In this supplemental material, we provide additional qual-
itative results in Section A, evaluation details in Section B,
additional per-part evaluation in Section C, additional abla-
tion discussion with qualitative visualizations for ablations
in Section D, visualization of part interpolations through
learned latent part spaces in Section E, part specifications
per category in Section F, and implementation details with
the description of the network architecture in Section G.

A. Additional qualitative analysis

In Figures 5, 6 and 7, we show additional qualitative
results and comparison of NPPs to baseline methods. We
can see that StructureNet [35] and Bokhovkin et al. [3] of-
ten produce incomplete and inaccurate shapes, can include
inconsistent parts (e.g. predicting only one chair arm or
predicting two types of legs for one chair). The advanced
point cloud segmentation method PointGroup [30] is able to
predict consistent part types for shapes but produces fairly
noisy geometry for these parts. In addition, when comparing
to baselines and NPPs without applying scene-aware con-
straints, we can clearly see a large amount of diversity within
shapes that should be similar or identical within one scan.

Several categories can be more challenging, due to more
often appearing with clutter (e.g., tables often have objects
on top vs chairs or trash cans); our learned manifolds help
to regularize this during TTO. In Fig. 8, we show common
failure cases that NPPs produces for different shape cate-
gories. Parts with little geometric distinction (e.g., cabinet
frame vs drawer often both lie on a flat plane) can be more
difficult to optimize, due to more challenging segmentation.
The most left case with the cabinet shows erroneous detec-
tion (too small), along with an excess wrong part prediction
of a cabinet base on the bottom. Missing scanned legs of
the chair result in the incorrect type of reconstructed chair
legs, while the 4-spoke swivel chair is ground truth. Dense

segmentation of real-world scans is often significantly chal-
lenging, tending to segment parts of the floor as chair legs,
parts of the wall as a bed headboard, or treating a full trash
bin as a bin with a top cover part.

B. Evaluation details

For semantic part completion and part segmentation eval-
uation, we sample 10, 000 points per part from predicted and
ground-truth mesh surfaces (within the corresponding ML-
CVNet bounding box) and transform them to the ScanNet
coordinate space. The Chamfer Distance metric is evaluated
for every pair of semantically matching parts between pre-
dicted and ground-truth meshes. In case there exists a part in
a ground-truth mesh that is missing for a predicted mesh or
vice versa, we use the center of the mesh as a missing part.
After each part is evaluated, we average scores to obtain the
final score for a full object.

For segmentation evaluation, we project labels from sam-
pled points onto ScanNet mesh vertices to obtain the set of
points not depending on a method. Here, to compute seg-
mentation Chamfer Distance for an object, the predicted and
ground-truth projected labeled points are used to get per-part
scores and then averaged. For one part IoU evaluation, the
corresponding projected points are marked as ones and the
rest as zeros, intersection and union scores are computed us-
ing these 0-1 sets. We similarly use 10,000 sampled points
per part for these metrics.

C. Per-part evaluation

We provide per-part semantic part completion and part
segmentation in Tab. 4, 5, 6, and 7. Our learned part mani-
folds enable more robust, accurate geometry reconstruction
also for individual parts.

| Chamfer Distance (|) — Accuracy

| chair | table | cabinet |
Method | leftarm rightarm back seat reg.leg starleg surf. base | central supp. drawer leg pedestal shelf surface side panel | door shelf frame base countertop |
SG-NN [12] + MLCVNet [55] + PointGroup [30] | 0.081 0075 0045 0012 0022 0099 0200 0.164 0204 0044 0245 0.174 0.024 0204 | 0150 0.124 0010 0376 0.344
MLCVNet [55] + StructureNet [35] 0.041 0036 0.005 0008 0020 0100 0223 0.123 0021 0.105 0.167 0.041 0.022 0.169 | 0.104 0.033 0028 0268 0.344
Bokhovkin et al. [3] 0.039 0039 0008 0008 0057 0074 0.110 0.044 0094 0.141 0.167 0121 0024 0175 | 0083 0.066 0032 0210 0229
Ours | 0.015 0015 0002 0003 0026 005 0081 | 0042 0.143 0077 0.101 0.146 0.006 0164 | 0.042 0078 0017 0207 0306 |

Table 4. Per-part evaluation of semantic part completion for ’chair’, ’table’, and ’cabinet’ categories on Scan2CAD [1] in comparison to

state-of-the-art part segmentation [30,

] and semantic part completion [3].

Chamfer Distance (]) — Accuracy

| bookshelf | bed | bin | |
Method ‘ door shelf frame base ‘ frame side surf. sleep area headboard ‘ base bottom box cover frame ‘ class avg. inst. avg. H
SG-NN [12] + MLCVNet [55] + PointGroup [30] | 0.097 0.245 0.005 1.298 | 0.059 0.776 0.009 0.890 0.191 0.072 0.001 0.133 0.049 0.201 0.077
MLCVNet [55] + StructureNet [35] 0.070 0.186 0.045 1.161 | 0.081 0.776 0.047 1.375 0.191 0.044 0.003 0.126 0.049 0.188 0.055
Bokhovkin et al. [3] 0.041 0.137 0.090 0.858 | 0.073 0.485 0.127 0.508 0.131 0.038 0.004 0.042 0.041 0.134 0.054
Ours [0.037 0.079 0068 1.298 | 0.020 0.290 0.051 0365 | 0.111 0.020 0.002 0.012 0.037 | 0.123 0.033 |

Table 5. Per-part evaluation of semantic part completion for bookshelf’, ’bed’, and ’bin’ categories on Scan2CAD [1] in comparison to

state-of-the-art part segmentation [30,

] and semantic part completion [3].

[Bokhovkin
etal. 21]

SG-NN
+ MLCVNet
+ PointGroup
[Jiang
etal. 20]

StructureNet
[Mo et al.19]

Ours (wlo
scene-aware)

Ours

Figure 5. Additional qualitative comparison of NPPs with point [30, 35] and voxel-based [3] state of the art on ScanNet scans with
Scan2CAD+PartNet ground truth.

Input
Scan

[Bokhovkin
etal. 2]

SG-NN
+ MLCVNet
+ PointGroup
[Jiang
et al. 20]

StructureNet
[Mo et al.19]

Ours (w/o
scene-aware)

Ours

Ground
Truth

Figure 6. Additional qualitative comparison of NPPs with point [30, 35] and voxel-based [3] state of the art on ScanNet scans with
Scan2CAD+PartNet ground truth.

Figure 7. Additional qualitative results on ScanNet [11] with Scan2CAD [1] and PartNet [30] targets, showing our consistent, complete part

decompositions.

| Chamfer Distance (]) — C

| chair | table | cabinet |
Method ‘ leftarm rightarm back seat reg. leg starleg surf. base ‘ central supp. drawer leg pedestal ~shelf surface side panel ‘ door shelf frame base countertop ‘
SG-NN [12] + MLCVNet [55] + PointGroup [30] | 0.096 0.086 0.041 0.014 0.054 0.063 0.161 0.152 0.137 0.092 0305 0.151 0.050 0.203 0.081 0.140 0.043 0.384 0.156
MLCVNet [55] + StructureNet [35] 0.051 0.049 0008 0008 0035 0.049 0.126 0.062 0.194 0.158 0.148 0.102 0.037 0246 | 0.104 0.085 0.061 0.298 0.156
Bokhovkin et al. [3] 0.046 0.049 0.012 0.011 0.056 0.057 0.139 0.078 0.149 0.165 0.148 0.106 0.045 0.181 0.094 0.111 0.062 0.219 0.111
Ours | 0.043 0.040 0.006 0.005 0.032 0.031 0120 | 0.044 0.135 0.118 0.148 0.116 0.026 0.181 | 0.071 0.159 0.064 0.266 0.152 |

Table 6. Per-part evaluation of part segmentation for ’chair’, ’table’, and ’cabinet’ categories on Scan2CAD [!] in comparison to state-of-the-
art part segmentation [30, 35] and semantic part completion [3].

Chamfer Distance () — Completion

‘ bookshelf ‘ bed ‘ bin ‘ H
Method ‘ door shelf frame base ‘ frame side surf. sleep area headboard ‘ base bottom box cover frame ‘ class avg. inst. avg. H
SG-NN [12] + MLCVNet [55] + PointGroup [30] | 0.348 0.143 0.020 1.066 | 0.072 0.567 0.043 0.999 0.284 0.077 0.004 0.093 0.038 0.193 0.084
MLCVNet [55] + StructureNet [35] 0.173 0.131 0.071 0.942 | 0.077 0.567 0.057 1.122 0.284 0.052 0.007 0.096 0.038 0.175 0.062
Bokhovkin et al. [3] 0361 0.095 0.096 0.754 | 0.068 0.505 0.109 0.507 0.153 0.050 0.008 0.045 0.036 0.144 0.056
Ours ‘ 0.520 0.130 0.119 1.066 ‘ 0.034 0.221 0.038 0.365 ‘ 0.167 0.029 0.004 0.020 0.033 ‘ 0.140 0.043 H

Table 7. Per-part evaluation of part segmentation for *bookshelf’, ’bed’, and ’bin’ categories on Scan2CAD [1] in comparison to state-of-the-
art part segmentation [30, 35] and semantic part completion [3].

Figure 8. Common failure cases for different shape categories produced by NPPs.

D. Additional ablation discussion

In Tab. 8 we compare results without Scene Consistency
constraints to ours only for the instances affected by these
constraints. Evaluated only on ~ 66% of instances and ~
57% of corresponding ScanNet scenes, NPPs outperform the
results without Scene Consistency constraints by a greater
gap compared to Tab. 3.

In Fig. 9 we show the qualitative ablation results cor-
responding to Tab. 3. Compared to quantitative results of
scene-aware constraint ablation, we see a more noticeable
effect in qualitative effect, with much more consistent part
decompositions for similar objects in a scene, even when
seen under fairly different partial views (i.e., matching left
and right chair arms, consistent joint of the table surface and
the table stand).

Without latent projection, arbitrary initializations for TTO
often land outside the basin of convergence (i.e., starting
with too discrepant parts for the trash bin and the cabinet),
resulting in poorer performance, as low-level geometric con-
straints may be ambiguous for resolving large structural
differences. TTO then improves significantly the fitting ac-
curacy enabling the prediction of geometry that lies outside
of the learned manifold (i.e., round table surface, missing
pillows on the bed). By leveraging TTO and projection ini-
tialization, we can achieve the best representation of the
input scan as its part decomposition.

We evaluate the effect of synthetic pre-training of the part
segmentation in Tab. 3 (w/o Synthetic Pretrain). The addi-
tional quantity and diversity of data help to avoid overfitting
to more limited real data (i.e., very poor results for ’bed” and
"trashcan’ categories due to limited real-world data).

The full-shape constraint helps to maintain consistency
between the global shape and the optimized parts during test-
time optimization (i.e. not connected box and cover parts
for the trash bin, inconsistent joints for the chair and the
cabinet). Dense segmentation guides the TTO optimization
constraints and prevents self-intersections between parts.

E. Interpolation properties of learned latent
part spaces

In Figure 10, we show the interpolation capabilities of
the part latent spaces that we use in NPPs to traverse dur-
ing test-time optimization. Although each part space has
been learned individually, their interpolations can produce
consistent shapes.

F. Part types per category

In Figure 11 we present the shape categories and the
corresponding parts that we use in our framework. There are
6 shape categories and 28 part types in total.

G. Implementation details

We provide further implementation details; note that pa-
rameters reported here are for the ‘chair’ category, and other
category parameter differences are specified in Table 9.

G.1. Pretrain decoders

We first train our latent part and shape spaces on the syn-
thetic PartNet [36] dataset. This corresponds to the tasks
‘Train decoder (shape)’, “Train decoder (parts)’ in Table 9.
The part and shape decoders are all MLPs composed of
8 linear layers of 512 dimensions each, using ReLU non-
linearities with a final tanh for SDF output. The detailed
architecture is shown in Tables 14, 15. To train the shape
decoder, we use an Adam optimizer with a batch size of 24
and learning rate of S5e-5 (‘Ir’ in the Table 9) for network
weights (with a factor 0.5 (‘Ir factor’) and decay interval of
500 epochs (‘Ir decay int.”)) and le-4 for latent parameters
(with a factor 0.5 and decay interval of 500 epochs), and
train for 2000 epochs. For the part decoder, we extend every
part latent with one-hot encoded part type and train the part
decoder using an Adam optimizer with a batch size of 48
and learning rate of Se-5 for network weights (with a decay
factor of 0.5 and decay interval of 400 epochs) and le-4 for
latent parameters (with a decay factor 0.5 and decay interval
of 400 epochs), and train for 2000 epochs.

Input
Scan

|
oo
LD 4 “

Figure 9. Qualitative ablation results on ScanNet [1 1] with Scan2CAD [1] and PartNet [36] targets, showing the importance of every design
choice in our method.

wifo

projection

| Chamfer Distance (]) — Accuracy |
Method ‘ chair table cab. bkshlf bed bin ‘ class avg inst avg H chair table cab. bkshlf bed bin ‘ class avg inst avg

scenes 126/189 30/127 14/94 13/39 14/47 10/74 | 164/285 164/285 || 126/189 30/127 14/94 13/39 14/47 10/74 | 164/285 164/285
instances 7647904 81/190 32/140 24/54 28/61 18/85 | 947/1434 947/1434 | 764/904 81/190 32/140 24/54 28/61 18/85 | 947/1434 947/1434

0.016 0.055 0.054 0.174 0.129 0.043 0.078 0.028 0.020 0.065 0.112 0.225 0.137 0.042 0.100 0.033
0.011 0.047 0.057 0.163 0.101 0.036 0.069 0.023 0.019 0.063 0.119 0257 0.099 0.035 0.098 0.033

Chamfer Distance () — Completion

w/o Scene Consistency
Ours

Table 8. Ablation study evaluating semantic part completion on Scan2CAD [1] including only the instances affected with Scene Consistency
constraints. We also provide information of how many shape instances and scenes are affected with scene-aware constraints for each
category.

BBBBAS

alslalaishe
TLLHLLS

Figure 10. Part interpolations through our learned latent part spaces for different shape classes.

G.2. Pre-training for latent projection and part seg-
mentation

We then train the projection mapping into the learned part
and shape spaces as well as the part segmentation. This part
corresponds to the task ‘Train projection’ in Table 9. Our
model is pre-trained on synthetic PartNet data using virtu-
ally scanned incomplete inputs to take advantage of a large
amount of synthetic data. We use an Adam optimizer with

batch size 64 and learning rate le-3 (‘lr” in the Table 9) de-
cayed by half (‘Ir factor’) every 12 epochs (‘Ir decay int.”) for
35 epochs. We use a large and a small PointNet-based [44]
network (small (‘PN-small’) and large (‘PN-big’)) to seg-
ment an input TSDF into parts and background. We refer
to Tables 12, 13 as architectures of ‘PN-small’ and ‘PN-big’
denoted in Table 9.

Table

Cabinet / Bookshelf

- seat - surface - door

- back - shelf - shelf

- left arm - pedestal - frame

- right arm - central support - base

- reg. legs - leg - countertop
- star legs - drawer

- surface base

Trashcan
- base
- bottom

- side panel

Bed

- frame
- side surface
= NeadiOda

Figure 11. Part specifications per category for the parts used in our approach. Note that "cabinet’ and "bookshelf” have the same set of parts.

G.3. Fine-tuning on ScanNet data

To apply to real-world observations, we fine-tune the pro-
jections and part segmentation on ScanNet [| 1] data using
MLCVNet [55] detections on train scenes. We use an Adam
optimizer with batch size 64, learning rate 2e-4 (‘I in the
Table 9) decayed by a factor of 0.2 (‘Ir factor’) every 40
epochs (‘Ir decay int.”) for 80 epochs.

G .4. Test-time optimization

For test-time optimization, we optimize for part and shape
codes using an Adam optimizer with learning rate of 3e-4
(‘Ir’ in Table 9) for 500 iterations. The learning rate is
multiplied by a factor of 0.1 (‘Ir factor’) after 300 iterations
(‘Ir decay int.”)). This part corresponds to the task ‘Test-time
opt.” in Table 9.

To enable more flexibility to capture input details, we
enable optimization of the decoder weights for parts and
shape after 400 iterations. We have used the first and the
second linear layers of part decoder (“part dec. layers opt.”)
to optimize simultaneously with latent vectors optimization
using Adam optimizer with learning rate of 3e-4 (‘Ir’) for
100 iterations. The learning rate is multiplied by a factor of
0.1 (“Ir factor (part dec.)’) after 300 iterations (‘Ir decay int.
(part dec.)’)).

In Egs. (5), (6) we use a weight Wy, for points
close to and further away from the surface. We have a set
Aunifnoise of points that have a distance to surface greater
than dipyne = 0.16m. Having decoded the projection of
the shape {z*}, we uniformly sample points around decoded
shape no closer than 0.2m to the surface of this shape, and
assign truncation distance dy,n. to these points. We also
add them to the set Ayn;f.noise. For the shape decoder
and for the set Aypif noise We set Wiryne = 5.0 (‘Werune
(shape unif. noise)’ in the Table 9); for part decoder we set
Wipyne = 20.0 (“Wepyne (parts unif. noise)’). Additionally,
while optimizing the particular part k£ during test-time opti-
mization we also use the points corresponding to other parts
as noise with distance dy,.,, and denote this set of points as
Apartnoise- Adding this set into optimization is necessary
to decrease intersections between different part geometries
after test-time optimization. We set Wyryne = 9.0 (“Wiryne
(part noise)’) for this set of points. Finally, in Eq. (4) we use
an additional weight for loss consistency term, for which we
set Weons = 200.0.

To encourage geometric completeness during test-time
optimization, we sample points with distances to surface
from the decoded shape S and parts { Py} (decoded from
{2} and {z%}), and add them to TSDF D (‘add pts. to

shape’ in the Table 9) or {DP}IJ,\Z’T”S (‘add pts. to parts’)

to the regions where points in S or {Py} are present and
non-background points with distance d < dtypne in D and
{Dp}é\g’f”s (which we call meaningful points) are missing.
We add only those points from S and {P;} which are not
closer than dyj,, to meaningful points.

Finally, we scale the coordinates of input TSDF with a
scale factor (‘scale factor’) to align better to the learned
canonical space of synthetic shapes.

Optimization for each part takes approximately 25 sec-
onds.

G.5. Hyperparameters search

We determined hyperparameters for training and TTO on
a hold-out validation set. There are parameters that affect
training and TTO more than others, such as the number of
decoder layers to use parameters from for TTO for both
shape and part decoders and learning rate for both training
and TTO. Parameters of decoder layers enable more flexi-
bility in optimization, but decrease implicit regularization
from learned part priors, resulting in less geometry consis-
tency. The proper choice of the learning rate for TTO is
important for accurate geometry reconstruction and avoiding
unstable optimization. All weights for the loss components
in TTO have a wide range of appropriate parameters (£20
for wipyne and 50 for wepn s)-

G.6. Network architecture

We also provide extensive information about the archi-
tecture of every submodel that we use in our framework.
Table 10 shows the architecture of voxel encoder that we
use to encode an input occupancy grid. Table 11 shows the
architecture of a module that predicts the part decomposition
of an input object. The architectures of a small PointNet-
like [44] network and a big PointNet-like network that we
use to segment an input TSDF are shown in Tables 12, 13.
Finally, we provide details about the architecture of shape
and parts MLP decoders in Tables 14, 15.

Task Parameter Chair Table | Cabinet | Bookshelf | Bed Trashcan
Train decoder (shape) # epochs 2000 2400 8000 8000 16000 16000
Train decoder (shape) batch size 24 24 24 24 24 24
Train decoder (shape) optimizer Adam Adam Adam Adam Adam Adam
Train decoder (shape) Ir (weights) 5e-5 le-4 le-4 le-4 le-4 le-4
Train decoder (shape) Ir factor (weights) 0.5 0.5 0.5 0.5 0.5 0.5
Train decoder (shape) Ir decay int. (weights) 500 600 1500 1500 4000 3000
Train decoder (shape) Ir (lat.) le-4 2e-4 2e-4 2e-4 2e-4 2e-4
Train decoder (shape) Ir factor (lat.) 0.5 0.5 0.5 0.5 0.5 0.5
Train decoder (shape) Ir decay int. (lat.) 500 600 1500 1500 4000 3000
Train decoder (parts) # epochs 1100 1400 2000 2000 10000 10000
Train decoder (parts) batch size 48 48 48 48 48 48
Train decoder (parts) optimizer Adam Adam | Adam Adam Adam Adam
Train decoder (parts) Ir (weights) 5e-5 le-4 le-4 le-4 le-4 le-4
Train decoder (parts) Ir factor (weights) 0.5 0.5 0.5 0.5 0.5 0.5
Train decoder (parts) Ir decay int. (weights) 400 400 800 800 3600 3600
Train decoder (parts) Ir (lat.) le-4 2e-4 2e-4 2e-4 2e-4 2e-4
Train decoder (parts) Ir factor (lat.) 0.5 0.5 0.5 0.5 0.5 0.5
Train decoder (parts) Ir decay int. (lat.) 400 400 800 800 3600 3600
Train projection # epochs 35 30 60 60 250 200
Train projection batch size 64 64 64 64 64 64
Train projection optimizer Adam Adam | Adam Adam Adam Adam
Train projection Ir le-3 le-3 le-3 le-3 le-3 le-3
Train projection Ir factor 0.5 0.5 0.5 0.5 0.5 0.5
Train projection Ir decay int. 12 20 40 40 150 120
Train projection segm. network PN-small | PN-big | PN-big PN-big PN-big | PN-big
Fine-tune # epochs 80 80 120 120 125 70
Fine-tune batch size 64 64 64 64 64 64
Fine-tune optimizer Adam Adam | Adam Adam Adam Adam
Fine-tune Ir 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
Fine-tune Ir factor 0.2 0.2 0.2 0.2 0.2 0.2
Fine-tune Ir decay int. 40 40 60 60 60 40
Test-time opt. # iterations 500 500 500 500 500 500
Test-time opt. optimizer Adam Adam | Adam Adam Adam Adam
Test-time opt. Ir (lat.) 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Test-time opt. Ir factor (lat.) 0.1 0.1 0.1 0.1 0.1 0.1
Test-time opt. Ir decay int. (lat.) 300 300 300 300 300 300
Test-time opt. shape dec. layers opt. - - - - 1,2 1,2
Test-time opt. Ir (shape dec.) - - - - le-4 le-4
Test-time opt. Ir factor (shape dec.) - - - - 0.1 0.1
Test-time opt. Ir decay int. (shape dec.) - - - - 300 300
Test-time opt. part dec. layers opt. 1,2 1,2 1,2 1,2 - -
Test-time opt. Ir (part dec.) 3e-4 3e-4 3e-4 3e-4 - -
Test-time opt. Ir factor (part dec.) 0.1 0.1 0.1 0.1 - -
Test-time opt. Ir decay int. (part dec.) 300 300 300 300 - -
Test-time opt. Wirune (shape unif. noise) 5.0 3.0 3.0 3.0 1.0 1.0
Test-time opt. Wirune (parts unif. noise) 20.0 12.0 12.0 12.0 1.0 5.0
Test-time opt. Wirune (part noise) 5.0 3.0 10.0 10.0 10.0 5.0
Test-time opt. Weons 200.0 300.0 300.0 300.0 30.0 200.0
Test-time opt. add pts. to shape v v v v v -
Test-time opt. dist thr. (shape) 0.16m 0.16m 0.5m 0.5m 0.75m -
Test-time opt. add pts. to parts - v v v v -
Test-time opt. dist thr. (part) - 0.16m 0.5m 0.5m 0.75m -
Test-time opt. scale factor 1.2 1.2 1.1 1.1 1.2 1.2

Table 9. Hyperparameters used for training submodels used in our framework.

Encoder ‘ Input Layer ‘ Type ‘ Input Size ‘ Output Size ‘ Kernel Size ‘ Stride ‘ Padding
conv(scan occ. grid Conv3D (1,32,32,32) | (32,16, 16, 16) 5,5,5) 2,2,2) | (2,2,2)
gnorm(conv(GroupNorm | (32, 16, 16, 16) | (32, 16, 16, 16) - - -
relu0 gnorm0 ReLU (32, 16, 16, 16) | (32, 16, 16, 16) - - -
pooll relu0 MaxPooling | (32, 16, 16, 16) (32, 8,8,8) 2,2,2) 2,2,2) | (0,0,0)
convl pooll Conv3D 32,8, 8,8) (64, 8, 8, 8) 3,3,3) (I, 1,1) | (1,1, 1)
gnorml convl GroupNorm (64, 8, 8, 8) (64, 8, 8, 8) - - -
relul gnorml ReLU (64, 8, 8, 8) (64, 8, 8, 8) - - -
pool2 relul MaxPooling (64, 8, 8, 8) (64,4,4,4) 2,2,2) 2,2,2) | (0,0,0)
conv2 pool2 Conv3D (64,4,4,4) (128,2,2,2) 5,5,5) 2,2,2) | (2,2,2)
gnorm?2 conv2 GroupNorm (128,2,2,2) (128,2,2,2) - - -
relu2 gnorm?2 ReLU (128,2,2,2) (128,2,2,2) - - -
pool3 relu2 MaxPooling (128,2,2,2) (128, 1,1, 1) 2,2,2) 2,2,2) | (0,0,0)
conv3 pool3 Conv3D (128, 1,1, 1) (256,1,1,1) 3,3,3) (1,1,1) | (1,1, 1)
gnorm3 conv3 GroupNorm (256,1,1,1) (256,1,1,1) - - -
relu3 gnorm3 ReLU (256,1,1, 1) (256,1,1,1) - - -
shape feature relu3 Flatten (256,1,1,1) (256) - - -
Table 10. Layer specification for detected object encoder.
Child decoder Input Layer ‘ Type ‘ Input Size Output Size
lin_proj shape feature ReLU(Linear) 256 256
node feature lin_proj ReLU(Linear) 256 256
1in0 node feature Linear 256 2560
relu0 lin0 ReLU 2560 2560
reshape(relu0 Reshape 2560 (10, 256)
node _exist reshape0 Linear (10, 256) (10, 1)
concat0 (reshape0, reshape0) Concat. (10, 256), (10, 256) (10, 10, 512)
linl concat(Q Linear (10, 10, 512) (10, 10, 256)
relul linl ReLU (10, 10, 256) (10, 10, 256)
edge_exist relul Linear (10, 10, 256) (10, 10, 1)
mp (relul, edge_exist, reshape0) | Mes. Passing | (10, 10, 256), (10, 10, 1), (10, 256) (10, 768)
lin2 mp Linear (10, 768) (10, 256)
relu2 lin2 ReLU (10, 256) (10, 256)
node_sem relu2 Linear (10, 256) (10, #classes)
lin3 relu2 Linear (10, 256) (10, 256)
(10, child feature) lin3 ReLU (10, 256) (10, 256)
lin4 node feature ReLU(Linear) 256 256
rotation_cls lin3 Linear 256 12
Table 11. Layer specification for decoding an object into its semantic part structure.
Pts. classifier (small) ‘ Input Layer Type ‘ Input Size Output Size
input feature (TSDF, node feature, rotation_cls) Concat. (#pts, 4), 256, 12 (#pts, 272)
lin_cls_0 input feature ReLU(Linear) (#pts, 272) (#pts, 128)
lin_cls_1 lin_cls_0 ReLU(Linear) (#pts, 128) (#pts, 128)
lin_cls 2 lin_cls_1 ReLU(Linear) (#pts, 128) (#pts, 128)
glob_feat 0 lin_cls_2 MaxPooling1D (#pts, 128) (1, 128)
glob_feat_1 glob_feat_ 0 Repeat (1, 128) (#pts, 128)
lin_cls_3 (lin_cls_1, glob_feat_1) Concat (#pts, 128), (#pts, 128) (#pts, 256)
lin_cls_4 lin_cls_3 ReLU(Linear) (#pts, 256) (#pts, 128)
lin_cls_5 lin_cls 4 ReLU(Linear) (#pts, 128) (#pts, 128)
lin_cls_6 lin_cls_5 Linear (#pts, 128) (#pts, #classes)

Table 12. Layer specification for segmenting input TSDF using small PointNet-like network.

Pis. classifier (big) | Input Layer | Type | Input Size Output Size
input feature (TSDF, node feature, rotation_cls) Concat. (#pts, 4), 256, 12 (#pts, 272)
lin_cls_0 input feature ReLU(Linear) (#pts, 272) (#pts, 256)
lin_cls_1 lin_cls_0 ReLU(Linear) (#pts, 256) (#pts, 128)
lin_cls 2 lin_cls_1 ReLU(Linear) (#pts, 128) (#pts, 128)
glob_feat 0 lin_cls 2 MaxPooling1D (#pts, 128) (1, 128)
glob_feat_1 glob_feat_0 Repeat (1, 128) (#pts, 128)
lin_cls_3 lin_cls 2 ReLU(Linear) (#pts, 128) (#pts, 64)
lin_cls 4 lin_cls_3 ReLU(Linear) (#pts, 64) (#pts, 64)
glob_feat_2 lin_cls 4 MaxPooling1 D (#pts, 64) (1, 64)
glob_feat_3 glob_feat_2 Repeat (1, 64) (#pts, 64)
lin_cls_5 (lin_cls_1, glob_feat_I, glob_feat_3) Concat (#pts, 128), (#pts, 128), (#pts, 64) (#pts, 320)
lin_cls_6 lin_cls_5 ReLU(Linear) (#pts, 320) (#pts, 128)
lin_cls_7 lin_cls_6 ReLU(Linear) (#pts, 128) (#pts, 64)
lin_cls_8 lin_cls_7 Linear (#pts, 64) (#pts, #classes)

Table 13. Layer specification for segmenting input TSDF using big PointNet-like network.

Implicit decoder ‘ Input Layer ‘ Type Input Size Output Size
lin_proj_0 node feature ReLU(Linear) 256 512
lin_proj_1 lin_proj_0 ReLU(Linear) 512 512
lin_proj_2 lin_proj_1 ReLU(Linear) 512 512
lin_proj_3 lin_proj_2 ReLU(Linear) 512 512
lin_proj_4 lin_proj_3 Linear 512 256
lin_pts_0 (lin_proj_4, TSDF pts.) Concat. 256, 63 319
lin_pts_1 lin_pts_0 Linear 319 512

lin_bn_1 lin_pts_1 BatchNorm 512 512
lin_relu_1 lin_bn_1 ReLU 512 512
lin_drop_1 lin_relu_1 Dropout 512 512
lin_pts_2 lin_pts_1 Linear 512 512
lin_bn_2 lin_pts 2 BatchNorm 512 512
lin_relu_2 lin_bn 2 ReLU 512 512
lin_drop_2 lin_relu_2 Dropout 512 512
lin_pts_3 lin_pts_2 Linear 512 512
lin_bn_3 lin_pts_3 BatchNorm 512 512
lin_relu_3 lin_bn_3 ReLU 512 512
lin_drop_3 lin_relu_3 Dropout 512 512
lin_pts_4 lin_pts_3 Linear 512 512 - dim(lin_pts_0)
lin_bn 4 lin_pts_4 BatchNorm 512 - dim(lin_pts_0) 512 - dim(lin_pts_0)
lin_relu_4 lin_bn_4 ReLU 512 - dim(lin_pts_0) 512 - dim(lin_pts_0)
lin_drop_4 lin_relu_4 Dropout 512 - dim(lin_pts_0) 512 - dim(lin_pts_0)
lin_pts_5 (lin_pts_0, lin_drop_4) Concat. dim(lin_pts_0), 512 - dim(lin_pts_0) 512
lin_bn_5 lin_pts_5 BatchNorm 512 512
lin_relu_5 lin_bn_5 ReLU 512 512
lin_drop_5 lin_relu_5 Dropout 512 512
lin_pts_6 lin_pts_S Linear 512 512
lin_bn_6 lin_pts_6 BatchNorm 512 512
lin_relu_6 lin_bn_6 ReLU 512 512
lin_drop_6 lin_relu_6 Dropout 512 512
lin_pts_7 lin_pts_6 Linear 512 512
lin_bn_7 lin_pts_7 BatchNorm 512 512
lin_relu_7 lin_bn_7 ReLU 512 512
lin_drop_7 lin_relu_7 Dropout 512 512
lin_pts_8 lin_pts_7 Linear 512 1
lin_tanh_7 lin_pts_8 Tanh 1 1

Table 14. Layer specification for implicit shape decoder.

Implicit decoder ‘ Input Layer Type Input Size Output Size
lin_proj_0 child feature ReLU(Linear) 256 512
lin_proj_1 lin_proj_0 ReLU(Linear) 512 512
lin_proj_2 lin_proj_1 ReLU(Linear) 512 512
lin_proj_3 lin_proj_2 ReLU(Linear) 512 512
lin_proj_4 lin_proj_3 Linear 512 256

lin_pts_0 (lin_proj_4, part cls. one-hot, TSDF pts.) Concat. 256, #parts, 63 319 + #parts
lin_pts_1 lin_pts_0 Linear 319 + #parts 512
lin_bn_1 lin_pts_1 BatchNorm 512 512
lin_relu_1 lin_bn_1 ReLU 512 512
lin_drop_1 lin_relu_1 Dropout 512 512
lin_pts_2 lin_pts_1 Linear 512 512
lin_bn_2 lin_pts_2 BatchNorm 512 512
lin_relu_2 lin_bn_2 ReLU 512 512
lin_drop_2 lin_relu_2 Dropout 512 512
lin_pts_3 lin_pts_2 Linear 512 512
lin_bn_3 lin_pts_3 BatchNorm 512 512
lin_relu_3 lin_bn_3 ReLU 512 512
lin_drop_3 lin_relu_3 Dropout 512 512
lin_pts_4 lin_pts_3 Linear 512 512 - dim(lin_pts_0)
lin_bn_4 lin_pts_4 BatchNorm 512 - dim(lin_pts_0) 512 - dim(lin_pts_0)
lin_relu_4 lin_bn_4 ReLLU 512 - dim(lin_pts_0) 512 - dim(lin_pts_0)
lin_drop_4 lin_relu_4 Dropout 512 - dim(lin_pts_0) 512 - dim(lin_pts_0)
lin_pts_5 (lin_pts_0, lin_drop_4) Concat. dim(lin_pts_0), 512 - dim(lin_pts_0) 512
lin_bn_5 lin_pts_5 BatchNorm 512 512
lin_relu_5S lin_bn_5 ReLU 512 512
lin_drop_5 lin_relu_5 Dropout 512 512
lin_pts_6 lin_pts_5 Linear 512 512
lin_bn_6 lin_pts_6 BatchNorm 512 512
lin_relu_6 lin_bn_6 ReLU 512 512
lin_drop_6 lin_relu_6 Dropout 512 512
lin_pts_7 lin_pts_6 Linear 512 512
lin_bn_7 lin_pts_7 BatchNorm 512 512
lin_relu_7 lin_bn_7 ReLU 512 512
lin_drop_7 lin_relu_7 Dropout 512 512
lin_pts_8 lin_pts_7 Linear 512 1
lin_tanh_7 lin_pts_8 Tanh 1 1

Table 15. Layer specification for implicit part decoder.

	. Introduction
	. Related Works
	. Method
	. Overview
	. Object Detection
	. Learned Space of Neural Part Priors
	. Part Decompositions in Real Scenes
	. Joint Inter- and Intra-Shape Part Optimization
	. Implementation Details

	. Results
	. Conclusion
	. Additional qualitative analysis
	. Evaluation details
	. Per-part evaluation
	. Additional ablation discussion
	. Interpolation properties of learned latent part spaces
	. Part types per category
	. Implementation details
	. Pretrain decoders
	. Pre-training for latent projection and part segmentation
	. Fine-tuning on ScanNet data
	. Test-time optimization
	. Hyperparameters search
	. Network architecture

