
Supplementary material for:

Towards Better Decision Forests:

Forest Alternating Optimization

Miguel Á. Carreira-Perpiñán Magzhan Gabidolla Arman Zharmagambetov∗

Dept. CSE, University of California, Merced

{mcarreira-perpinan, mgabidolla, azharmagambetov}@ucmerced.edu

Abstract

We provide the following. 1) Pseudocode for FAO (section 1). 2) Description of the experiments’
setup for reproducibility: datasets, comparison methods, and hyperparameters (section 2). 3) Additional
experiments on tabular datasets, the results for CatBoost framework and the result of FAO on axis-aligned
decision forests (section 3).

1 Pseudocode

input training set;
initial forest F(·;Θ) of T trees
number of FAO iterations FI

repeat

Optimize all leaves jointly by solving
a regularized linear regression problem
for t = 1 to T

Optimize decision nodes of t’s tree τ t(·;Θt) using TAO
until FI iterations
prune dead subtrees of F
return F

Figure 1: Pseudocode of FAO.

2 Experimental setup

We take 20% of training set (random stratified sample) as a hold-out validation set, and perform grid-search
over the hyperparameters of avg-FAO and other baselines. For the found optimal hyperparameters we retrain
the models on the whole training set 5 times with different random seed, and report the mean and standard
deviation (except for SUSY dataset, because of slower training time.)

2.1 FAO

Implementation For the most part, FAO is implemented in C++ except for fitting leaf weights jointly,
for which we use scikit-learn’s implementation of Ridge/Lasso and logistic regression. To solve a reduced

∗currently at Meta AI (FAIR)

1



problem at a decision node we use an ℓ1 regularized logistic regression solver of LIBLINEAR (version 2.43
with support for instance weights). For joint leaf fitting we use scikit-learn (version 1.0.2). For regression
we apply an ℓ2 penalty on leaf weights, and for classification an ℓ1 penalty both with a fixed parameter
alpha = 0.01 (denoted by µ in the main paper). As an initial forest, we use complete, T trees of depth ∆
and random node parameters (drawn from standard normal). We set the number of FAO iterations to 20.

Hyperparameters To save time on hyperparameter tuning, we tune λ = {0.01, 0.1, 1.0} (parameter of ℓ1
penalty on decision node weights) on a single decision tree and use it for the whole forest. We consider the
following depth ∆ = {4, 6, 8, 10, 12}, but to save time, depending on the complexity of the dataset, we select
only 2-3 of them. As a number of trees T in FAO, we check only T = {5, 10}, and as a number of forests in
averaged FAO Q, we select it so that the total number of trees is at most 300, and the optimal Q is selected
on a validation set.

We observe it is quite easier to set hyperparameter values for FAO (at least with avg-FAO) than for other
variations GB forests. And we also observe that averaging different GB forests doesn’t help.

2.2 Baselines

To compare models of different size, for the baselines we fix the number of trees to {10, 100, 300, 500, 1000},
and perform grid search over other hyperparameters.

XGBoost We use a Python package of version 1.4.1. We use the exact tree method. During cross validation
we perform grid search over the following hyperparameter values: max depth = {4, 6, 8, 10, 20}, eta
= {0.01, 0.05, 0.1, 0.3}.

LightGBM We use a Python package of version 3.2.1. During cross validation we perform grid search over
the following hyperparameter values: num leaves = {16, 31, 64, 128, 256, 512}, learning rate =
{0.01, 0.05, 0.1, 0.3}.

GB-TAO We quote the results from [2].

SPORF We use a Python package of version 2.0.5. During cross validation we perform grid search over
the following hyperparameter values: projection matrix = {RerF, S-RerF}, max depth = {10, 20,
None}, max features = {sqrt, log2, None}.

2.3 Estimation of model size

For axis-aligned GB forests (XGBoost and LightGBM) we count the number of parameters as follows: we sum
the number of parameters of each node of all the trees in the forest, where an axis-aligned split node counts
for two parameters (feature index and threshold) and a constant leaf counts for one parameter. In FAO we
exactly estimate the number of nonzero parameters at a decision node. The interface of SPORF does not
provide explicit access to tree parameters, and so we provide a reasonable upper bound: the max features

parameter controls how many features are used at a decision node, so by assuming that each split node uses
exactly max features parameters we estimate the total number of parameters in SPORF.

2.4 Classification datasets

MNIST a standard benchmark. We use direct pixel intensities scaled between 0 and 1 as input [4].

SUSY a problem in physics to classify a process into a signal which produces supersymmetric particles or
into a background which does not [1].

CIFAR100 a standard image classification benchmark in computer vision. We use as features the output
of the last convolutional layer of a pretrained VGG16 network [3].

News20 a standard document classification benchmark. The features are normalized word counts. Obtained
from a LIBSVM multiclass data collection 1.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

2

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html


Dataset Ntrain Ntest D D̄nnz K

MNIST 60 000 10 000 784 150 10
CIFAR100 (VGG16 feats) 50 000 10 000 512 324 100
News20 15 935 3 993 62 061 80 20
SUSY 4.5M 0.5M 16 16 10

Table 1: Specs of the datasets used in our experiments for classification. N is a sample size, D is a feature
dimension size, D̄nnz is the average number of nonzero features, and K is the number of classes.

Dataset Ntrain Ntest D D̄nnz

cpuact 4 915 3 277 21 21
CASP 29999 15 731 9 9
CT slice 42 800 10 700 384 378
Year prediction MSD 463715 51 630 90 90

Table 2: As Table 1, but for regression datasets. The output is 1D for all datasets.

2.5 Regression datasets

cpuact the task is to predict the percentage of time a CPU spends in user mode. The features consist of
various statistics of memory and other operations. Obtained from the Delve project 2.

CT slice the task is to predict the relative location of the CT slice on the axial axis of the human body.
The features are histograms describing bone structures and air inclusions. We split into train, test,
validation sets using by patient ID, so that not to mix patient slices. Obtained from the UCI Machine
Learning Repository [5].

CASP a dataset of Physicochemical Properties of Protein Tertiary Structure. The task is to predict the
size of the residue. Obtained from the UCI Machine Learning Repository [5].

Year Prediction MSD the task is to predict the release year of a song from audio features. Obtained
from the UCI Machine Learning Repository [5].

3 Additional experiment results

Epsilon HIGGS

Ntrain=50k, Ntest=20k, D=2k, K=2 Ntrain=100k, Ntest=50k, D=28, K=2

Forest Etest (%) #pars. T ∆

CatBoost 16.81±0.04 19k 100 6
LightGBM 16.52±0.00 19k 100 13
XGBoost 16.05±0.00 4.6k 100 4
XGBoost 13.68±0.00 173k 1k 6
CatBoost 13.31±0.02 768k 1k 8
LightGBM 13.15±0.00 46k 1k 13
avg-FAO 12.38±0.05 59k 10 4
avg-FAO 11.13±0.04 193k 30 4
GB-TAO 11.05±0.02 353k 30 6
GB-TAO 10.97±0.02 625k 50 6
avg-FAO 10.90±0.03 382k 60 4

Forest Etest #pars. T ∆

CatBoost 28.69±0.00 192k 1k 6
GB-TAO 27.32±0.02 300k 50 8
XGBoost 27.29±0.00 18k 100 6
GB-TAO 27.24±0.02 172k 100 6
XGBoost 27.08±0.00 42k 1k 4
LightGBM 26.98±0.00 383k 500 34
LightGBM 26.93±0.00 766k 1k 37
avg-FAO 26.81±0.02 262k 200 6
CatBoost 26.72±0.07 768k 1k 8
avg-FAO 26.70±0.01 204k 90 8
avg-FAO 26.51±0.03 335k 150 8

Table 3: Additional experiment results on 2 more datasets: subsampled Epsilon and subsampled HIGGS.

2http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html

3

http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html


Dataset Etest #pars. T ∆

MNIST 2.31±0.05 767k 10k 8
CIFAR100 27.67±0.06 4.7k 10k 4
CIFAR100 27.15±0.04 48k 100k 4
SUSY 19.81±0.02 3M 100 8
SUSY 19.55±0.00 768k 1k 8
cpuact 2.76±0.03 4.8k 100 4
cpuact 2.36±0.03 48k 1k 4
CT-slice 6.90±0.08 77k 100 8
CT-slice 6.27±0.06 768k 1k 8
year 8.91±0.02 768k 1k 8
casp 3.60±0.00 768k 1k 8

Table 4: CatBoost results on several datasets from the main paper (hyperparameter search is done identical
to XGBoost). Overall, the results are on par with LightGBM and XGBoost, and inferior to avg-FAO.

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5

30 35 40

0.8

0.85

0.9

0.95

1

GB

FAO

E
t
r
a
in

Tree additions/FAO iterations

Starting FAO
from 30 GB trees

20 40 60 80
0

0.5

1

1.5

2

2.5

3

40 60 80

0.2

0.4

0.6

0.8

1

GB

FAO

number of trees, T

E
t
r
a
in

Figure 2: As fig. 1 in the main paper, but for axis-aligned trees.

In Table 3 we provide results for additional tabular datasets: Epsilon and HIGGS. Both datasets are
obtained from the LIBSVM binary dataset collection 3. We subsample the datasets to accelerate the training.
In general the results are qualitatively as in the main paper: avg-FAO achieves best accuracy while using
fewer trees and parameters.

Table 4 shows results for CatBoost on several datasets from the main paper. We perform hyperparameter
search exactly as for XGBoost. Overall, the results are on par with LightGBM and XGBoost, and inferior
to avg-FAO.

Fig. 2 shows the result of optimizing a forest of axis-aligned decision trees using FAO. The dataset and
experimental setup is the same as for fig. 1 of the main paper: a regression problem on the cpuact dataset
with trees of depth ∆ = 6. The results are qualitatively very similar with oblique decision trees, but the
improvement is less dramatic.

References

[1] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with deep
learning. Nature Communications, 5:4308, 2014.

[2] M. Gabidolla and M. Á. Carreira-Perpiñán. Pushing the envelope of gradient boosting forests via globally-
optimized oblique trees. In Proc. of the 2022 IEEE Computer Society Conf. Computer Vision and Pattern
Recognition (CVPR’22), pages 285–294, New Orleans, LA, June 19–24 2022.

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

4

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html


[3] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Dept. of Computer
Science, University of Toronto, Apr. 8 2009.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. Proc. IEEE, 86(11):2278–2324, Nov. 1998.

[5] M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013.

5

http://archive.ics.uci.edu/ml

	Pseudocode
	Experimental setup
	FAO
	Baselines
	Estimation of model size
	Classification datasets
	Regression datasets

	Additional experiment results

