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Overview
This supplementary material contains additional results.

We present them in the order they are mentioned in the main
paper. First, Sec. A provides an overview of our notation.
Sec. B formally states the N -shape algorithm. Sec. C con-
tains large-scale figures showing the 100 matched FAUST
shapes. Sec. D describes the elimination of higher-order
terms in detail. Sec. E states the weight matrix W̃ of the
final QUBO. Sec. F shows that the total energy almost
never decreases in practice. Sec. G compares our anchor
scheme to using random triplets. Sec. H discusses the time
complexity of our proposed method. Sec. I provides more
implementation details on initialisation and deciding triv-
ial cycles. Sec. J discusses the minor embeddings on real
quantum hardware and contains further QPU experiments.
Sec. K presents more results, including more ablation ex-
periments. Finally, Sec. L compares existing quantum com-
puter vision works for alignment tasks.

In addition, the supplementary material contains a video
showing the evolution of the matchings of a ten-shape
FAUST instance over the course of the optimisation. We
visualise the matchings by fixing the colouring of the top-
left shape and transferring this colouring to all other shapes
according to the estimated correspondences.

A. Notations
Tab. 1 summarises the notation we use.

B. N -Shape Algorithm
We provide the formal N -shape algorithm as Alg. 1.

C. Matching 100 Shapes
Fig. 1 shows qualitative results of all 100 matched

FAUST shapes.

D. Higher-Order Terms
In this section, we give the expansions for the third term

of (7), namely EXZ(PXZ(α, β)), as it contains higher-

Notation Meaning
I, J , X , Y , Z shapes (represented as meshes)
PIJ permutation matrix from shape I to J
x, y, u, v vertices of a shape
P set of permutations
S set of shapes
W energy matrix
N number of shapes
I identity matrix
EIJ (P,Q) vec(P )⊤WIJ vec(Q)
EIJ (P ) EIJ (P, P )
FIJ (A,B) EIJ (A,B) + EIJ (B,A)
α, β decision variables
k size of decision variables α,β
m number of worst vertices
IXY(x) relative inconsistency of vertex x for PXY
VX set of worst vertices for shape X
CX set of cycles for shape X
A anchor shape
Ci (ci − I)PXY ; single-cycle update of PXY
C̃j (cj − I)PYZ ; single-cycle update of PYZ
Kij CiC̃j

Table 1. Notation used in this work.

order terms. Fig. 12 shows the equations. The terms in red
are cubic or bi-quadratic and we hence assume them to be
0, except for the summands that simplify to quadratic terms.
For example, αiβjαiβjEXZ(CiC̃j , CiC̃j) simplifies to the
linear summand αiβjEXZ(CiC̃j , CiC̃j). This then yields
(8) from the main paper.

E. Final QUBO
Fig. 2 shows the weight matrix W̃ ∈ R2k×2k that is used

for the final QUBO.

F. Evolution During Optimisation
Fig. 3 depicts how the total energy (11) and PCK evolve

during optimisation. Importantly, the energy almost never
increases in practice. Furthermore, our algorithm converges
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Figure 1. Extended version of Fig. 1 in the main paper. We visualise the matchings between all 100 FAUST shapes via texture transfer.
All correspondences are cycle-consistent by design.

W̃ij =



EYZ(Ci, Ci) + EXY(PXY , Ci) + EXY(Ci, PXY) + EXZ(PXYPYZ , CiPYZ) + EXZ(CiPYZ , PXYPYZ) + EXZ(CiPYZ , CiPYZ) if i = j ≤ k

EXY(C̃j , C̃j) + EYZ(PYZ , C̃j) + EYZ(C̃j , PYZ) + EXZ(PXYPYZ , PXY C̃j) + EXZ(PXY C̃j , PXYPYZ) + EXZ(PXY C̃j , PXY C̃j) if i = j > k

EYZ(Ci, Cj) + EXZ(CiPYZ , CjPYZ) if i ̸= j, i ≤ k, j ≤ k

EXY(C̃i, C̃j) + EXZ(PXY C̃i, PXY C̃j) if i ̸= j, i > k, j > k

EXZ(PXYPYZ , CiC̃j) + EXZ(PXY C̃j , CiPYZ) + EXZ(PXY C̃j , CiC̃j) + EXZ(CiPYZ , PXY C̃j)

+EXZ(CiPYZ , CiC̃j) + EXZ(CiC̃j , PXYPYZ) + EXZ(CiC̃j , PXY C̃j)

+EXZ(CiC̃j , CiPYZ) + EXZ(CiC̃j , CiC̃j) if i ̸= j, i ≤ k, j > k

0 otherwise

(1)

Figure 2. The final QUBO weight matrix W̃ . For indices i > k, we define C̃i = C̃i−k.

close to the ground truth. A sudden and significant im-
provement occurs as soon as the schedule switches from
geodesics to Gaussians. We note that although the objec-
tive uses Gaussians in the second half of the schedule, both
the total energy plotted here and the PCK are based on the
(unfiltered) geodesic distances.

G. Fixed Anchor vs. Random Triplets

Fig. 4 compares our anchor-based scheme with using
random triplets. We see a small improvement with our
scheme.

H. Time Complexity

Our method mainly consists of constructing and solving
the QUBO matrix W̃ , which is based on W . However, stan-
dard meshes contain thousands of vertices, which makes
naı̈vely calculating the full W ∈ Rn2×n2

not feasible due
to the memory restrictions. Fortunately, we do not need
to compute the full W but only a small set of its entries.
This is due to the extreme sparsity of the ci−I matrix (only
four non-zero elements) since we only consider 2-cycles.
Using k 2-cycles leads to a worst-case time complexity of
O(nk2) for the three-shape Alg. 1 from the main paper (i.e.,
one sub-sub-iteration). For the sub-sub-iterations of a sub-
iteration, W̃ is constant and we thus need to compute W̃
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Algorithm 1 CCuantuMM (Matching N Shapes; Sec. 4.2)
Input: S, T
Output: P

1: initialise P init from HKS descriptors
2: determine anchor A ∈ S
3: P0 ← {P init

IA }I∈S,I≠A

4: randomly pick X−1 ∈ S ▷ technicality for Z0

5: for i = 0 to 2T (|S| − 1) do ▷ iterations
6: if i mod (|S| − 1) == 0 then
7: S ′ ← S \ {A} ▷ for stratified sampling
8: end if
9: randomly pick X i ∈ S ′

10: S ′ ← S ′ \ {X i}
11: Yi ← A
12: Zi ← X i−1

13: get P i
X iA, P

i
ZiA from Pi

14: P i
X iYi ← P i

X iA

15: P i
YiZi ← (P i

ZiA)
−1

16: P i
X iZi ← P i

X iA(P
i
ZiA)

−1

17: mode← geodesic if i < T (|S|−1) else Gaussian
18: {P i+1

X iYi , P
i+1
YiZi , P

i+1
X iZi} ← run Alg. 1 with mode

on ({P i
X iYi , P i

YiZi , P i
X iZi}, {X i,Yi,Zi})

19: P i+1
X iA ← P i+1

X iYi

20: P i+1
ZiA ← (P i+1

YiZi)
−1

21: Pi+1 ← (Pi \ {P i
X iA, P

i
ZiA}) ∪ {P

i+1
X iA, P

i+1
ZiA}

22: end for
23: return P = P2T (|S|−1)

only once for each sub-iteration. In addition, each iteration
has k−1 sub-iterations, resulting in a time complexity of
O(nk3) for each iteration. Furthermore, our implementa-
tion for computing W̃ is significantly faster in practice than
the sub-sampling technique proposed in Q-Match.

I. Implementation Details

I.1. Initialisation

The initial set of permutations P init is computed using
a descriptor-based similarity DSIJ ∈ Rn×n between all n
vertices of shape pairs I,J ∈ S . Specifically, DSIJ (u, v)
contains the similarity (inner product) of the normalised
heat-kernel-signatures (HKS) [4] descriptors (which we ex-
tend by an additional dimension indicating whether a vertex
lies on the left or right side of a shape) of vertex u of I and
vertex v of J . The left-right descriptors reduce left-right
flips in the solution since the shape classes we consider are
globally symmetric, which is not captured by the local HKS
descriptors. This is standard practice in the shape-matching
literature [9]. The solution of a linear assignment problem
on DSIJ is then the initial P init

IJ .
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(b) TOSCA
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Figure 3. Evolution during the optimisation (left) of the PCK, de-
picted with a colour bar gradient, and (right) of the total energy.
The horizontal red-dashed line is the energy of the ground-truth
solution. The results are on (a) a class of FAUST containing ten
shapes, (b) the cat class of TOSCA containing eleven shapes, and
(c) the cat class of SMAL containing nine shapes.
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Figure 4. PCK when using a fixed anchor (as our method does)
and when using random triplets. We average across all classes of
FAUST.

I.2. Pre-Computing Trivial Cycles

The matrix W̃ consists of couplings (quadratic terms)
and linear terms. Numerical experiments show that there
often exist cycles with linear terms that dominate the cor-
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responding coupling terms. This happens when a cycle is
largely uncorrelated to the rest of the cycles in the current
set of cycles. In this case, the decision for such a cycle can
be made trivially.

We now derive an inequality for how large the linear term
has to be such that the couplings can be neglected in the
optimisation problem. Consider the QUBO problem:

min
α∈{0,1}k

αTWα+ bTα, (2)

where α are the decision variables, b ∈ Rk is a vector, and
W is a symmetric matrix with zeros on the diagonal repre-
senting the couplings. We can look at the terms that depend
on αq for fixed q separately:

αTWα = αq

∑
i ̸=q

Wq,iαi + αq

∑
i̸=q

αiWi,q

+
∑
j ̸=q

(
∑
i ̸=q

αjWj,iαi + αjbj) + αqbq.

As W is symmetric, Wi,q = Wq,i holds and we can write

αTWα = αq

bq + 2
∑
i ̸=q

Wq,iαi


+
∑
j ̸=q

(
∑
i ̸=q

αjWj,iαi + αjbj).

It follows that if:

|bq| ≥
∑
i̸=q

2|Wq,i|, (3)

then we can make the decision based on the sign of bq: If
bq is positive we do not choose the cycle as doing so would
increase the energy. This reduces the number of physical
qubits required for the embedding.

J. Minor Embeddings and Other QPU Experi-
ments

J.1. QPU Processing and Annealing Time

Optimising a single QUBO uses ∼40ms of total QPU
processing time for 200 anneals. This is also called the QPU
access time [7]. However, there are also several overheads
that occur when solving QUBOs by accessing a D-Wave
annealer via the cloud. For example, a latency when con-
necting to the D-Wave annealer and a post processing time.
The QPU access time also includes a programming time.

These overheads can be orders of magnitude greater than
the time taken by the actual annealing, which is very short
since we use the default annealing schedule and the default
annealing time of 20 µs.
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Figure 5. PCK curves for (left) a three-shape and (right) a ten-
shape inter-class FAUST instance on both QPU architectures.
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Figure 6. Quantitative results when using (solid) 20 and (dashed)
40 worst vertices on a three-shape FAUST instance. We show (left)
the energy evolution during optimisation and (right) the final PCK
curves.

J.2. Minor Embeddings

As explained in the main paper, not all physical qubits
on a real quantum processing unit (QPU) can be connected
(coupled) with each other. Thus, a minor embedding of
the logical-qubit graph (defined by non-zero entries of the
QUBO matrix) into the physical-qubit graph (defined by the
hardware) is required. This can lead to a chain of multiple
physical qubits representing a single logical qubit.

Our logical input graph is a clique. Due to the limited
connectivity of current hardware, a clique cannot be directly
embedded onto the physical annealer. We thus require a
minor embedding, which is commonly computed using Cai
et al.’s method [5]. Fig. 13 visualises an example minor
embedding. We note that, since our input graphs are cliques,
a generalised embedding can be pre-computed and reused,
not impacting the time complexity.

J.3. Minor Embeddings in Practice

In this section, we investigate the empirical impact of
minor embeddings on the solutions. The minor embeddings
depend on the qubit topology, i.e. the physical qubit con-
nectivity pattern. Here, we show results on the D-Wave
Advantage 4.1 with its Pegasus topology (used in the main
paper) and also first results on a D-Wave Advantage2 pro-
totype of the next-generation Zephyr topology, which has a
higher connectivity than Pegasus.

Fig. 5 shows PCK curves on both topologies when using
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Figure 7. Structural changes of the minor embeddings when using
more worst vertices. We show (left) the number of physical qubits
and (right) the average chain length, for both QPU topologies. The
number of logical qubits equals the number of worst vertices.

m=2k=20 worst vertices. Both architectures obtain simi-
lar results, although they are very slightly worse than SA.
However, as discussed in the main paper, we find that the
performance of CCuantuMM degrades significantly when
using more than 20 worst vertices with QA. Specifically,
Fig. 6 shows that the quality of the matchings worsens when
using 40 worst vertices on both topologies, with Zephyr ob-
taining slightly better results. Still, in both cases, the quality
is worse than the matching quality obtained by SA. Only SA
shows the desired behaviour of improving when more worst
vertices are used.

The cause for these results lies with the structure of the
minor embeddings and not the plain number of physical
qubits. Fig. 7 shows how the structural properties of the
minor embeddings evolve as the number of worst vertices
increases. For 20 worst vertices, they are similar. However,
for 40 worst vertices, Zephyr uses fewer physical qubits and
smaller chains, which explains the very slight performance
advantage in Fig. 6. Physical qubits in a chain represent-
ing a single logical qubit are less likely to all anneal to the
same value the longer the chain is. Longer chains become
unstable and hence inconsistent, leading to inferior solution
quality.

K. Further Results and Ablations

K.1. Additional Qualitative Results

Fig. 14, Fig. 15, and Fig. 16 provide additional qualita-
tive examples of matchings on TOSCA and SMAL calcu-
lated with our method and the competitors.

K.2. Variation Within a Dataset

Within a dataset, some instances have more difficult de-
formations and are inherently harder to match than easier
instances, independent of the method employed. We inves-
tigate the extent of this variation by taking a closer look at
TOSCA. We observe a significant variation of PCK curves
across different classes in Fig. 8 and of AUC in Tab. 2.
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Figure 8. PCK for seven different classes of TOSCA. We plot our
method with solid lines and IsoMuSh [9] with dashed lines.

Dog Cat Horse Michael Victoria David Centaur
Ours 0.957 0.917 0.990 0.992 0.912 0.989 0.983

IsoMush 0.959 0.959 0.981 0.939 0.991 0.996 0.984

Table 2. AUC across seven different classes of TOSCA.

K.3. Influence of Descriptors

We ablate the need for left-right indicators when using
HKS descriptors for initialisation. Fig. 9 contains results on
the cat class of TOSCA. Without left-right indicators, we
observe flips in the matchings on TOSCA and partial flips
on FAUST for inter-class instances. This is expected since
both our method and IsoMuSh exploit intrinsic properties
of the shapes, which are invariant to such symmetric flips.
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Figure 9. PCK with and without left-right descriptors. We plot our
method with solid lines and IsoMuSh [9] with dashed lines.

K.4. Noise Perturbation

We investigate the robustness of our approach to noise.
To that end, we analyse the effect of adding synthetic pertur-
bations to the shapes. Specifically, for each FAUST mesh,
we add a Gaussian-distributed offset along the vertex nor-
mal to each vertex position. This ensures the meshed struc-
ture of the shape does not change. Fig. 10 visualises the
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amount of noise we experiment with. Fig. 11 shows that
our method is significantly more robust to noise than Iso-
MuSh.

Figure 10. Example of perturbing the geometry on FAUST, with
the noise variance set to 0.01 (left) and 0.02 (right).
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Figure 11. PCK for different amounts of perturbation (Gaussian
noise with variance σ2). We plot our method with solid lines and
IsoMuSh [9] with dashed lines. We report results on a class of
FAUST.

L. Related Quantum Computer Vision Works
Several quantum methods tackle alignment tasks, as

Tab. 3 shows. However, only Q-Match is relevant for com-
parisons. Several works only consider two point clouds and
cannot handle the multi-matching setting of our work, do
not consider fully non-rigid transformations, or only oper-
ate on point clouds, not meshes. QGM [13] only considers
two graphs with at most four vertices. Q-Sync [2] similarly
only works on at most five vertices, far fewer than what our
method can handle.
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Figure 13. Visualisation of an example minor embedding on Pegasus (which we use in the main paper). The visualisation is obtained via
D-Wave Leap 2’s problem inspector [8] for (upper left) 20, (upper right) 30, (lower left) 40, and (lower right) 50 worst vertices. Each node
depicts a physical qubit and the edges depict the chains of the minor embeddings.
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Figure 14. Qualitative results on the TOSCA [3] centaur class. We colour a source shape and transfer this colouring to target shapes via
the matches estimated by our method and competitors.
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Figure 15. Qualitative results on the TOSCA [3] David class. We colour a source shape and transfer this colouring to target shapes via the
matches estimated by our method and competitors.
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Figure 16. Qualitative results on a subset of the SMAL dog class. We colour a source shape and transfer this colouring to target shapes via
the matches estimated by our method and competitors.
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