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1. Explanation of the Hyper-parameters

In this section, we describe the hyper-parameters of the
proposed algorithm, their purpose and the ways to set them.
Parameters of the proposed algorithm:

1. An upper-bound for the inlier-outlier threshold on the
point-to-model residual used inside the MAGSAC++
scoring. This parameter is problem-dependent. It usu-
ally is defined in pixels. It is easier to set [3] than the
usual inlier-outlier threshold of RANSAC.

2. Parameter qmin is similar to what structure-from-
motion algorithms use to decide if the relative pose of
an image pair is estimated successfully. For example,
COLMAP [5] uses qmin = 15, we use 20.

3. The termination confidence is the same as in
RANSAC. Its typical values are 0.95 and 0.99. We
use 0.99 in our experiments.

4. The model-to-model distance threshold is from inter-
val ∈ [0, 1]. It measures the overlap of the inlier sets
of two models (0 - non-overlapping, 1 - fully overlap-
ping). Setting it to 0.2 works on a wide range of prob-
lems and datasets.

2. SfM Results in Section 4.2

Detailed results. The results of the global SfM from [6] on
each scene from the 1DSfM dataset are reported in Table 1.
Note that we omitted the results on scenes Gendarmenmarkt
and Union Square since [6] failed to reconstruct them with
all tested pose-graph estimation techniques.

Additional visualizations are put in Figures 1 and 2,
where the top rows show the results of [6] when initialized
by a pose-graph estimated in the proposed way, exploiting
an essential matrix and multiple homographies. The bot-
tom rows show results when the pose-graph is estimated

from essential matrices in the traditional way. Colored el-
lipses mutually highlight parts of the two reconstructions
with noticeable differences. The traditional approach leads
to reconstructions with fewer details and reduced precision
compared to the proposed technique.

3. Translation from Known Rotation
In Section 4.2., we propose to estimate the relative pose

from multiple homographies and the essential matrix by de-
composing them and choosing the pose that leads to the
most inliers when thresholding the re-projection error. We
found that, while the estimated rotation matrix often is ac-
curate, the translation can be improved by re-estimating it
from the found inliers considering the known rotation.

In this section, we briefly describe the translation esti-
mation procedure given a known rotation matrix. It is well-
known [2] that the essential matrix is defined as

E = [t]× R,

where t ∈ R3 and R ∈ SO(3) are, respectively, the transla-
tion vector and rotation matrix, and [t]× is the cross-product
matrix of t as follows:

[t]× =

 0 −tz ty

tz 0 −tx

−ty tx 0

 .

Essential matrix E describes the relationship of a point cor-
respondence in the images via the well-known epipolar con-
straint as follows:

pT
2Ep1 = 0,

where p1 = [u1 v1 w1]
T and p2 = [u2 v2 w2]

T are homo-
geneous points in the normalized image plane, i.e., normal-
ized by the intrinsic camera matrices. Considering R to be
known, we are given the following constraint

pT
2 [t]× Rp1 = 0,



Table 1. Results of the global SfM algorithm from [6] on the scenes from the 1DSfM dataset [7] when initialized by the pose-graph
estimated from essential matrices (E matrix), and the proposed method combined either with Progressive NAPSAC [1] or the proposed
Connected Components (CC) samplers. As ground truth, we used reconstructions from COLMAP [5]. The averages and average medians
of the rotation and position errors are reported in Table 1.

orientation err (◦) position err (m) focal err (×10−2)

# views # tracks AVG MED STD AVG MED STD AVG MED STD

A
la

m
o E matrix 493 104 894 2.46 0.59 3.76 1.60 1.36 3.98 0.02 0.01 0.05

E + mult. Hs 495 110 243 2.80 0.81 3.91 1.79 1.88 4.73 0.02 0.01 0.05

E + mult. Hs (CC) 494 105 920 2.59 0.62 3.63 1.68 1.58 4.19 0.02 0.01 0.05

E
lli

s
Is

l. E matrix 211 31 200 4.21 2.90 4.69 5.59 3.43 10.57 0.02 0.01 0.02

E + mult. Hs 210 30 610 3.49 2.33 3.00 4.27 3.09 8.22 0.02 0.01 0.02

E + mult. Hs (CC) 215 31 182 4.61 2.61 3.87 5.86 3.89 11.59 0.02 0.01 0.02

M
ad

ri
d

M
.

E matrix 299 56 102 11.38 0.69 14.50 1.09 8.06 1.36 0.06 0.03 0.10

E + mult. Hs 327 50 438 4.00 0.30 5.63 0.60 2.86 0.90 0.07 0.03 0.14

E + mult. Hs (CC) 298 57 457 8.06 0.58 12.11 1.00 4.77 1.18 0.06 0.03 0.10

M
on

tr
ea

l E matrix 432 106 101 1.34 0.41 8.64 0.82 0.38 1.22 0.02 0.01 0.03

E + mult. Hs 435 106 498 1.52 0.46 7.84 0.89 0.47 1.31 0.02 0.01 0.03

E + mult. Hs (CC) 436 104 802 1.45 0.46 8.03 0.97 0.45 1.61 0.02 0.01 0.03

N
Y

C
L

ib
.

E matrix 270 57 235 53.59 14.08 3.86 14.10 52.95 7.26 0.03 0.01 0.04

E + mult. Hs 271 56 435 5.20 2.94 3.96 4.97 4.23 6.73 0.03 0.01 0.04

E + mult. Hs (CC) 270 55 418 6.44 3.11 4.26 5.04 5.54 6.59 0.03 0.01 0.04

Pi
az

za
d.

P. E matrix 291 42 823 7.24 3.82 3.33 4.91 7.61 4.34 0.03 0.02 0.04

E + mult. Hs 288 44 457 6.99 3.32 3.26 4.16 7.51 4.19 0.03 0.02 0.05

E + mult. Hs (CC) 291 43 510 5.37 2.53 1.46 3.28 5.46 3.54 0.03 0.02 0.04

Pi
cc

ad
ill

y E matrix 1869 210 821 4.71 0.35 13.53 0.70 2.00 1.05 0.05 0.03 0.15

E + mult. Hs 1656 141 661 10.15 0.48 24.75 0.87 2.55 1.11 0.05 0.03 0.14

E + mult. Hs (CC) 1860 220 045 4.96 0.31 14.83 0.66 1.68 1.05 0.05 0.03 0.15

R
om

an
F. E matrix 989 208 457 4.87 14.76 4.68 22.25 3.86 82.77 0.03 0.02 0.07

E + mult. Hs 991 204 432 4.56 15.64 3.37 22.90 3.78 82.49 0.03 0.02 0.07

E + mult. Hs (CC) 995 206 641 4.85 15.78 3.59 23.61 4.01 82.29 0.03 0.02 0.07

To
w

er E matrix 406 96 481 6.03 9.48 12.55 25.04 2.42 38.79 0.02 0.01 0.03

E + mult. Hs 397 95 394 5.29 10.58 6.29 26.47 3.39 40.70 0.02 0.01 0.03

E + mult. Hs (CC) 405 96 088 5.83 10.94 8.87 26.56 3.54 40.54 0.02 0.01 0.03

Tr
af

al
ga

r E matrix 4111 354 494 18.03 16.79 32.09 23.92 10.70 29.63 0.02 0.01 0.03

E + mult. Hs 4097 349 621 19.10 16.14 41.86 23.74 7.20 30.73 0.02 0.01 0.03

E + mult. Hs (CC) 4088 349 784 18.00 17.09 31.97 24.79 10.93 30.64 0.02 0.01 0.03

V
ie

nn
a

C
.

E matrix 705 160 363 14.47 7.49 9.86 10.96 9.40 11.55 0.02 0.01 0.05

E + mult. Hs 612 92 051 26.35 13.79 29.71 22.85 13.10 25.45 0.02 0.01 0.05

E + mult. Hs (CC) 707 160 503 4.72 6.97 4.84 10.15 3.18 11.03 0.02 0.01 0.05

Y
or

km
in

s. E matrix 399 98 396 5.52 7.61 3.57 12.13 4.99 17.70 0.03 0.01 0.04

E + mult. Hs 402 100 985 5.68 7.74 3.46 12.68 5.11 20.03 0.03 0.01 0.04

E + mult. Hs (CC) 399 109 132 3.49 6.27 2.90 11.26 2.91 17.12 0.03 0.01 0.04



(a) Frontal view – E + mult. Hs (CC). (b) Top-down view – E + mult. Hs (CC).

(c) Frontal view – E matrices only. (d) Top-down view – E matrices only.

Figure 1. Visual comparison of the reconstructions of Yorkminster by [6] when initialized by the proposed (E + mult. Hs (CC); top
row) and traditional (E matrices; bottom) techniques. Blue and green ellipses highlight areas that the proposed algorithm reconstructs
significantly more accurately than the traditional approach. The red ellipse points to an erroneous area. “CC” stands for using the proposed
sampler in the proposed method for multi-homography fitting.

where the only unknowns are the three translation com-
ponents t = [tx ty tz]

T. Multiplication Rp1 can be pre-
calculated as p′

1 = Rp1. Formula pT
2 [t]× p′

1 leads to:

−u2tzv
′
1 + u2tyw

′
1 + v2tzu

′
1 − v2txw

′
1 − w2tyu

′
1 + w2txv

′
1 = 0.

(1)
Eq. 1 is linear in the elements of the translation vector.
Therefore, the equation can be reformulated as v′1w2 − w′

1v2

u2w
′
1 − w2u

′
1

v2u
′
1 − u2v

′
1


T  tx

ty

tz

 = 0.

If at least two point correspondences are given, a homoge-
neous linear system of equations is obtained. The optimal
solution, in the LSQ sense, is given via calculating the null-
vector of the coefficient matrix.

4. Trajectories of Fast-moving Objects

We show example visualizations of trajectory estimation
of fast-moving objects in Figure 3. After extracting blur
kernels that encode the object motion, we apply a multi
model fitting algorithm recovering line segments. The es-
timated line segments are colored in red. The ground truth
line segments are generated by applying a classical state-
of-the-art object tracking algorithm on high-speed camera
footage with manual annotations, which is shown in green.
We show the results of sequential RANSAC as originally
proposed in [4]. Additionally, we show final trajectories af-
ter filtering and refinement by [4]. Quantitative results are
reported in the paper.

Notice that the line segments found by seq. RANSAC are
not continuous, i.e., there is a clear gap between all of them.



(a) Frontal view – E + mult. Hs (CC). (b) Top-down view – E + mult. Hs (CC).

(c) Frontal view – E matrices only. (d) Top-down view – E matrices only.

Figure 2. Visual comparison of the reconstructions of Vienna Cathedral by [6] when initialized by the proposed (E + mult. Hs (CC); top)
and traditional (E matrices; bottom) techniques. The proposed approach preserves the parallelism of the walls of the cathedral (red ellipse).
“CC” stands for using the proposed sampler in the proposed method for multi-homography fitting.

This is caused by the hard point-to-line assignment used in
seq. RANSAC and in the state-of-the-art multi-model fit-
ting algorithms. Using the proposed method allows finding
continuous chains that lead to better trajectories as shown
in the last column and, also, in Table 3 in the main paper.
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