

CoMFormer: Continual Learning in Semantic and Panoptic Segmentation

Supplementary Material

Anonymous CVPR submission

Paper ID 7744

λ_D	Semantic - mIoU			Panoptic - PQ		
	1-100	101-150	All	1-100	101-150	All
5	38.8	17.5	31.7	35.3	18.2	29.6
10	40.6	15.6	32.3	36.0	17.1	29.7
50	41.0	13.8	31.9	38.4	12.6	29.8

Table 1. Impact of λ_D in CPS and CSS in ADE20K 100-10.

1. Additional quantitative results

Impact of λ_D . To demonstrate the robustness of our approach to the hyper-parameter choice, we report an ablation study on the impact of λ_D in Tab. 1. Setting λ_D between 5 and 50 maintains stable results on both CSS and CPS while obtaining different trade-offs between new and old classes. In particular, when setting $\lambda_D = 5$, we achieve higher results on the novel classes at the cost of losing performance on the old ones. Differently, setting $\lambda_D = 50$ increases the regularization and reduces forgetting, improving the performance of old classes while decreasing it on the new classes. Setting $\lambda_D = 10$ achieves the best trade-off between learning and forgetting on both semantic and panoptic segmentation. In the paper, we reported results for $\lambda_D = 10$.

50-50 in Continual Panoptic Segmentation. In Tab. 2 we report additional experiments on Continual Panoptic Segmentation on the 50-50 setting where we perform three tasks of 50 classes. CoMFormer outperforms all the baselines, obtaining the best results on both old and new classes. In particular, we can see that it exceeds the best competitor, PLOP, by 0.5 PQ in the old classes and 0.2 PQ in the new ones. When comparing with MiB, however, we can see that the gap is more relevant: +11.6 PQ on old classes and +10.2 on the new ones. Finally, we can see that CoMFormer obtains a small performance gap with the *Joint* baselines, which is more relevant for the new classes (-7.6 PQ).

50-50 in Continual Semantic Segmentation. Tab. 3 reports the additional results on the Continual Semantic Segmentation benchmark on the 50-50 setting in mIoU, comparing CoMFormer with previous works based on DeepLab [2] and our re-implementation based on the CoMFormer ar-

Method	50-50 (11 tasks)			
	<i>1-50</i>	<i>51-150</i>	<i>avg</i>	<i>all</i>
FT	0.0	14.3	23.1	9.5
MiB	33.6	16.3	31.8	22.1
PLOP	44.7	26.3	37.9	32.4
CoMFormer	45.2	26.5	37.9	32.7
<i>Joint</i>	50.2	34.1	—	39.5

Table 2. Continual Panoptic Segmentation results on ADE20K dataset on 50-50 setting in PQ.

Architecture	Method	50-50 (11 tasks)			
		<i>1-50</i>	<i>51-150</i>	<i>avg</i>	<i>all</i>
DeepLab-v3 [2]	MiB [1]	45.3	21.6	38.9	29.3
	PLOP [3]	48.6	21.6	39.4	30.4
	RCIL [4]	48.3	25.0	—	32.5
Per-Pixel	MiB	44.9	25.4	35.0	31.9
	PLOP	43.2	24.7	34.6	30.9
Mask-Based	FT	0.0	13.3	12.8	8.9
	MiB	24.6	19.4	25.8	21.1
	PLOP	48.1	26.6	36.5	33.8
	CoMFormer	49.2	26.6	36.6	34.1
	<i>Joint</i>	53.4	38.0	—	43.1

Table 3. Continual Semantic Segmentation results on ADE20K dataset on 50-50 setting in mIoU.

chitecture, both in Per-Pixel and Mask-Based fashion. We observe that CoMFormer achieves a new state of the art. In particular, when comparing it with previous works, we can see that it outperforms the best baseline (RCIL) on both old (+0.9 mIoU) and new classes (+1.6 mIoU), for an overall improvement of 1.6 mIoU. Furthermore, CoMFormer also outperforms the baselines implemented on the same architecture: w.r.t. to Per-Pixel baselines, there is a relevant performance gap, especially regarding the old classes (CoMFormer 49.2 vs MiB 44.9 mIoU). Considering the Mask-Based baselines, CoMFormer shows the best performance, improving PLOP by 1.1 mIoU on the old classes and by 0.3 mIoU on all.



Figure 1. Qualitative results of CoMFormer v.s. MiB and PLOP on the 100-50 continual panoptic segmentation setting on ADE20K.

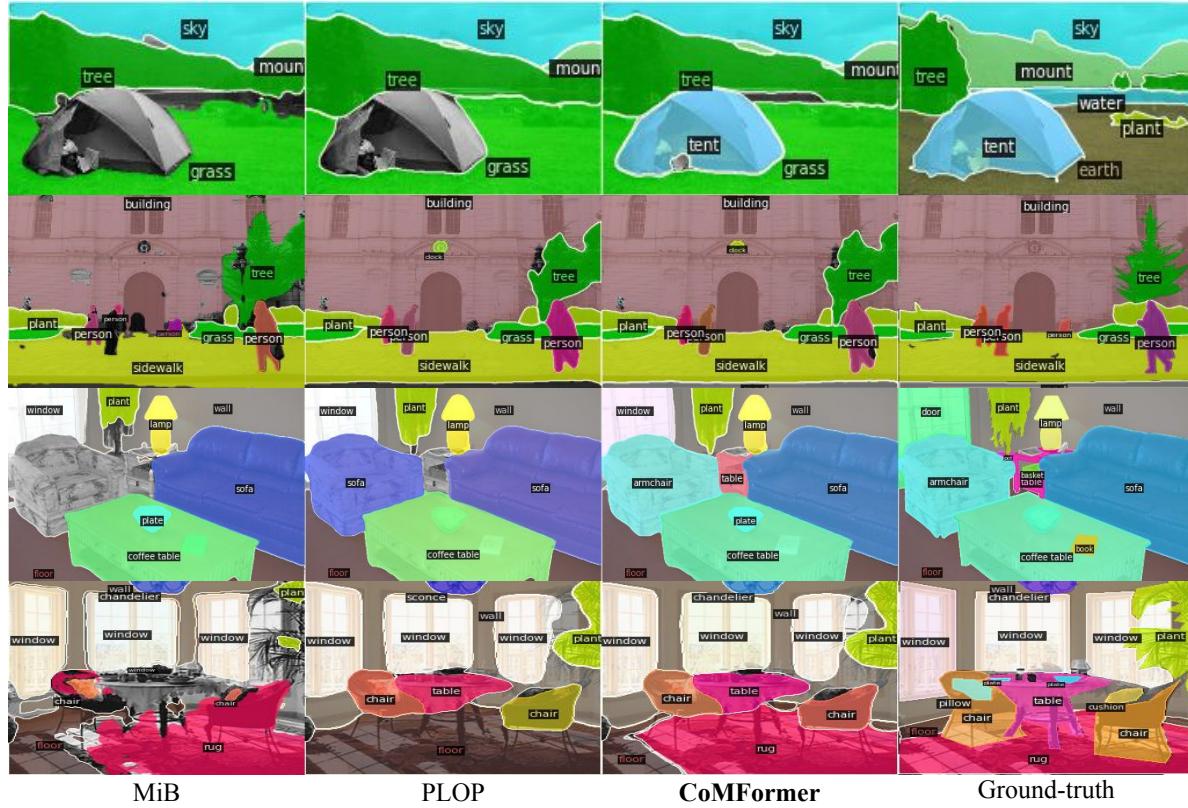


Figure 2. Qualitative results of CoMFormer v.s. MiB and PLOP on the 100-5 continual panoptic segmentation setting on ADE20K.

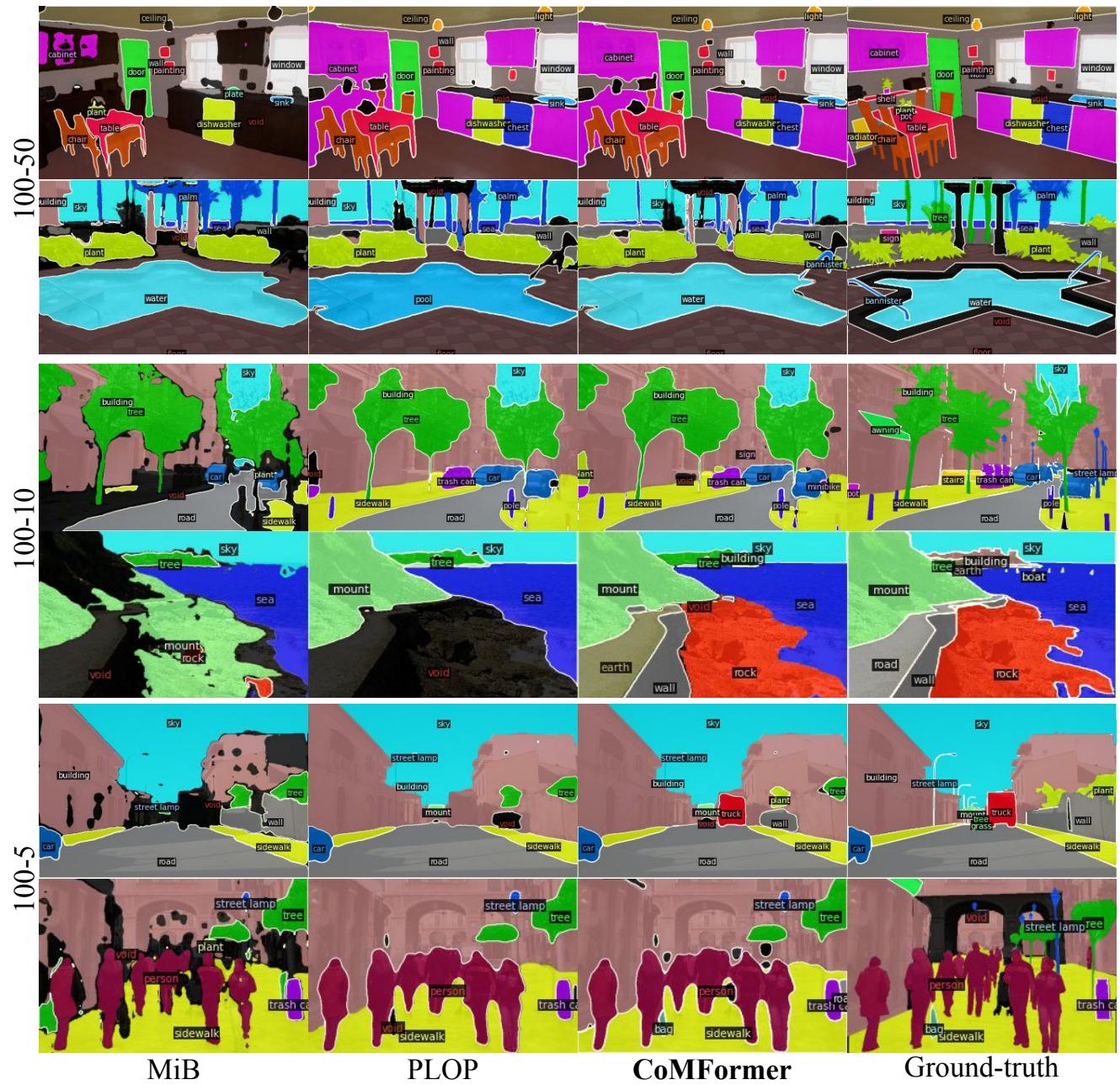


Figure 3. **Qualitative results** of CoMFormer v.s. MiB and PLOP on multiple settings of the continual semantic segmentation benchmark on ADE20K.

2. Additional qualitative results

Continual Panoptic Segmentation. Fig. 1 and Fig. 2 report additional qualitative results on, respectively, the 100-50 and 100-5 settings in continual panoptic segmentation, comparing CoMFormer with MiB and PLOP using images randomly sampled from the validation set. Considering the 100-50, we can see that PLOP and CoMFormer achieve visually similar results, while MiB struggles in segmenting

every image object (for example, the *clock* in the third row). Differently, on the 100-5, CoMFormer visually outperforms the other baselines being able to correctly segment all the objects in the image (e.g. the *tent* in the first row, the *table* in the third row, and the *rug* in the fourth row). However, we note a common error across all the methods: some classes are correctly segmented but misclassified (e.g. *grass* instead of *earth* in the first row and *window* instead of *door* in the third). This error is less present in CoMFormer w.r.t. PLOP

324 and MiB, as can be seen from the *chandelier* in the last row
325 and the *armchair* in the third.

327 **Continual Semantic Segmentation.** Fig. 3 reports the
328 qualitative results for the 100-50, 100-10, and 100-5 settings
329 of the continual semantic segmentation benchmark
330 comparing CoMFormer with MiB and PLOP on images
331 randomly sampled from the validation set. Considering
332 the 100-50 setting, MiB is far worse than other baselines:
333 it is not able to correctly segment the object in the im-
334 age, achieving low performance. PLOP and CoMFormer
335 achieve similar results, being able to segment all the ob-
336 jects in the images. Differently, on the 100-10 setting, the
337 difference among methods becomes more evident: consider-
338 ing the second row, CoMFormer correctly segments the
339 *rock* and the *wall*, while misclassifying the *road* with *earth*.
340 However, both PLOP and MiB are not able to segment the
341 image: the former is not able to report any segment in that
342 area, while the latter segments incorrectly the area as *mount*.
343 Finally, considering the 100-5 setting, we note that MiB
344 achieves poor performance on both images, being unable to
345 finely segment the image pixels. Comparing CoMFormer
346 with PLOP, our model CoMFormer is able to segment more
347 classes (e.g. the *truck* in the fifth row and the *bag* in the last
348 row), obtaining better performances. Overall, the qualita-
349 tive results confirm the quantitative findings, where CoM-
350 Former outperforms the other methods, especially consid-
351 ering settings where multiple learning steps are performed.
352 Those longer continual settings are more realistic and al-
353 lows us to benchmark more efficiently what a truly lifelong
354 learning agent should be.

355 3. Class Ordering

356 In Tab. 4 we report the class ordering of ADE20K that
357 we used for all the reported experiments, following the pre-
358 vious benchmarks [1, 3]. Considering the 100-50, 100-10,
359 and 100-5 settings, reported in the main paper, we note that
360 44 of the new classes are “things”, while the other 6 are
361 “stuff”. While there is no difference between “things” and
362 “stuff” in semantic segmentation, it is especially relevant in
363 the panoptic segmentation task, where the goal is to sepa-
364 rate in different segments multiple instances of the “things”
365 classes, since it introduces additional challenges.

366 References

367 [1] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulò,
368 Elisa Ricci, and Barbara Caputo. Modeling the background
369 for incremental learning in semantic segmentation. In *Pro-
370 ceedings of the IEEE Conference on Computer Vision and Pat-
371 tern Recognition (CVPR)*, 2020. (pages 1, 4).

372 [2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
373 Hartwig Adam. Rethinking atrous convolution for semantic
374 image segmentation. In *arXiv preprint library*, 2017. (page
375 1).

376 [3] Arthur Douillard, Yifu Chen, Arnaud Dapogny, and Matthieu
377 Cord. Plop: Learning without forgetting for continual
378 semantic segmentation. In *Proceedings of the IEEE Conference
379 on Computer Vision and Pattern Recognition (CVPR)*, 2021.
380 (pages 1, 4).

381 [4] Chang-Bin Zhang, Jia-Wen Xiao, Xialei Liu, Ying-Cong
382 Chen, and Ming-Ming Cheng. Representation compensation
383 networks for continual semantic segmentation. In *Proceed-
384 ings of the IEEE/CVF Conference on Computer Vision and
385 Pattern Recognition*, pages 7053–7064, 2022. (page 1).

386 [5] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
387 rriuso, and Antonio Torralba. Scene parsing through ade20k
388 dataset. In *Proceedings of the IEEE Conference on Computer
389 Vision and Pattern Recognition (CVPR)*, 2017. (page 5).

432	Idx	Name	Thing	Idx	Name	Thing	Idx	Name	Thing	486
433	1	wall		51	refrigerator	✓	101	poster	✓	487
434	2	building		52	grandstand		102	stage		488
435	3	sky		53	path		103	van	✓	489
436	4	floor		54	stairs	✓	104	ship	✓	490
437	5	tree	✓	55	runway		105	fountain	✓	491
438	6	ceiling		56	case	✓	106	conveyer		492
439	7	road		57	pool	✓	107	canopy	✓	493
440	8	bed	✓	58	pillow	✓	108	washer	✓	494
441	9	windowpane	✓	59	screen	✓	109	plaything	✓	495
442	10	grass		60	stairway		110	swimming		496
443	11	cabinet	✓	61	river		111	stool	✓	497
444	12	sidewalk		62	bridge		112	barrel	✓	498
445	13	person	✓	63	bookcase	✓	113	basket	✓	499
446	14	earth		64	blind	✓	114	waterfall		500
447	15	door	✓	65	coffee	✓	115	tent	✓	501
448	16	table	✓	66	toilet	✓	116	bag	✓	502
449	17	mountain		67	flower	✓	117	minibike	✓	503
450	18	plant	✓	68	book	✓	118	cradle	✓	504
451	19	curtain	✓	69	hill		119	oven	✓	505
452	20	chair	✓	70	bench	✓	120	ball	✓	506
453	21	car	✓	71	countertop	✓	121	food	✓	507
454	22	water		72	stove	✓	122	step	✓	508
455	23	painting	✓	73	palm	✓	123	tank	✓	509
456	24	sofa	✓	74	kitchen	✓	124	trade	✓	510
457	25	shelf	✓	75	computer	✓	125	microwave	✓	511
458	26	house		76	swivel	✓	126	pot	✓	512
459	27	sea		77	boat	✓	127	animal	✓	513
460	28	mirror	✓	78	bar	✓	128	bicycle	✓	514
461	29	rug		79	arcade	✓	129	lake		515
462	30	field		80	hovel		130	dishwasher	✓	516
463	31	armchair	✓	81	bus	✓	131	screen	✓	517
464	32	seat	✓	82	towel	✓	132	blanket	✓	518
465	33	fence	✓	83	light	✓	133	sculpture	✓	519
466	34	desk	✓	84	truck	✓	134	hood	✓	520
467	35	rock	✓	85	tower		135	sconce	✓	521
468	36	wardrobe	✓	86	chandelier	✓	136	vase	✓	522
469	37	lamp	✓	87	awning	✓	137	traffic	✓	523
470	38	bathtub	✓	88	streetlight	✓	138	tray	✓	524
471	39	railing	✓	89	booth	✓	139	ashcan	✓	525
472	40	cushion	✓	90	television	✓	140	fan		526
473	41	base	✓	91	airplane	✓	141	pier		527
474	42	box	✓	92	dirt		142	crt	✓	528
475	43	column	✓	93	apparel	✓	143	plate	✓	529
476	44	signboard	✓	94	pole	✓	144	monitor	✓	530
477	45	chest	✓	95	land		145	bulletin	✓	531
478	46	counter	✓	96	bannister	✓	146	shower	✓	532
479	47	sand		97	escalator		147	radiator	✓	533
480	48	sink	✓	98	ottoman	✓	148	glass	✓	534
481	49	skyscraper		99	bottle	✓	149	clock	✓	535
482	50	fireplace	✓	100	buffet	✓	150	flag	✓	536
483										537
484										538
485										539

Table 4. Class ordering of ADE20K [5] used in all reported experiments.