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1. Experimental Details

Datasets: The Sketchy dataset contains 75,471 sketches
and 12,500 photos, with 60,502 additional photos from Im-
ageNet [1] in its extension [5], evenly distributed over 125
classes, with both class and instance level correspondences.
The TU-Berlin dataset contains 20,000 sketches evenly
distributed over 250 categories, with a total of 204,489
class-level natural image correspondences in its extension
[5]. The QuickDraw-Extended dataset contains 330,000
sketches and 204,000 photos from 110 categories. Follow-
ing existing literature [2, 5], we use 10 and 50 randomly
selected sketches per category from TU-Berlin and Sketchy
respectively for testing the trained encoders in the category
level SBIR setting, with the remaining sketches and photos
used for training the teacher classifiers. We follow the same
procedure as that of TU-Berlin for experimenting with the
QuickDraw-Extended dataset.

Pre-Trained Classifiers: We trained ResNet50 [3] models
on the train splits of Sketchy and TU-Berlin to obtain the
photo and sketch classifier networks that would act as teach-
ers. We used Adam as the optimizer with a learning rate of
0.01 under an exponential decay rate of 0.98, and weight de-
cay of 1075, The photo and sketch classifiers were trained
up to accuracies of 96.34% and 93.81% for Sketchy, and
92.70% and 81.35% for TU-Berlin respectively.
Implementation Details: Our estimator networks follow
the architecture of the StyleGAN 2 [4] generator, trained
using the Adam optimizer with a learning rate of 0.02. Our
encoders have a ResNet50 [3] backbone, also trained using
the Adam optimizer with a learning rate of 2 x 1073, de-
cayed using a cosine annealing schedule. We initially train
the estimators for 100 epochs in a warm-up phase for the es-
timated samples to stabilize and approach closer to the ones
belonging to the true distribution. Thereafter, we train both
the estimator and the generator pairs in an alternating man-
ner (each frozen while the other is updated) for 500 epochs.
In each epoch, we generate 10,000 positive pairs of photo-
sketch reconstructions.

Platform Details: We implement our data-free SBIR
pipeline on an Ubuntu 20.04 workstation with a single
NVIDIA RTX 3090 GPU, an 8-core Intel Xeon processor
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and 32 GBs of RAM, using the PyTorch [7] deep learning
framework. By the virtue of using a fixed-size, gradient-free
queue for storing negative instances for contrastive learning
of the encoders, our method bypasses dependencies on the
batch-size, thus allowing us to perform the training end-to-
end on a single GPU.

1.1. Additional Details on Baselines

Sampling from a Gaussian Prior: The input photos and
sketches constitute samples drawn from an /N x N Gaussian
distribution, where [V is the expected input spatial dimen-
sion for the downstream encoder. We assign labels to such
samples in a manner that ensures equal number of samples
across all classes. We then use these samples for training
the encoders.

Averaging Weights: We speculate that averaging and using
a single network for encoding photos and sketches helps
bridge the modality gap. As has been demonstrated time
and again in relevant literature, modality-specific, semanti-
cally irrelevant features is the single biggest source of error
in SBIR. With averaging weights, we are able to use a sin-
gle network for encoding photos and sketches, while incor-
porating the knowledge about modality specific variances
learned by the individual networks.

Meta-Data Based Reconstruction: Following [6], we re-
tain the means and the covariances of activations from all
layers of the classifier. We then use them as metadata for in-
put reconstruction, by generating samples that induce simi-
lar activation statistics across all layers of the classifier.

2. Qualitative Ablations
2.1. Class Alignment

The contribution of the Class-Alignment 10ss (Laiign)
in reconstructing semantically matching photo-sketch pairs
given a common noise vector & is visualized in Figure 1.
It can be seen that without L,j;g,, the estimators often pro-
duce samples that belong to largely different classes. This
sends wrong signals to the downstream encoders in terms
of learning a semantically meaningful metric-space. With
the class-alignment loss, the estimators can be guaranteed
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Figure 1. Photo and sketch reconstructions without (left) and with (right) the Class-Alignment 10ss (Laiign). Each column corresponds to a
single reconstruction step using a common input noise vector £ fed in to the photo and sketch estimators respectively.
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Figure 2. Examples of reconstructions for which the output distri-
butions of the sketch and photo classifiers differ significantly.

to receive photo-sketch pairs that have the same class in-
formation, and hence qualify as correct positive pairs for
optimizing the encoders.

Also, as discussed in Section 3.1 of the main text, pairing
solely on the basis of discrete labels (obtained via an argmax
on the teachers’ output) may not faithfully represent the se-
mantic content in a reconstruction. Figure 2 shows such an
example. Even though their hard-labels are the same (Gui-
tar), the distribution of class information is vastly different
in the two images. Thus, for such pairs, it is important for
their predicted distributions to be properly aligned (via an
objective like L,1ign) before they can actually be considered
as positive pairs for downstream metric learning.

2.2. Modality Guidance

Figure 4 qualitatively demonstrates the contribution of
our Modality Guidance Network (dg), and its objective
function Lo4q. It can be seen that Unguided estimators
cannot make a clear distinction among the modalitites —
photo reconstructions contain object outlines like sketches,
and sketch reconstructions contain colors. This happens be-
cause in presence of the class-alignment 10ss (Lyjign), the
estimators exchange information across modalities. Under
such a circumstance, the estimators can minimize both se-
mantic distance, as well as modality distance in order to

minimize L,jign. The task of our Modality Guidance Net-
work is to ensure that the estimators only minimize Lyjign
by minimizing semantic distance, and not through the ex-
change of modality-specific information. With this, the
Modality Guided estimators are bounded in their output
space, producing clean and realistic reconstructions.

2.3. Metric-Agnostic Adversarial Estimation

Figure 5 shows sample reconstructions obtained by op-
timizing our Metric-Agnostic Adversarial Estimation Lqy
loss. While the teachers predict them to be instances of ‘Pi-
ano’ with very high confidence while assigning the class of
‘Bathtub’ a low probability, the predictions from the stu-
dents is just of the opposite nature. This makes such sam-
ples the hardest for the student to encode, as their predic-
tions are highly divergent from those of the teachers. Opti-
mizing on such samples thus makes the student more robust
to challenging real-world test cases.

3. Reconstruction Quality and Performance

Figure 3 shows the relationship between the quality of
the reconstructed samples and the mean average precision
(mAP) of the encoders on the Sketchy datasets. Training the
estimators for longer helps in the reconstruction of more re-
alistic samples. However, beyond a certain point, realism
does not seem to significantly affect the retrieval perfor-
mance. As the estimators start capturing the fundamental
shape and texture of the object, there is a significant im-
provement in mAP from 0.45 (epoch 300) to 0.68 (epoch
350). With a few more epochs of training, the accuracy
steadily increases to 0.77 (epoch 400). Beyond this point,
the increase is much slower, although the quality of the re-
constructions keep getting better.

4. Training with Partial Class Overlap

For the classes that are unknown to the photo classi-
fier, we randomly initialize trainable proxy-vectors to act
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Figure 4. Reconstructed photos and sketches of an Apple in the
presence and absence of the Modality Guidance loss (Lwc)-

as representatives for those classes, and concatenate them
to the final layer neurons of the classifier. We do the same
for the sketch classifier, and reorder the proxy vectors in
both modalities to have consistency in class indices across
modalities. For each reconstruction, if the sketch belongs to
a class that is unknown to the photo classifier, we consider
the prediction from the sketch classifier to be the ground-
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Figure 5. Sample reconstructions obtained by using our Metric-
Agnostic Adversarial Estimation (L4v) criterion, with respective
class-scores assigned by the teacher and the student.

truth of the corresponding photo. We update the trainable
proxies in the final layer of the photo classifier based on this
information. We do a symmetric operation for the sketch
classifier as well. Note that such alterations to the teach-
ers are only possible because the reconstructed photos and
sketches have been semantically aligned by our Lyjis, ob-
jective. The rest of the process is performed as usual.
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