet50 base
architecture) and finetune a policy on top of it. For behav-
ior cloning with the VRB encoder, we instead use an R3M
model which was finetuned for 400 steps with affordance
model training as in Section 3.2. Note that this finetun-
ing was performed separately from behavior cloning, and
during policy learning our representations are also frozen
before being used as input for the downstream policy. For
both R3M and VRB, we concatenate the visual embedding
and proprioceptive data for input to the downstream policy,
and then use a BatchNorm layer followed by a 2-layer MLP
to output an action. The downstream policy is trained with a
learning rate of 0.001 and a batch size of 32 for 2000 steps.

Visual Representation Analysis (Feature space dis-
tance): For the feature space distance experiments, we
compare an R3M model with a VRB model. Both use a
ResNet50 base architecture, and the VRB model is obtained
by finetuning an R3M model for 100 steps using affordance
model training as in Section 3.2. The distances in Figure
8 are computed as the (squared) L2 distances between the
features produced by each model for the goal image and
current image.

5. Simulation

We also provide a simulation environment benchmark
to test our affordances. This is modeled after the Franka-
Kitchen environment from the D4RL [2]. In this bench-
mark, the robot observes images and predicts 3D positions
to manipulate, in the exact same way as we deploy the robot
in the real world. An image of this environment can be
seen in Figure 4. There are three different tasks: turning
the light on, opening the microwave and lifting the kettle.
These are standard tasks in the D4RL benchmark [2]. We
run Paradigm 1 (offline data collection) and provide the suc-
cess rates for VRB and baselines in Table 3. We can see that
VRB significantly outperforms the baselines.
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Figure 2. Goal-conditioned Learning: Success rate for reaching goal configuration for six different tasks. Sampling via VRB leads to
faster learning and better final performance.
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Figure 3. Exploration and Action Space Parameterization: Coincidental success (stumbling onto goal configurations) increases multiple
folds with VRB in comparison to random exploration or the exploration based on HAP [3] in a-d. In e-f, we see the success numbers of
using DQN with the discretized action space, for reaching a specified goal image.

6. Codebases

We use the following codebases:

https : / / github . com / epic - kitchens /
epic - kitchens - 100 - hand - object - bboxes
for extracting detections from 100 DOH [12] for EpicK-
itchens [1].

https://github.com/epic-kitchens/epic-kitchens-100-hand-object-bboxes
https://github.com/epic-kitchens/epic-kitchens-100-hand-object-bboxes


Figure 4. Simulation Environment from [2]

Method Light Microwave Kettle

Random 0.20 0.15 0.20
HAP 0.30 0.20 0.45
HOI 0.60 0.45 0.40

Hotspots 0.35 0.35 0.25

VRB 0.75 0.60 0.55

Table 3. VRB on simulation benchmarks.

https : / / github . com / stevenlsw / hoi -
forecast for Skin segmentation code and HOI base-
line [7].

https://github.com/uiuc- robovision/
hands-as-probes for HAP baseline [3].

https : / / github . com / Tushar - N /
interaction-hotspots for Hotspots baseline [9].

https://github.com/facebookresearch/
r3m for R3M visual features [10].

https://github.com/wkentaro/labelme
for getting masks for robot and https://pytorch.
org/tutorials/intermediate/torchvision_
tutorial.html for a Mask-RCNN [4] implementation.

https://github.com/takuseno/d3rlpy [13]
for DQN [8] implementation.

https://github.com/facebookresearch/
fairo/tree/main/polymetis [6] as the base for the
controller for the Franka Arm.
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