
Supplementary Material:
Two-view Geometry Scoring Without Correspondences

Feature Extractor
Layer Description Output Shape

Input Image [b, 3, 256, 256]
0 Conv-BN-ReLU [b, 128, 256, 256]
1 ResNet block 1 [b, 128, 128, 128]
2 ResNet block 2 [b, 196, 64, 64]
3 ResNet block 3 [b, 256, 32, 32]
4 ResNet block 4 [b, 256, 16, 16]
5 Up and Skip conn. w/ layer 3 [b, 256, 32, 32]
6 Conv-BN-LeakyReLU [b, 196, 32, 32]
7 Up and Skip conn. w/ layer 2 [b, 196, 64, 64]
8 Conv-BN-LeakyReLU [b, 128, 64, 64]

Table 1. Feature extractor architecture details. The feature ex-
tractor computes features from input images A and B at 1/4 of the
input resolution. A ResNet block refers to a ResNet-18 [5] block,
which is composed of 3 × 3 convolutions, batch normalization
layers [6], ReLU activations [1], and a residual connection. The
residual connection is done between the input to the block and the
output. The Up and Skip conn. refers to an upsampling layer with
bilinear interpolation and a skip connection between the input to
the layer and the previous layer i.

Pose Error Regressor
Layer Description Output Shape

Input feature maps (fAi and fBi ) [b, 128, 32, 32]
1 ResNet block 1 [b, 128, 16, 16]
2 ResNet block 2 [b, 128, 8, 8]
3 ResNet block 3 [b, 256, 4, 4]
4 ResNet block 4 [b, 512, 2, 2]
5 2D Avg. Pooling (vA→B

i and vB→A
i ) [b, 512, 1, 1]

6 Max Pooling (vi) [b, 512, 1, 1]
7 Conv1x1-BN-ReLU (MLP layer 1) [b, 512, 1, 1]
8 Conv1x1-BN-ReLU (MLP layer 2) [b, 256, 1, 1]
9 Conv1x1-BN-ReLU (MLP layer 3) [b, 2]

Table 2. Pose error regressor architecture details. The pose
error regressor block estimates the rotation (eRi ) and the translation
(eti) errors for images A and B and fundamental matrix Fi. The
input to the pose error regressor block is the epipolar transformed
features fAi and fBi . As in the feature extractor, the ResNet block
refers to a ResNet-18 [5] block.

1. FSNet Architecture
Complementary to the description of FSNet from the

main paper, we also include the implementation of its dif-
ferent blocks. Table 1 details the layers within the feature
extractor block that we use for computing the features fA

and fB from images A and B. Input images have a resolu-
tion of 256 × 256, and the feature extractor block outputs
feature maps of size 128 × 64 × 64. As seen in Table 1,
the feature extractor is composed of ResNet-18 [5] blocks,
where every block is based on 3×3 convolutions, batch nor-
malization layers [6], ReLU activations [1], and a residual
connection. After the ResNet blocks, we upsample the fea-
ture maps twice and create skip connections with previous
layers following a UNet [10] architecture design. Please re-
fer to Table 1 to see which layers are combined by the skip
connections. A final convolution layer with a batch normal-
ization layer and a Leaky-ReLU activation [13] generates
the feature maps fA and fB .

Once feature maps are extracted, we feed them to our
transformer architecture (see Section 4.2 from the main pa-
per). The transformer computes the transformed features
†fA and †fB , which exploit the self and cross-similarities
across the feature maps. For our transformer architecture,
we follow the design of the Linear Transformer [7, 12]. We
use three attention layers (Nt = 3), where every self and
cross-attention layer has eight attention heads. The trans-
former outputs †fA and †fB , which are stored and reused
for every Fi hypothesis.

We embed the two-view geometry into the features
through an epipolar cross-attention block. The epipolar
cross-attention takes †fA, †fB , and Fi to guide the attention
between the two feature maps. The epipolar cross-attention
layer applies cross-attention along the epipolar line. For
every query point, we sample D = 45 positions along its
corresponding epipolar line , and hence, attention is done
only to the D sampled positions. Some sampling positions
might be outside of the feature plane, e.g., epipolar line
never crosses the feature map. Thus, in those cases, we pad
the positions with zeros, such that they do not contribute
when computing the attended features. In the transformer
Softmax, those positions will not matter as their contribu-
tion to the soft-aggregation is zero. To reduce the feature
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MAA at 10° ↑ Median (°) ↓
R / t / max(R,t) eR / et

Fundamental

LoFTR [12]

MAGSAC++ [3] 0.11 / 0.03 / 0.02 27.21 / 46.53
FSNet 0.13 / 0.05 / 0.03 20.98 / 38.42

w/ Corresp. filter 0.11 / 0.03 / 0.02 26.48 / 46.28
w/ Candidate filter 0.13 / 0.04 / 0.03 21.98 / 40.34

SIFT [8]

MAGSAC++ [3] 0.08 / 0.03 / 0.02 87.26 / 50.02
FSNet 0.08 / 0.03 / 0.02 36.78 / 43.96

w/ Corresp. filter 0.08 / 0.03 / 0.02 47.21 / 47.94
w/ Candidate filter 0.09 / 0.03 / 0.02 45.35 / 46.47

Essential

LoFTR [12]

MAGSAC++ [3] 0.17 / 0.09 / 0.07 22.50 / 37.79
FSNet 0.20 / 0.10 / 0.07 17.56 / 31.79

w/ Corresp. filter 0.17 / 0.09 / 0.07 21.98 / 37.64
w/ Candidate filter 0.20 / 0.11 / 0.08 18.88 / 34.02

SIFT [8]

MAGSAC++ [3] 0.14 / 0.06 / 0.05 73.28 / 46.06
FSNet 0.15 / 0.07 / 0.06 27.73 / 38.74

w/ Corresp. filter 0.15 / 0.06 / 0.05 42.03 / 43.11
w/ Candidate filter 0.16 / 0.08 / 0.06 38.05 / 41.38

Table 3. Integrating FSNet with LoFTR [12] and SIFT
[8]. MAA at 10° and Median error (°) results for FSNet and
MAGSAC++ on the fundamental and essential matrix estimation
task on the ScanNet indoor dataset. As a reference, LoFTR de-
tects fewer than 100 correspondences on 6.5% of the image pairs.
Meanwhile, the test set based on SIFT correspondences results in
3,319 (0-100) and 1,681 (100-Inf) image pairs. We observe that
when there are lower quality of correspondences, FSNet comes
out ahead, i.e., FSNet (alone) returns the lowest pose errors.

map size, which contributes towards faster processing time,
we query points every two positions. The epipolar cross-
attention layer outputs fAi and fBi at 1/8 of the input image
resolution (128× 32× 32).

Table 2 shows the details of the pose error regressor
block. The pose error regressor takes the epipolar attended
features (†fA, †fB) and predicts the translation and rotation
errors (eti and eRi ) associated with Fi. Similar to the feature
extractor, the pose error regressor uses ResNet-18 blocks to
process the features. After processing the features, a 2D
average pooling is applied to create vA→B

i and vB→A
i . To

enforce image order-invariance, we merge the two vectors
with a Max-Pooling operator. A final MLP uses the output
of the Max-Pool vi to predict the pose errors.

2. FSNet with LoFTR and SIFT correspon-
dences

FSNet is trained using hypotheses generated with
SP-SG [4,11] correspondences and MAGSAC++ [3]. While

FSNet does not rely on correspondences to do scoring, the
hypothesis pool is generated from correspondences. In the
main paper (Table 4), we show experiments where FSNet,
which is trained with hypotheses generated by SP-SG, is
used to score hypotheses generated by SIFT features, out-
performing the MAGSAC++ scoring function, and showing
the generalization capability of FSNet.
We then extend the previous experiment and show re-
sults of FSNet generalizing to hypotheses generated by a
different correspondence estimation method. We choose
LoFTR [12], another state-of-the-art matching network. We
use Kornia [9] library to compute LoFTR correspondences.
Table 3 shows the results of MAGSAC++ and FSNet com-
bined with LoFTR. As a reference, we also include SP-SG
results.
We observe that (i) LoFTR performance is lower than
SP-SG, and (ii) MAGSAC++ alone or in combination is
struggling, leaving FSNet (alone) as the winner. We believe
that one possible cause for LoFTR’s lower performance is
the distribution of our test set, which uses image pairs with
very low image overlap (10%-40%), and hence, it is differ-
ent from the image pairs used for LoFTR training. Besides
LoFTR results, we also show in Table 3 that FSNet can be
paired with e.g. SIFT. SIFT matches are filtered with the
mutual nearest neighbor check and Lowe’s ratio test [8]. Al-
though the distribution of hypotheses generated by SIFT is
potentially different, FSNet ranks them successfully achiev-
ing similar mAA scores as MAGSAC++, while reducing the
median pose error.

3. More Correspondences for Difficult Image
Pairs

In the main paper’s Section 3, we mention that loosening
the filtering criteria of SuperGlue, and thus increasing the
number of correspondences provided to MAGSAC++, does
not lead to improvements in scores.

Indeed, SuperGlue filters correspondences by consider-
ing the matching confidence of the correspondences, where
the threshold is 0.2. However, given that the number of cor-
respondences impacts the performance of correspondence-
based scoring methods (Figure 3 of the main paper), would
more correspondences improve the estimation of the funda-
mental or essential matrices? To investigate this, we varied
the filtering threshold of SuperGlue to increase the number
of correspondences that go into the RANSAC loop when
needed. So, we compile a list of image pairs that initially
have ≤ 100 correspondences. These are image pairs in our
ScanNet test set that are used to report scores of 0-100 splits
in tables 2, 3, and 4 of the main paper. Then, we lower
the threshold progressively by steps of 0.04 until either; we
obtain more than 100 correspondences, or we reduce the
threshold to 0.0 (hence, we will use all possible matches).
We refer to this SuperGlue as SP-SG*, and show in Table 4



0 20 40 60 80 100
Translation error (°)

0

2

4

6

Nu
m

be
r o

f F
/E

 m
at

ric
es

 (%
) Translation error distribution

0 20 40 60 80 100
Rotation error (°)

0
2
4
6
8

10

ScanNet

Rotation error distribution

0 20 40 60 80 100
max(R, t) error (°)

0

1

2

3

4

5
max(R, t) error distribution

Fundamental
Essential

0 20 40 60 80 100
Translation error (°)

0

5

10

15

20

Nu
m

be
r o

f F
/E

 m
at

ric
es

  (
%

) Translation error distribution

0 20 40 60 80 100
Rotation error (°)

0

5

10

15

20

MegaDepth

Rotation error distribution

0 20 40 60 80 100
max(R, t) error (°)

0

5

10

15
max(R, t) error distribution

Fundamental
Essential

Figure 1. Fundamental vs essential matrix error distributions. The figure shows the error distributions (°), translation, rotation, and the
maximum of both, for the generated fundamental and essential matrices with SP-SG correspondences. We observe that essential matrices
have a higher population on the low error regime, i.e., matrices with pose error below 20°. Meanwhile, fundamental matrices show a wider
range of errors, especially in the indoor scenario, where correspondences do not provide enough reliability for accurate two-view geometry
estimation. This observation leads us to train FSNet for either the task of fundamental or essential matrix estimation.

MAA at 10° ↑ Median (°) ↓
R / t / max(R,t) eR / et

Fundamental

SP-SG* + MAGSAC++ 0.38 / 0.18 / 0.14 6.22 / 16.50

SP-SG + MAGSAC++ 0.38 / 0.17 / 0.14 6.35 / 17.89
FSNet 0.36 / 0.21 / 0.15 6.52 / 12.05

w/ Corresp. filter 0.39 / 0.22 / 0.16 6.09 / 11.59
w/ Candidate filter 0.43 / 0.23 / 0.19 5.38 / 11.39

Essential

SP-SG* + MAGSAC++ 0.38 / 0.24 / 0.19 6.38 / 11.30

SP-SG + MAGSAC++ 0.40 / 0.26 / 0.21 5.95 / 10.96
FSNet 0.44 / 0.28 / 0.22 5.13 / 8.95

w/ Corresp. filter 0.44 / 0.29 / 0.23 5.07 / 8.75
w/ Candidate filter 0.44 / 0.28 / 0.23 5.14 / 9.48

Table 4. SuperGlue with more correspondences in the indoor
ScanNet dataset. SP-SG* refers to SP-SG with dynamic match-
ing confidence threshold, which is reduced in order to either obtain
at least 100 correspondences or the maximum correspondences
that SP-SG provides. It can be seen that naively increasing the
number of correspondences does not lead to improved results.

its evaluation with MAGSAC++. As mentioned previously,
an increased number of correspondences does not consis-
tently improve scores for inlier counting baselines. Indeed,
MAA scores are almost the same for the fundamental ma-
trix estimation task and slightly worse for essential matrix

estimation task. The median errors are lower for the funda-
mental matrix estimation when more correspondences are
used, but the errors increase for essential matrix estimation.
Note that the numerical results have elements of random-
ness to them, as a different number of correspondences pro-
duces different pools of 500 random hypotheses.

4. Distribution of F and E Hypotheses

When evaluating FSNet in the fundamental or essential
matrix estimation task, we observe that specializing FSNet
for a specific task was more effective than training the archi-
tecture to solve both tasks at the same time (Table 2 from
main paper). This behaviour is explained by looking into
Figure 1. The figure shows the error distributions of the gen-
erated fundamental and essential matrices of our validation
set. For completeness, we report the translation and rotation
error separately, as well as the distributions for ScanNet and
MegaDepth datasets.

We observe that the distributions of the errors are dif-
ferent when estimating fundamental or essential matrices,
where fundamental matrices tend to have a wider range of
pose errors, thus, making it more difficult to select accurate
estimates. This observation is also in line with the results
of Table 2 from the main paper, where we show that FSNet
was more effective when trained for a specific task, instead
of using matrices from both distributions (F + E).



0-100 100-Inf All
MAA at 10° ↑ Median (°) ↓ MAA at 10° ↑ Median (°) ↓ MAA at 10° ↑ Median (°) ↓
R / t / max(R, t) eR / et R / t / max(R, t) eR / et R / t / max(R, t) eR / et

Fundamental

MAGSAC++ [3] 0.41 / 0.17 / 0.14 5.55 / 16.44 0.76 / 0.33 / 0.32 1.77 / 7.74 0.61 / 0.26 / 0.24 2.71 / 10.49
FSNet (F) 0.41 / 0.22 / 0.17 5.62 / 10.84 0.62 / 0.24 / 2.22 3.02 / 11.07 0.53 / 0.23 / 0.19 3.87 / 10.91

w/ Corresp. filter 0.41 / 0.22 / 0.17 5.62 / 10.84 0.76 / 0.33 / 0.32 1.77 / 7.74 0.61 / 0.28 / 0.25 2.82 / 8.91
w/ Candidate filter 0.49 / 0.26 / 0.21 4.36 / 10.47 0.78 / 0.38 / 0.36 1.79 / 6.06 0.65 / 0.32 / 0.30 2.46 / 7.58

Essential

MAGSAC++ [3] 0.42 / 0.26 / 0.21 5.39 / 10.96 0.76 / 0.41 / 0.40 1.72 / 5.58 0.61 / 0.34 / 0.31 2.63 / 7.41
FSNet (E) 0.47 / 0.28 / 0.22 4.57 / 8.85 0.72 / 0.35 / 0.33 2.22 / 6.80 0.61 / 0.32 / 0.28 3.06 / 7.53

w/ Corresp. filter 0.47 / 0.28 / 0.22 4.57 / 8.85 0.76 / 0.41 / 0.40 1.72 / 5.58 0.64 / 0.35 / 0.32 2.66 / 6.82
w/ Candidate filter 0.48 / 0.29 / 0.24 4.47 / 9.26 0.79 / 0.45 / 0.43 1.69 / 4.97 0.66 / 0.38 / 0.35 2.43 / 6.36

Table 5. Fundamental and essential matrix estimation on SuperGlue’s [11] test set of ScanNet. We compute the MAA at 10° and
Median (°) metrics in the SuperGlue’s test split of ScanNet, and divide the pairs of images based on the number of SP-SG correspondences.
The split results in 649 (0-100) and 851 (100-Inf) image pairs. We see that when the number of correspondences is small (0-100), FSNet
outperforms MAGSAC++ in both, fundamental and essential matrix estimation. In the overall split (All), the best results are obtained when
combining FSNet and MAGSAC++ hypothesis scores.
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Figure 2. Overlapping distribution of the image pairs of FSNet
and SuperGlue [11] test sets. FSNet focuses on image pairs
where current correspondence-scoring methods struggle. There-
fore, to tackle such cases, we generate FSNet training, validation,
and test sets with low visual overlapping images, where correspon-
dences are few and then, in many cases, not reliable.

5. SuperGlue Test Set

Results in the main paper are reported on our own test
set for Scannet. We generate this test set split such that im-
age pairs have a distribution of image overlaps that focuses
on hard-to-handle image pairs (please see blue bars in Fig-
ure 2). However, SuperGlue also published image pairs that
they used for evaluation. For completeness and easy com-
parison, we provide evaluations of FSNet on SuperGlue’s
test set.

We benchmark our performance on the standard Super-
Glue test set [11], with results shown in Table 5. FSNet can
be seen as helpful there, but that table’s scores are domi-
nated by “easy pairs”: we see that the regular SuperGlue
test set has many image pairs with high overlap scores. That

SuperGlue test set has limited exposure to scoring-failure
cases, as can be seen from the overlapping statistics of the
SuperGlue test set in Figure 2.

We observe the same trend in Table 5 and Table 2 from
the main paper. FSNet improves over MAGSAC++ in the
0-100 split, both for fundamental and essential matrix es-
timation tasks. Similarly, the combined approaches with
FSNet provide the best scores.

6. FSNet Trained with Cross Entropy Loss
Experiments in the main paper’s Section 5.3 (Table 4)

show FSNet trained with the binary cross-entropy loss. We
treat the hypotheses ranking problem as a classification
problem. Hypotheses with pose error < 10◦ were labeled
as “correct” and others as “incorrect”, so

yi =

{
1, if max(eRi , e

t
i) < 10◦

0, otherwise.
(1)

This means that out of 500 hypotheses generated for an
image pair, multiple hypotheses can be labeled as “correct”.
As we are interested in ranking hypotheses during scoring,
we can use the network’s confidence in the predicted bi-
nary decision to provide ranking among “correct” hypothe-
ses. Furthermore, we are not interested in the relative rank-
ing of “incorrect” hypotheses. To reflect these nuances, we
incorporate the network’s predicted confidence in the loss
function. Inspired by Barath et al.’s [2] loss function, we
modify the cross entropy loss to be

L =− (1 + f(Fi))
w

[yi log f(Fi) + (1− yi) log(1− f(Fi))] , (2)



Unimodal (39.16%) Multimodal (60.84%)

FSNet MAGSAC++ FSNet (e < 10◦) MAGSAC++ (e < 10◦) Both with e < 10◦ Both with e ≥ 10◦

% 69.40 30.60 14.34 3.55 16.67 65.43

Table 6. Distribution of top ranking hypotheses by MAGSAC++ scores in ScanNet validation set. We report the percentage of times
we find an unimodal or multimodal distribution among the top 5 hypotheses returned by MAGSAC++. The criteria to determine if a pool of
hypotheses is unimodal or multimodal is based on their pairwise distances. If the difference between the minimum and maximum distance
is above 10◦, then we indicate it as a multimodal, otherwise, we mark the pool as unimodal. Besides the distinction between unimodal or
multimodal, we also indicate which method was able to select the best hypothesis (unimodal), or which method was able to select a valid
hypothesis (a hypothesis with a pose error below 10◦ w.r.t. the ground-truth pose).
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(a) FSNet with candidate filter in ScanNet validation set.
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(b) FSNet with candidate filter in MegaDepth validation set.

Figure 3. Combination of FSNet and MAGSAC++ based on
the proposed candidate filter in the fundamental matrix estima-
tion task. When using the candidate filter, FSNet only scores the
top-k MAGSAC++ hypotheses. If the number of hypotheses to
score is 1, it refers to original MAGSAC++, while 500 hypothe-
ses corresponds to FSNet alone. As a reference, we also indicate
MAGSAC++ (×) and FSNet (▲) scores.

where f(Fi) is FSNet network’s confidence of Fi being
a correct hypothesis, and the w = 2 is the weight of the
networks’ confidence in the loss function. Low values of
f(Fi) means that the weighting coefficient (1+ f(Fi))

w is
low, while high confidence values of f(Fi) provide higher
weighting to the cross entropy loss.

7. Filtering hypotheses with MAGSAC++
As mentioned in the main paper, we can discard not

promising hypotheses by looking at their MAGSAC++
scores. This filtering approach exploits the useful informa-
tion that inlier counting brings to well defined set of corre-
spondences, while also removes easy to detect outliers with
such heuristics. Besides cleaning the pool of hypotheses, it

also provides a speedup opportunity since FSNet only needs
to be run for a subset of fundamental/essential matrices.

In Table 6, we analyze the top scoring hypotheses re-
turned by MAGSAC++. Specifically, we look into the top
5 MAGSAC++ models, and analyze whether they present a
multimodal or unimodal distribution. We define the distri-
bution as unimodal if the minimum and maximum distance
between the hypotheses (within the top 5) is below 10°.
In the unimodal scenario, we further look if most accurate
hypothesis was returned either by MAGSAC++ or FSNet.
Similarly, in the multimodal scenario (there are hypothe-
ses with more than 10°difference), we identify whether 1)
both methods return a valid hypothesis (with a pose error
below 10◦ w.r.t. ground-truth pose), 2) an incorrect hy-
pothesis (e > 10°) was selected by both methods, 3) only
FSNet or 4) MAGSAC++ selected a correct hypothesis. We
observe that FSNet returns more accurate hypotheses than
MAGSAC++, in both unimodal and multimodal distribu-
tion scenarios. Moreover, in Figure 3, we show the impact
of varying the number of hypotheses to score by FSNet. On
the left side, when only using 1 hypothesis to score, re-
sults correspond to MAGSAC++ method, meanwhile, on
the right end, when using all 500 possible hypotheses, re-
sults indicate original FSNet results. We see in the Scan-
Net and MegaDepth datasets that even refining the score
of a few hypotheses brings improvements to MAGSAC++.
Moreover, in Figure 4, we show examples of different top
scoring hypotheses returned by MAGSAC++, and indicate
if they belong to an unimodal or multimodal distribution.
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