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In this supplementary material, we describe more de-
tails of our method, including model architecture in Sec. A,
dataset preparation in Sec. B, and implementation details
in Sec. C. Besides, we also conduct more experiments in
Sec. D. More qualitative results can be found in our supple-
mentary video, and the source code will be released upon
the acceptance of this paper.

A. Model Architecture

We first explain the details of the model architecture.
Specifically, we adopt the multi-resolution voxel-hashing
encoder by Müller et al. [14] as the coordinate-based en-
coder, and build the template NeRF and the editing field
in a decoupled manner. The voxel-hashing encoder is con-
structed with 16 levels with 2-dimensional features for each
level. For the template NeRF, we use the voxel-hashing en-
coder to encode the queries’ coordinates and use spherical
harmonics with 4 degrees to encode the ray direction. The
density and color heads for model output consist of 1 hid-
den layer with 128 hidden size and 2 hidden layers with
64 hidden size, respectively. As introduced in Sec. 3.1,
the editing field consists of a geometric modification field
F∆G and a texture modification field F∆T . The geomet-
ric modification field F∆G and the corresponding forward
modification field F ′

∆G are both constructed with an MLP
of 1 hidden layer and 128 hidden size with the ReLU ac-
tivation, and we adopt the positional encoding [13] (with 4
frequencies) to all input query points. The texture modifica-
tion field F∆T is constructed with a voxel-hashing encoder
(same size as the template NeRF), followed by an MLP of
1 hidden layer and 128 hidden size with ReLU activation.
During the dual volume rendering stage, we follow Milden-
hall et al. [13] by using 64 coarse samples and 128 fine sam-
ples for each ray, and render the deformed template image
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Figure A. We show examples of hybrid object editing by combin-
ing geometric and texture editing.

Îo and color modification image Îm with the same density
values. Then, as explained in Sec. 3.3, we use a color com-
positing layer to obtain the edited view Î by blending Îm
into Îo, where the color compositing layer is constructed us-
ing a compact UNet-like structure (with 2-layer encoder (3
→ 16 → 32) and a symmetrical decoder, all layers comprise
3×3 convolutions). Besides, we can integrate temporal at-
tribute [17, 18] (from 0 to 1) to the input of F∆G (with the
positional encoding of 4 frequencies), and train the geomet-
ric editing on the edited transitions with temporal attributes
as conditions, e.g., the dynamic motion effect shown in the
supplementary video.

B. Dataset Preparation
We evaluate SINE on both real-world/synthetic and ob-

ject/scene datasets. Specifically, for the real-world car
datasets [19], each sequence contains 72 images with a car
rotating on the turntable. We use Colmap [20] to recover
camera poses w.r.t the cars’ centers for all the images. For
the data of Photoshape [16], EditNeRF [10] does not pro-
vide edited GT images, so we regenerate all testing cases
using Blender, which is more challenging than the origi-
nal ones (e.g., we stretch the whole chair or enlarge holes,
while EditNeRF [10] only fills a tiny hole or removes legs).
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For the data Blenderswap [11], we render the scenes with
Blender’s Cycle engine with realistic environment HDR
maps. For users’ 2D image editing, we use Adobe After Ef-
fect / Photoshop to deform images (geometric editing) and
paint patterns (texture editing), and use EditGAN [9] and
Text2LIVE [1] to edit images with semantic strokes or text-
prompts. For users’ target images (e.g., cars and chairs)
from the Internet, we remove their backgrounds using re-
move.bg [4] before conducting texture editing.

C. Implementation Details
Training details. As introduced in the main paper, our
method performs semantic-driven editing upon the given
NeRF model. Specifically, for each object or scene, we
first train a generic template NeRF model. Then, we learn
geometric editing and texture editing with editing from a
single perspective. For geometric editing, since the geo-
metric changes are sometimes combined with minor color
changes, we also fine-tune the color modification field with
a photometric loss (see the first term in Eq. (3)). For tex-
ture editing, the texture transferring loss (Eq.(6))is defined
on a complete image, which is not compatible with NeRF’s
sparse ray supervision. Therefore, we adopt the deferred
back-propagation technique from Zhang et al. [24] for tex-
ture editing. Practically, we first render the full-sized Îo
and Îm and forward the color compositing layer, and then
compute the losses to cache the complete image gradient
w.r.t the Îm and the color compositing layer, and re-render
the Î and back-propagate the gradients to the F∆T and the
color compositing layer in a patch-wise manner. To make
a smooth convergence, we take the coarse-to-fine regular-
ization [17] on the color modification field by progressively
increasing the frequency band of the input features during
the training process. Furthermore, we randomly perturb the
pose to augment the data distribution and avoid the overfit-
ting of the texture editing. The whole training process of the
template NeRF and our editing field takes about 12 hours on
a single Nvidia RTX 3090 graphics card.
Preparation of proxy mesh in geometric editing. As in-
troduced in Sec. 3.2, we use a proxy mesh to represent
NeRF’s geometry during geometric editing. In practice, we
directly obtain the proxy mesh using off-the-shelf tools (i.e.,
implicit surface reconstruction method NeuS [23]). Since
we optimize DIF [3] latent code ẑ and deform the proxy
mesh M̂ during the editing, the initial proxy mesh should be
binding to a latent code beforehand. Therefore, we obtain
the initial latent code ẑ to the corresponding initial proxy
mesh M̂σ in an auto-decoding manner [3, 15] before train-
ing.
Cycle loss in geometric editing. During the training of
geometric editing, we additionally train a forward modifica-
tion field F ′

∆G to map the template proxy mesh to the edited
space. The forward modification field F ′

∆G and the implicit

geometric modification field F∆G are both supervised with
a cycle loss [8, 12], which is defined as:

Lcycle =
1

M

M∑
i=1

||F∆G(F
′
∆G(pi))− pi||+

||F ′
∆G(F∆G(pi))− pi||,

(1)

where {pi|i = 1, ...,M} is the uniform point samples in
3D space, and we set M = 1000 in our experiment.
Feature-cluster-based semantic masking. As introduced
in Sec. 3.4, we train a 3D feature field with DINO-ViT’s
feature maps, and generate feature clusters from the user-
painted regions, which will be used to compute semantic
masks to distinguish foreground editing areas and back-
ground areas. Specifically, we first render the feature map
under the specific editing view, and sample 1000 feature
points on the user’s painted region (which is directly ac-
cessible from the editing tools). Then, we use K-Means to
generate K = 15 clusters from the sampled feature points.
During the training stage, we first render the current training
view’s feature map, and compute the L2-normalized pixel-
wise feature distance (from 0 to 1) to the nearest clusters.
The pixels with distances smaller than 0.5 would be marked
as foreground objects, and the others would be marked as
background. These computed editing masks would be used
to regularize both geometric and texture editing (see Eq. (7))
to maintain the irrelevant content unchanged.
User study. The questionnaire contains 17 cases, 8 for
target-image-based editing (e.g., Fig. 7 (a)) and 9 for text-
prompts editing (e.g., Fig. 7 (b)). We show the participants a
source image, a target image/text prompts, as well as the re-
sults produced by different methods. Participants are asked
to select one result that best matches the style of the target
image or the text meaning.

D. More Experiments
Hybrid editing with geometric and texture changes. We
can combine geometric and texture editing on the same
object by optimizing geometric-related losses and texture-
transferring losses in turns. As shown in Fig. A, we can edit
objects’ geometries while transferring textures with users’
target images, e.g., the plush toy raises its hands and is
painted in new textures from a yellow bear, and the airplane
extends its wings and is painted golden. Please refer to our
supplementary video for a vivid animation of these effects.
3D editing field vs. template NeRF fine-tuning. In this
experiment, we compare our 3D editing field with the naı̈ve
fine-tuning template NeRF (which is adopted by CLIP-
NeRF [22] and DFF [7]). Editing NeRF with only a sin-
gle image is fairly ambiguous without external supervision
(e.g., semantic hints). For a fair comparison, we provide ex-
ternal supervision for the baseline method (vanilla NeRF).
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Figure B. We compare our editing field with directly fine-tuning template NeRF.
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Figure C. We show the quantitative comparison between our method and EG3D [2] on the synthetic cars [11], where the metrics of PSNR↑
/ SSIM↑ / LPIPS↓ are annotated above.

Specifically, for texture editing, we enable NeRF’s related
network layers to be optimized and use the same texture
editing losses. Directly fine-tuning NeRF’s color layers can
change the objects’ texture to some extent but cannot reach
the same quality as our full model (e.g., uncovered cookie
tires and snowy flowers in Fig. B (b)). For geometry edit-
ing, we fine-tune vanilla NeRF with Lgt and Lreg since it is
not trivial to apply SDF-based shape priors to vanilla NeRF.
As demonstrated in Fig. B (a), naı̈vely fine-tuning NeRF on
geometric editing would lead to the overfitting to a single
view, and the multi-view consistency is no longer ensured
(e.g., broken wings and green floaters in Fig. B (a)).

Quantitative comparison with EG3D on synthetic cars.
We conduct quantitative comparisons with the SOTA 3D-
aware GAN method EG3D [2] on the synthetic car dataset.
To obtain the ground-truth images of the edited results, we
use Blender to render the training and testing views, and
modify the cars’ geometry within the software. As shown
in Fig C, our method achieves better rendering quality than
EG3D on both visual quality and all the metrics (PSNR,
SSIM, and LPIPS). For example, we can preserve the spec-
ular effect even after the editing (e.g., the specular area fac-
ing the light source and the reflection on the windshield),
while EG3D struggles to produce photo-realistic results due

to the limitation of its learned 3D latent representation.
Comparison with 2D GANs. We compare our method
against the SOTA 2D semantic editing method EditGAN [9]
on the real-world car dataset [19]. To make a fair compar-
ison, we train our NeRF’s backbone and EditGAN’s style
codes on all the multi-view images (i.e., each style code
corresponds to one view). Then, we perform semantic 2D
editing on one single view using EditGAN. For our method,
we use the edited view to train our editing field. And for Ed-
itGAN, we save the intermediate editing vector and add the
editing vector to all the style codes, which yields multi-view
edited images. As demonstrated in Fig D, since EditGAN
is agnostic to the 3D geometry, its results suffer from the
inconsistent issue between different views, e.g., poor inver-
sion results for the head and tail of the car, and the semantic
editing result cannot be precisely applied to all views. In
contrast, our methods can synthesize cars with multi-view
consistency and high-quality editing results.
More ablation studies on geometric supervision. As
shown in Fig. F, since ablating Lgt (Eq. (3)) makes it no
supervision on editing, we split it into photometric (b) and
silhouette (c) terms, and the absence of either will result in
distorted or washed-out texture. (d): When ablating defor-
mation reg. loss Lgr (Eq. (4)), the edited object is severely
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Figure D. We show the comparison of our method with Edit-
GAN [9] on the real-world car dataset [19].
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Figure E. We compare our method with SPLICE-ViT [21] on real-
world cars [19] and toys [5]. Since our editing method is built
upon 3D-aware models, we consistently achieve better texture-
transferring results than SPLICE-ViT when the source and target
are observed from different perspectives of views (e.g., cars) or
with significant different shapes (e.g., plush toys).

distorted (e.g., the letters are stretched). (e): The cycle loss
Lcyc (Eq. (1) in supp.) brings constraints from shape prior
to geometric mod. field F∆G, and ablating it would lose the
efficacy of semantic guidance (e.g., the twisted airplane).
Ablation study of texture supervision. In Fig. G, we dis-
able texture transfer loss Ltex (Eq. (6)) and utilize photomet-
ric loss to paint the target texture, which leads to incomplete

(a) Source / Target (b) w/o ℒgt (photometric) (c) w/o ℒgt (silhouette)

(d) w/o ℒgr (f) Full Model(e) w/o ℒcyc

Figure F. We inspect the efficacy of different constraints in geo-
metric editing.

(a) Source / Target (b) w/o Tex. Prior (c) Full Model

Figure G. We inspect the efficacy of the texture prior constraint in
texture editing

texture transferring results for invisible parts as shown be-
low. Besides, without texture prior supervision, we cannot
transfer textures between objects with different shapes.
Comparison of texture editing with image-based
SPLICE-ViT. Our texture transferring loss (Eq. (6)) is in-
spired from SPLICE-ViT [21], but fully leverages the multi-
view training scheme. Therefore, we compare our texture
editing with image-based SPLICE-ViT in Fig. E. As shown
in Fig. E, SPLICE-ViT is sensitive to the perspective dif-
ference of the source and target images, which results in
overfitting appearances on the edited view, e.g., horizontal
straight patterns of cars when observing cars from a slightly
tilted view, distorted faces of the plush toy. By contrast,
our method consistently achieves better texture-transferring
results with color patterns properly aligned to the cars’ ge-
ometries and the plush toy’s body parts.
Comparison of texture editing with Text2LIVE. As
shown in Sec. 4.4 from the main paper, since our method
only requires one single-view image as editing input, we
can naturally achieve text-prompt-based texture editing by
cooperating with off-the-shelf text-driven editing methods
(such as Text2LIVE [1]). A follow-up question is, how
does the Text2LIVE itself perform to the same 360◦ dataset
in our texture editing task? For video editing, Text2LIVE
uses layered atlas [6] to convert objects and backgrounds
into separated 2D layers. However, in the unbounded
360◦ dataset (e.g., pinecone and vasedeck [13]), there is no
proper way to unwrap 3D objects and scenes into 2D lay-
ers (and we also failed to train layered atlas on these 360◦

datasets). Therefore, we directly apply its converged editing
generator to the multi-view images. As shown in Fig. H, al-
though Text2LIVE produces similar-looking edited images,
it cannot maintain multi-view consistency when the view-
point changes (e.g., blurry edges at the golden pinecone,
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Figure H. We compare our method with Text2LIVE on texture
editing, where our method achieves better multi-view consistency.
See the text for details.
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Figure I. We show the robustness of geometric editing on proxy
meshes with different qualities. The proxy meshes are jittered
by adding gaussian noise with different variances (from 0.0012

to 0.012).

uncovered petals at the silver vasedeck, and the occasion-
ally affected background). On the contrary, our method
naturally takes advantage of multi-view training and con-
sistently delivers more plausible and realistic novel views.
Robustness to the noise of proxy mesh. The geometry
prior guidance uses the proxy mesh to supervise the ge-
ometry modification field. Therefore, we analyze the ef-
fect of mesh quality on our editing results. Specifically, we
add 3 groups of gaussian noise to the vertices of the proxy
mesh and conduct training of our editing field. As shown
in Fig I, our method can robustly learn geometric editing
even with noisy proxy mesh (e.g., with the gaussian noise
of N(0, 0.0042) in the third column).
More comparison results on texture editing. We show
more comparison results on the texture editing task with
ARF [24], CLIP-NeRF [22] and DFF [7] in Fig. K (where
Fig. K (a) is the source view and the target view produced
by Text2LIVE [1]). For CLIP-NeRF [22], since the official
codebase has not been fully released, we use our own im-
plementation by fine-tuning NeRF’s color-related field with
CLIP loss, and both use the target features from text em-

Color Modification Final Rendering

“Silver Round Table”

Source / Target

(from Internet)

(User Editing)

Figure J. We show more rendering results from color modification
field and compositional layer.

bedding and the image embedding (with the same target
images in Fig. K (a)), which are denoted as CLIP-NeRF
(Image) and CLIP-NeRF (Text), respectively. For DFF [7],
we adopt the official codebase and use the texts for NeRF
editing and background ray-filtering according to the docu-
ment. In Fig. K, we omit the DFF’s object-centric compar-
ison on the car, since it mainly focuses on scene-level de-
composition and editing. As demonstrated in Fig. K, NeRF
stylization methods like ARF cannot precisely edit fine-
grained effects on the desired location. NeRF fine-tuning
approaches like CLIP-NeRF and DFF only change appear-
ance colors, but cannot produce vivid effects (e.g., the burn-
ing pinecone or ice sculpture cars). Note that although
DFF uses the semantic-field guided decomposed rendering
to maintain the background color unchanged, this strategy
is not compatible with our color compositing mechanism
since we introduce an additional 2D CNN layer to blend the
template and editing color for better visual appearance. By
contrast, our method both achieves realistic and appealing
editing effects, and also effectively preserves background
content, and the results are consistently preferred by most
of the participants in the user study (see Sec. 4.4).
Impact of texture modification field & color composi-
tional layer. The texture modification field learns detailed
modifications and the compositional layer blends the orig-
inal and modified rendering to produce the final edited re-
sults, as demonstrated in Sec. 4.5 and Fig. 8 (a). Here we
show more rendered texture mod. field (a.k.a. color mod.
Îm) in Fig J.
Deformation with topology changes. Our method does not
support deformation with topology changes such as break-
ing the plate, but can provide a visually plausible result by
making the “broken part” white, as shown in Fig L. In the
future, we can integrate more flexible representations such
as ambient slicing surface [18] into our model.
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Figure K. We show more comparison results of texture editing with ARF, CLIP-NeRF, and DFF on the real-world car [19] and 360◦ scene
dataset [13]. Our method consistently achieves more realistic and appealing editing results than the others.

2D EditingOriginal View Edited Novel View Edited Reconstruction

Figure L. We show the results of geometry editing with topology
changes.
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