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A. Experimental settings
In this section, we give additional information for re-

producibility purpose. Additionally, the code is publicly
available at github.com/valeoai/ALSO under an open source
license.

A.1. Self-supervision

A.1.1 Occupancy decoder

The occupancy decoder, presented in Figure A1, is a four-
layer MLP. It takes as input the concatenation of the latent
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Figure A1. Decoder architecture.

vector and the local coordinates of the query point q with
respect to the support point s. We use ReLU activations, and
the hidden size of the MLP is set to 128, which is the size of
the latent space.

We also provide a code sample for the decoder in List-
ing 1. The code is written in Python, using PyTorch [6] and
PyTorch Geometric [3] for neighborhood computation.

A.1.2 Data transformation.

We detail here the transformations of the data used at pre-
training.

Semantic segmentation pre-training. The voxel-size
used in the sparse convolution backbone is set to 0.1 m for
nuScenes/LivoxSimu and 0.05 m for SemanticKITTI/Seman-
ticPOSS.

Detection pre-training. The voxel sizes are those used in
OpenPCDet [9] and ONCE [4] for the different backbones.
On KITTI, the voxel size is 0.05 m on the horizontal plane
and 0.1 m in the vertical direction. On ONCE, the voxel
size is 0.1 m on the horizontal plane and 0.2 m in the vertical
direction.

Data augmentations. We apply classical point cloud data
augmentations: random rotation around the z-axis as well as
random flipping of the other axes.

Hardware configuration. For all our pre-traininings, we
use a single Nvidia V100 16GB GPU.
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1 import torch
2 from torch.nn as Linear, ReLU
3 from torch.nn.functional import

binary_cross_entropy_with_logits as bce_loss,
l1_loss

4 from functools import partial
5 from torch_geometric.nn import radius
6

7 # l_size: latent_size
8 # o_size: output size
9 # r: neighborhood radius

10

11 class OccupancyDecoder(torch.nn.Module):
12

13 def __init__(self, l_size=128, o_size=2, r=1):
14 super().__init__()
15

16 mlp = []
17 for i in range(3):
18 mlp.append(Linear(l_size, l_size))
19 mlp.append(Linear(l_size, o_size))
20 self.mlp = torch.nn.Sequential(*mlp)
21 self.ball_search = partial(radius, r=r)
22 self.r = r
23

24 def forward(self, data):
25

26 # get data from input dictionary
27 pos_support = data["pos_support"]
28 batch_support = data["batch_support"]
29 pos_query = data["pos_query"]
30 batch_query = data["batch_query"]
31 latent = data["latent"]
32

33 ## NEIGHBORHOOD SEARCH - LOCAL COORDINATES
34 row, col = self.ball_search(x=pos_support,
35 y=pos_query, batch_x=batch_support,
36 batch_y=batch_query)
37 pos_local = pos_query[row] - pos_support[col]
38 l_local = latent[col]
39

40 ## OCCUPANCY ESTIMATION
41 x = torch.cat([l_local, pos_local], dim=1)
42 x = self.mlp(x)
43 occ_preds, i_preds = x[:, 0], x[:, 1]
44

45 ## LOSS COMPUTATION
46 occ_gt = data["query_occupancy"][row]
47 occ_loss = bce_loss(occ_preds, occ_gt)
48

49 i_gt = data["query_intensity"][row]
50 i_mask = (i_gt >= 0)
51 i_loss = l1_loss(i_preds[i_mask],
52 i_gt[i_mask])
53

54 return occ_loss + i_loss

Listing 1. Pseudo-code of the decoder code using PyTorch syntax.

A.2. Details for finetuning on downstream tasks

Weight initialization. For semantic segmentation, we
initialize all the backbone’s weights with the pre-trained
weights, except for the last layer (used for point-wise clas-

Figure A2. Latent space visualization.

sification) which is randomly initialized. Then we finetune
all the layers with the same learning rate, as described in the
main paper.

For detection, we initialize the network’s weights using
the pre-trained weights, both for the sparse backbone and
the dense BEV layers. These backbone and dense layers are
finetuned along with the SECOND/PV-RCNN detectors on
the task of supervised 3D object detection.

Hardware configuration. Semantic segmentation and
KITTI detection downstream experiments are done on a
single Nvidia RTX2080Ti 11GB GPU. For ONCE detection,
we used 8 Nvidia V100 16GB GPUs.

B. Analysis of the latent space

In the main paper, we showed that using a self-supervised
geometric pretext task is powerful to pre-train a backbone
for both semantic segmentation and object detection. In this
section, we look at the structure of the underlying latent
space, learned using ALSO.

B.1. Natural clusters in latent space

We randomly select 15 nuScenes point clouds from which
we select at most 2000 points of each semantic class. We
gather the self-supervised latent vectors corresponding to



these points and embed them in a 2-dimensional space using
t-SNE [10].

Figure A2 presents the result of this t-SNE embedding,
where the colors encode the semantic classes. We notice
that points belonging to the same class tends to be clustered
together in this representation. When restricting the analysis
to the car class and selecting neighbors in this representation,
we notice that the corresponding cars are captured from the
same point-of-view (rear right from the ego vehicle), indi-
cating that the latent space probably tends to group together
objects sharing the same apparent geometry.

B.2. Expected geometric properties visible in the
latent space.

Surface orientation. In Figure A3 (a), we differentiate
points belonging to horizontal flat surfaces (driveable sur-
face, sidewalk, terrain and other flat surfaces) as opposed to
points on objects usually sampled from the side, i.e., where
surface is vertical (buildings, pedestrian...). We remark we
can almost linearly separate these two sets of points in the
t-SNE representation of the latent space, showing that the
network rely on low-level geometric features, e.g., rough
normal estimation, to solve the pretext task.

(a) Flat horizontal surfaces (yellow) (b) Side w.r.t. ego orientation:
vs vertical objects (purple) right (yellow) and left (purple)

Figure A3. Geometric structure of the latent space (nuScenes).

Symmetric occupancy map. In Figure A3 (b), we differ-
entiate points with positive and negative x-coordinate, i.e.,
point on the right and on the left of the ego-vehicle. Again,
we notice that these two sets of points are quite well sepa-
rated in the t-SNE representation. This is explained by the
fact the occupancy reconstruction task produces oriented
surfaces. Two similar objects but located on different side of
the road exhibit symmetric occupancy maps w.r.t. the (y, z)
plane (see Figure A4), yielding different representations in
the latent space.

C. Additional parameter and alternative studies
δ parameter. In our approach, a location at a random dis-
tance in [0, δ] behind an observed point is deemed occupied.

Sensor

Same

point cloud

Symmetric

occupancies

Figure A4. Symmetry of occupancy.

(a) δ parameter study

δ (m) 0.05 0.1 0.2 0.4 0.8

mIoU 38.3 38.4 38.7 38.7 38.1

(b) Decoder head alternatives

Decoder POCO Ball + Ball + ALSO
head (Knn + Att.) Avg. Max. Ball per point

mIoU% 33.8 35.7 35.8 38.4

Table A1. Parameter study for δ (a) and alternative study for the
decoder head (b) during the pre-training. Experiments are evaluated
on the ablation-val set of nuScenes.

We argue this heuristics, also successfully used in [8], is
simple and correct often enough although, as any heuristics,
it can occasionally be wrong, just as random negatives in
contrastive learning are also sometimes wrong. Importantly,
our heuristics is stable across a significant range of values
for δ, as shown in Table A1 (a). In our experiments, we
uniformly chose δ = 0.1m as a kind of minimal thickness
of the sort of objects we want to perceive. But, as visible
in this table, there may be slightly more beneficial values
depending on the dataset, e.g., 0.2m for nuScenes.

Decoder head. Local information is good for accurate sur-
face reconstruction [1, 7]: it allows each point feature to
focus on local geometric details, as the decoder aggregates
contextual information to predict occupancy. Instead, in
ALSO, we force each individual point to know how to recon-
struct its entire neighborhood on its own. Doing so yields
single point features that are more context-aware, hence with
a more semantic flavor, at the possible cost of a less-accurate
surface reconstruction. In Table A1 (b), we provide an ad-
ditional study to compare different reconstruction heads:
POCO head [1], ball search + average/maximum pooling. It
shows that limiting the expressiveness of the decoder to a
per-point MLP (ALSO head) helps self-supervision.

D. Additional visualizations

We also provide additional visualizations on Figure A5.
They are produced similarly to Figure 1 in the main paper. To
produce these aggregated views, we compute the occupancy



in a 1-meter radius ball from the input points by randomly
picking query points in this ball. Each inside point is then
labeled with the estimated class of the closest input point.
These estimated classes are obtained with the downstream
model finetuned for semantic segmentation. Visualization
are provided for SemanticKITTI, nuScenes and LivoxSimu.

E. Semantic segmentation: experiment scores
details

All the scores for the ablation study and the semantic
segmentation experiments are averaged over 5 runs in the
main paper. We provide here all the individual score: in
Table A2 for the ablation study, in Table A3 for the exper-
iments on nuScenes, in Table A4 for the experiments on
SemanticKITTI, in Table A5 for the experiments on Seman-
ticPOSS and in Table A6 for the experiments on LivoxSimu.
In each table, we highlight in bold the best run, and report
the average score (same as in the paper) as well as the the
standard deviation.

F. 3D detection: experiment scores details
Last, we provide more detailed scores for the experiments

on 3D object detection.
On KITTI-3D detection, we provide in Table A7 scores

for the different official metrics (2D object detection, bird’s-
eye-view detection, 3D object detection, orientation sim-
ilarity). We also report the scores for the easy and hard
categories (in the main paper, the reported scores correspond
to the moderate difficulty category). Cells are colored ac-
cording to the gain obtained using self-supervised weight
initialization.

ALSO offers a performance boost on pedestrian and cy-
clists no matter what the metric is. However, on the car class,
the gain is reduced, probably because the car class is already
performing well.

As in [4], we report in Table A8 the per-distance perfor-
mance for each of the three classes of interest. Our approach
performs on par with the proposed baselines, including Deep-
Cluster [2]. The performance boost is mainly due to the good
detection performance of pedestrians between 0 and 50 me-
ters.
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(a) SemanticKITTI

(b) nuScenes (c) LivoxSimu

Figure A5. Semantic segmentation predictions and occupancies on various datasets: (a) SemanticKITTI, (b) nuScenes, (c) LivoxSimu.

Input Loss Search Num. Runs Average
Intensity LI radius (m) epochs and std dev

✗ ✗ 1.0 100 36.45 36.68 35.94 36.38 36.64 36.42 ±0.30
✓ ✗ 1.0 100 38.38 38.17 38.12 38.23 38.14 38.21 ±0.10
✓ ✓ 1.0 100 38.48 38.54 38.31 38.85 38.01 38.44 ±0.31

✓ ✓ 0.5 100 37.60 37.77 37.74 37.25 37.60 37.59 ±0.21
✓ ✓ 1.0 100 38.48 38.54 38.31 38.85 38.01 38.44 ±0.31
✓ ✓ 2.0 100 38.06 37.93 38.68 38.45 37.68 38.16 ±0.40
✓ ✓ 4.0 100 36.18 36.89 36.40 36.38 35.88 36.35 ±0.37

Table A2. Ablation study on nuScenes custom ablation validation set, 1%. Details of experiments.



% Backbone Method Runs Average and std

0.1% MinkUNet No pre-training 21.88 21.21 22.05 21.08 21.96 21.64 ±0.45
PointContrast [11] 26.39 27.35 27.82 26.95 26.89 27.08 ±0.54
DepthContrast [12] 21.89 21.88 21.63 21.87 21.27 21.71 ±0.27
ALSO 26.62 26.86 25.99 25.59 26.08 26.23 ±0.51

SPVCNN No pre-training 21.97 22.30 22.09 22.18 22.45 22.20 ±0.19
ALSO 24.40 24.16 25.86 25.73 23.93 24.82 ±0.91

1% MinkUNet No pre-training 34.86 35.09 34.72 34.72 35.55 34.99 ±0.35
PointContrast [11] 37.24 37.24 36.25 36.76 37.36 36.97 ±0.46
DepthContrast [12] 34.51 34.74 35.38 34.23 34.07 34.59 ±0.51
ALSO 37.42 37.52 37.15 37.11 37.94 37.43 ±0.34

SPVCNN No pre-training 34.27 34.94 34.26 34.10 34.37 34.39 ±0.32
ALSO 37.24 37.14 37.55 37.24 37.74 37.38 ±0.25

10% MinkUNet No pre-training 57.62 57.66 57.31 56.70 57.19 57.30 ±0.39
PointContrast [11] 59.00 58.73 58.66 58.96 59.05 58.88 ±0.17
DepthContrast [12] 58.03 57.00 57.36 57.56 56.90 57.37 ±0.46
ALSO 58.63 58.62 59.11 59.28 59.35 59.00 ±0.35

SPVCNN No pre-training 57.37 56.97 57.34 56.75 57.18 57.12 ±0.26
ALSO 58.15 58.56 58.42 58.48 58.60 58.44 ±0.18

50% MinkUNet No pre-training 68.80 68.90 68.94 69.31 69.01 68.99 ±0.19
PointContrast [11] 69.15 69.09 69.39 69.42 69.75 69.36 ±0.26
DepthContrast [12] 69.12 69.04 69.38 69.57 68.66 69.15 ±0.35
ALSO 69.69 69.58 69.93 69.66 70.17 69.81 ±0.24

SPVCNN No pre-training 69.24 69.06 68.68 68.74 69.09 68.96 ±0.24
ALSO 69.55 69.77 69.47 69.24 69.65 69.54 ±0.20

100 % MinkUNet No pre-training 71.21 71.35 71.20 70.93 71.32 71.20 ±0.17
PointContrast [11] 71.12 71.27 70.90 70.94 71.31 71.11 ±0.19
DepthContrast [12] 71.31 71.20 71.30 70.81 71.36 71.20 ±0.22
ALSO 71.95 71.92 71.60 71.88 71.39 71.75 ±0.24

SPVCNN No pre-training 70.82 70.79 70.56 70.86 70.41 70.69 ±0.19
ALSO 71.41 71.18 70.99 71.20 71.48 71.25 ±0.20

Table A3. NuScenes. Details of experiments.



% Backbone Method from [5] Runs Average and std

0.1% MinkUNet No pre-training 25.59 30.22 29.99 29.74 30.15 29.77 29.97 ±0.22
PointContrast [11] 28.52 32.79 31.84 31.88 32.96 32.60 32.41 ±0.52
DepthContrast [12] 33.51 32.43 32.09 33.01 32.24 32.80 32.51 ±0.38
SegContrast [5] 34.78 32.65 32.38 32.48 32.18 31.83 32.30 ±0.31
ALSO N/A 34.97 34.83 34.81 35.10 35.11 34.96 ±0.14

SPVCNN No pre-training N/A 30.94 30.81 30.66 30.47 30.81 30.74 ±0.18
ALSO N/A 35.35 34.78 34.71 34.93 35.43 35.04 ±0.33

1% MinkUNet No pre-training 41.70 45.1 46.32 46.59 46.68 46.49 46.24 ±0.65
PointContrast [11] 43.40 47.71 47.97 48.22 47.25 48.43 47.92 ±0.46
DepthContrast [12] 46.41 49.62 49.12 48.59 48.94 48.74 49.00 ±0.40
SegContrast [5] 47.41 48.91 49.35 48.87 48.81 48.54 48.90 ±0.29
ALSO N/A 50.04 50.28 49.43 50.41 50.02 50.04 ±0.38

SPVCNN No pre-training N/A 46.24 47.23 46.53 46.26 46.67 46.59 ±0.40
ALSO N/A 49.34 49.75 49.05 48.90 48.32 49.07 ±0.53

10% MinkUNet No pre-training 53.87 57.04 58.74 57.71 56.27 58.01 57.55 ±0.94
PointContrast [11] 53.79 59.48 59.78 60.44 59.26 59.56 59.70 ±0.45
DepthContrast [12] 56.29 59.49 60.74 60.27 60.46 60.75 60.34 ±0.52
SegContrast [5] 55.21 59.63 58.57 58.45 58.78 58.29 58.74 ±0.53
ALSO N/A 60.41 60.45 60.47 60.54 60.43 60.46 ±0.05

SPVCNN No pre-training N/A 58.8 58.95 59.21 59.47 57.85 58.86 ±0.62
ALSO N/A 60.71 60.32 60.97 60.32 60.66 60.60 ±0.28

50% MinkUNet No pre-training 58.34 61.48 62.33 61.88 61.80 61.31 61.76 ±0.39
PointContrast [11] 57.30 62.68 62.91 62.54 62.35 63.19 62.73 ±0.33
DepthContrast [12] 58.54 63.24 63.31 63.16 62.44 62.37 62.90 ±0.46
SegContrast [5] 58.33 62.58 62.20 61.61 61.74 62.46 62.12 ±0.43
ALSO N/A 63.09 63.43 62.99 63.28 64.15 63.39 ±0.46

SPVCNN No pre-training N/A 61.32 62.15 61.61 61.7 62.39 61.83 ±0.43
ALSO N/A 63.4 63.4 63.45 64.08 63.44 63.55 ±0.29

100% MinkUNet No pre-training 59.63 62.49 62.35 62.98 62.50 63.06 62.68 ±0.32
PointContrast [11] 59.77 63.57 63.14 63.13 63.95 63.26 63.41 ±0.35
DepthContrast [12] 59.88 63.76 64.31 63.52 63.54 64.12 63.85 ±0.35
SegContrast [5] 60.53 62.64 61.57 62.53 62.24 62.45 62.29 ±0.43
ALSO N/A 64.29 63.75 63.75 63.34 63.07 63.64 ±0.46

SPVCNN No pre-training N/A 62.39 62.86 62.33 62.88 62.82 62.66 ±0.27
ALSO N/A 63.60 64.04 63.59 63.93 63.76 63.78 ±0.20

Table A4. SemanticKITTI. Details of experiments.



% Backbone Method Runs Average and std

0.1% MinkUNet No pre-training 37.23 37.53 36.37 36.72 36.59 36.89 ±0.48
PointContrast [11] 39.22 40.60 38.56 39.24 38.73 39.27 ±0.80
DepthContrast [12] 38.69 39.35 41.16 39.87 39.25 39.66 ±0.94
SegContrast [5] 41.72 42.89 41.45 41.74 40.68 41.70 ±0.79
ALSO 40.04 41.23 41.29 40.88 39.83 40.65 ±0.68

1% MinkUNet No pre-training 46.99 46.23 46.09 46.33 46.47 46.42 ±0.35
PointContrast [11] 48.45 48.26 48.40 48.43 47.11 48.13 ±0.58
DepthContrast [12] 48.08 48.78 48.29 48.36 48.96 48.49 ±0.36
SegContrast [5] 48.94 50.02 49.34 49.08 49.66 49.41 ±0.44
ALSO 50.55 48.85 49.02 49.86 49.51 49.56 ±0.68

10% MinkUNet No pre-training 54.29 53.96 54.53 54.95 54.60 54.47 ±0.37
PointContrast [11] 55.91 54.60 54.77 54.96 55.29 55.11 ±0.52
DepthContrast [12] 56.17 55.81 55.17 55.82 55.96 55.79 ±0.37
SegContrast [5] 55.48 55.41 55.39 55.50 54.97 55.35 ±0.22
ALSO 56.16 56.19 55.43 55.15 56.14 55.81 ±0.49

50% MinkUNet No pre-training 55.48 55.19 55.40 55.27 55.04 55.28 ±0.17
PointContrast [11] 55.84 56.46 55.62 55.90 57.01 56.17 ±0.56
DepthContrast [12] 54.67 56.35 56.12 56.26 56.73 56.03 ±0.79
SegContrast [5] 56.84 55.89 54.82 56.89 56.76 56.24 ±0.89
ALSO 57.07 55.56 56.71 56.13 56.30 56.35 ±0.58

100% MinkUNet No pre-training 54.52 55.52 55.52 55.10 54.83 55.10 ±0.44
PointContrast [11] 55.80 56.02 55.48 57.13 56.40 56.17 ±0.63
DepthContrast [12] 57.38 56.36 56.40 56.29 56.00 56.49 ±0.52
SegContrast [5] 56.24 56.46 56.22 57.17 55.83 56.38 ±0.49
ALSO 56.88 58.23 55.45 56.01 56.88 56.69 ±1.05

Table A5. SemanticPOSS. Details of experiments.

% Backbone Method Runs Average and std

0.1% MinkUNet No pre-training 47.43 48.38 48.03 48.21 48.10 48.03 ±0.36
ALSO 51.47 52.31 54.35 52.28 52.45 52.57 ±1.07

1% MinkUNet No pre-training 63.73 63.33 63.46 64.38 64.03 63.79 ±0.43
ALSO 65.86 65.48 65.16 65.50 65.24 65.45 ±0.27

10% MinkUNet No pre-training 66.51 66.84 66.67 66.60 66.64 66.65 ±0.12
ALSO 67.30 68.08 67.43 68.10 67.82 67.75 ±0.37

50% MinkUNet No pre-training 68.35 68.87 68.10 68.60 68.52 68.49 ±0.29
ALSO 69.55 69.41 69.66 69.55 69.73 69.58 ±0.12

100% MinkUNet No pre-training 68.91 68.87 68.82 69.25 68.68 68.91 ±0.21
ALSO 69.37 69.86 69.62 70.14 69.61 69.72 ±0.29

Table A6. Livox Synthetic Dataset. Details of experiments.



Backbone Metric Method Pre-training Car Pedestrian Cyclist
set Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND 2D object detection Scratch† - 95.84 94.49 92.00 68.27 64.69 61.15 91.02 78.88 76.00

ALSO KITTI 96.88 94.43 91.89 70.44 67.60 64.40 91.67 81.67 78.01
KITTI-360 95.69 94.34 91.81 69.76 67.12 64.12 93.26 80.97 77.87
nuScenes 97.48 94.70 93.56 72.39 68.69 65.86 91.34 81.64 78.46

Bird’s eye view Scratch† - 93.76 89.82 87.65 59.74 54.85 50.56 87.19 70.96 68.00

ALSO KITTI 93.82 90.16 88.00 60.38 56.01 52.58 87.90 73.39 69.15
KITTI-360 92.38 89.60 87.79 61.75 57.36 53.91 89.26 73.74 69.48
nuScenes 94.64 90.77 88.24 64.32 59.13 55.25 86.92 74.58 70.17

3D object detection Scratch† - 90.20 81.50 78.61 53.89 48.82 44.56 82.59 65.72 62.99

ALSO KITTI 90.76 81.97 79.10 56.30 51.93 48.03 83.71 69.14 65.27
KITTI-360 88.95 81.79 78.92 57.83 52.45 48.32 86.76 70.68 66.56
nuScenes 90.21 81.78 78.97 59.56 54.24 50.27 81.12 68.19 64.10

Orientation similarity Scratch† - 95.83 94.35 91.79 63.70 59.52 55.85 90.86 78.44 75.52

ALSO KITTI 96.86 94.30 91.65 66.44 62.82 59.17 91.36 81.07 77.35
KITTI-360 95.68 94.24 91.63 65.58 62.25 58.52 92.35 78.70 75.64
nuScenes 97.45 94.54 93.30 67.67 63.33 60.28 91.01 80.75 77.49

PV-RCNN 2D object detection Scratch† - 97.86 94.39 93.92 73.84 68.68 65.53 94.34 81.89 77.36

ALSO KITTI 98.26 94.42 94.07 76.05 70.89 67.50 95.32 83.41 80.42
KITTI-360 98.04 94.42 94.11 76.75 71.15 67.40 95.18 83.59 78.70
nuScenes 96.12 94.45 93.99 73.70 68.70 65.31 94.61 81.86 78.67

Bird’s eye view Scratch† - 94.65 90.61 88.56 68.28 60.62 55.95 92.52 75.03 70.40

ALSO KITTI 94.82 90.75 88.67 68.93 61.88 57.74 93.18 77.73 73.09
KITTI-360 94.40 90.60 88.56 72.04 63.40 59.05 95.11 77.25 73.37
nuScenes 93.10 90.64 88.53 68.72 60.92 56.96 93.11 76.74 73.06

3D object detection Scratch† - 91.74 84.60 82.29 65.51 57.49 52.71 91.37 71.51 66.98

ALSO KITTI 91.90 84.72 82.55 65.57 58.49 53.75 92.52 75.06 70.48
KITTI-360 92.13 84.68 82.58 68.72 60.16 54.87 92.86 74.04 69.30
nuScenes 92.31 84.86 82.61 65.60 57.76 52.96 91.70 74.98 70.67

Orientation similarity Scratch† - 97.84 94.25 93.70 69.73 63.89 60.31 94.20 81.00 76.47

ALSO KITTI 98.23 94.31 93.89 70.07 64.94 61.09 95.15 82.84 79.79
KITTI-360 98.02 94.32 93.91 72.55 66.62 62.64 94.85 83.07 78.14
nuScenes 96.09 94.29 93.76 67.66 62.74 59.37 94.23 81.07 77.86

†: retrained by ourselves, scores may vary from main paper.
Color scale: [-3,-2[ [-2,-1[ [-1,0[ [0,1[ [1,2[ [2,3[ [3,4[ [5,6[ [6,7[

Table A7. KITTI3D detection. Details of experiments. Cells are colored according to difference with from-scratch pre-training.



Method Vehicle Pedestrian Cyclist mAP
overall 0-30 30-50 50-inf overall 0-30 30-50 50-inf overall 0-30 30-50 50-inf

Usmall

baseline 71.19 84.04 63.02 47.25 26.44 29.33 24.05 18.05 58.04 69.96 52.43 34.61 51.89
BYOL 68.02 81.01 60.21 44.17 19.50 22.16 16.68 12.06 50.61 62.46 44.29 28.18 46.04 -5.85
PointContrast 71.07 83.31 64.90 49.34 22.52 23.73 21.81 16.06 56.36 68.11 50.35 34.06 49.98 -1.91
SwAV 72.71 83.68 65.91 50.10 25.13 27.77 22.77 16.36 58.05 69.99 52.23 34.86 51.96 +0.07
DeepCluster 73.19 84.25 66.86 50.47 24.00 26.36 21.73 16.79 58.99 70.80 53.66 36.17 52.06 +0.17
ALSO 71.73 84.30 65.21 48.30 28.16 31.45 25.19 16.29 58.13 70.04 52.76 33.88 52.68 +0.79

Table A8. ONCE detection. Detail of experiments.
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