
Supplementary Material for:
Masked Image Training for Generalizable Deep Image Denoising

Appendix

A. Details of the Test Noise
We evaluate the generalization performance of the mod-

els on six different synthetic noise types to evaluate the gen-
eralization performance on the noise out of the training set:
(1) Speckle noise is a kind of noise that can occur during the
acquisition of medical images or tomography images. We
use different variances σ2 to obtain different levels of noise.
The imnoise function in MATLAB is used for generating
Speckle noise. We add multiplicative noise according to the
equation J = I + n ∗ I , where n is uniformly distributed
random noise with mean 0 and variance σ2, J is the noisy
image.
(2) Poisson noise is a kind of signal-dependent noise that
occurs during the acquisition of digital images. We am-
plified the noise using different scaling factor α using the
equation J = I + n ∗ α, where we generate Poisson noise
n first, then multiply it by a scaling factor α.
(3) Spatially-correlated noise indicates additive Gaussian
noise filtered with an average kernel of size 3×3. Different
levels indicate different standard deviations σ for the used
Gaussian noise. This is to synthesize the complex artifact
after denoising using a flawed algorithm.
(4) Salt & pepper noise. Different noise levels represent
different noise densities, denoted by d. The imnoise func-
tion in MATLAB is used for generating Salt & pepper noise.
This noise can appear during image acquisition as a result
of camera imaging pipeline errors.
(5) Image signal processing (ISP) noise. Modern digital
cameras aim to produce visually pleasing and accurate im-
ages that match human perception. The raw sensor data
captured by the camera cannot directly produce a usable
image, and several post-processing stages are required to
convert its linear intensities into the final image [3]. As the
original raw image contains noise, the post-processed image
exhibits more complex noise. Since there are no adequate
real noisy and noise-free image pairs, many denoising algo-
rithms perform poorly on real data due to the gap between
synthetic and real noise. In our experiments, we use the
default parameter settings of [3] to synthesize ISP noise on
RGB images.

10 60 110 160
Iteration (K)

36.5

37

37.5

38

38.5

39

PS
N

R

from scratch pre-train (Gaussian) w/o mask

pre-train (Gaussian) w/ mask pre-train (clean) w/ mask

10 60 110 160
Iteration (K)

0.75

0.8

0.85

0.9

SS
IM

Figure 1. Training curve of different methods validated using our
SIDD testset.

(6) Mixture noise is obtained by mixing the above dif-
ferent types of noise with different levels. We consider
the real-world case where the image suffers from multi-
ple degradations. The order of noise adding is Gaussian
noise (variances σ2

g), speckle noise (variances σ2
s1), Poisson

noise (scale α), Salt & pepper noise (density d), speckle
noise (variances σ2

s2). Since speckle noise is a multiplica-
tive noise, it will have different effects when used in dif-
ferent positions. It will be multiplied by the noise already
existing in the image to obtain complex noise degradation.
There are 4 levels:

1. σ2
g = 0.003, σ2

s1 = 0.003, α = 1, d = 0.002, σ2
s2 =

0.003;

2. σ2
g = 0.004, σ2

s1 = 0.004, α = 1, d = 0.002, σ2
s2 =

0.004;

3. σ2
g = 0.006, σ2

s1 = 0.006, α = 1, d = 0.003, σ2
s2 =

0.006;

4. σ2
g = 0.008, σ2

s1 = 0.008, α = 1, d = 0.004, σ2
s2 =

0.008;

The noise patterns produced by these four settings are com-
pletely different from existing studies.

We also include two real noise types in this work:
the Smartphone Image Denoising Dataset (SIDD) [1] and
Monte Carlo (MC) rendered image noise [5].

ID Pre-train
SIDD

Fine-tune
Masked
Traning PSNR SSIM LPIPS

1 Gaus. 15 32.11 0.6606 0.5434
2 Gaus. 15 ✓ 33.01 0.6999 0.4626

3 None ✓ 38.36 0.8879 0.3555
4 Gaus. 15 ✓ 37.08 0.7920 0.3622
5 Gaus. 15 ✓ ✓ 38.15 0.8822 0.3237

6 Clean ✓ ✓ 39.11 0.9135 0.2614

Table 1. Masked pre-training for limited paired data. Our method
of pre-training on clean images by masked training first and then
fine-tuning on target limited dataset yields the best results.

B. Additional Comparisons
Methods for Comparison. We compare our method with
several classical methods: DnCNN [14], RIDNet [2],
RNAN [16], SwinIR [10], Restormer [13], Dropout [8].
Among them, Dropout [8] was proposed to improve the
generalization ability and relieve the overfitting problem.
Following [8], we apply the dropout layer with a dropout
probability of 0.7 before the output convolutional layer of
the baseline model.

Masked Training as Pre-training. In many real-world
scenarios, we can only access very limited image pairs for
training. It is not enough to adequately train a denoising
network because the network can easily overfit the training
data. The performance of the network will be limited if it
is trained only on limited data. The pre-training and fine-
tuning paradigm may be helpful in this case. One approach
is to train the network on the synthetic data first and then
fine-tune it on the target data [14], but the performance may
also be unsatisfactory because of the gap between the pre-
train data and the target data. In this paragraph, we will
introduce a practical approach that uses the masked train-
ing method for pre-training. We first pre-train the model
on clean images with the masked training strategy, and then
fine-tune the model on the limited real training samples with
the mask. This allows the model to obtain generalization
ability even when trained on extremely limited training data.
Pre-training on clean images enables the network to learn
the content representation of natural images and thus bene-
fits the fine-tuning of target noise. To conduct such exper-
iments, we use images from the SIDD dataset [1]. SIDD
contains real noisy images with high-quality clean refer-
ences. Due to different lighting and different cameras, the
noise of the image is also different. It is consistent with the
complex noise situation in the real world. In order to simu-
late a scenario with extremely limited training samples, the
training set only contains two 4K noisy – clean image pairs
from SIDD. We also selected one image from each of the
ten scenes, for a total of ten images as a test set. Table 1
shows the experiment settings and results. For experiment
3, we directly train the model on the limited training sam-

ples. For experiment 4 and 5, we first pre-train the models
using Gaussian noise with σ = 15 and then fine-tune them
on target noise. While for experiment 6, we pre-trained
the model on clean (noise-free) images with the proposed
masked training strategy, and then fine-tuned it on the tar-
get training samples. The model pre-trained on clean im-
ages using the proposed masked training achieves the best
results. This demonstrates the potential of our approach as a
new low-level pre-training method. In addition, our method
pre-trained on noisy images is not as effective as pre-trained
on clean images, which illustrates that our method bene-
fits from learning information about the image’s distribu-
tion. Visual results are shown in Figure 2. Our method
preserves the most texture detail. Figure 1 shows the train-
ing curves for different experiments. The numerical per-
formance of the model pre-trained on Gaussian noise and
fine-tuned without masking (red line) is generally low and
does not increase with training. For the model trained from
scratch directly on SIDD (blue line), its PSNR starts to fluc-
tuate at the beginning of training and does not improve any
further. Its SSIM even drops with training. This indicates
a severe overfitting problem. In contrast, the method us-
ing the proposed masked training (purple and yellow lines)
can continue to improve the performance during the train-
ing process. This indicates that the model has not yet had
an overfitting problem. The method pre-trained with clean
images (purple line) performs better.

Quantitative Comparison. In Figure 4, we present the
complete test curves including the LPIPS results on dif-
ferent noise types and levels. Our method demonstrates a
slower performance degradation compared to other models,
indicating a better generalization ability, especially when
dealing with more severe noise types. We provide full nu-
merical results in Table 2, Table 4, Table 3, and Table 5,
where we evaluate our method on four benchmark datasets,
namely CBSD68 [11], Kodak24 [6], McMaster [15], and
Urban100 [7]. Our method outperforms other state-of-the-
art models significantly across all noise types. Particularly,
we obtain a significant lead in LPIPS performance, sug-
gesting that our results have better human visual perceptual
quality.

Additional Visual Results. Figure 5 shows more visual
comparisons. The model’s performance without masked
training is significantly limited over the various noise types.
Our model still effectively removes noise when dealing with
a variety of noise outside the training set.

C. Additional Analyses of CKA
In the main text, in order to investigate how masked

training differs from normal training strategy, we utilize

010 0179 008 S6 03200 00800 5500 L HQ Noisy SwinIR from scratch pre-train w/o mask pre-train w/ mask

Figure 2. Visual comparison of different methods on real smartphone noise dataset SIDD [1]. “SwinIR” is trained on Gaussian noise,
σ = 15. ”from scratch” is trained directly on the target two SIDD training samples. “pre-train w/o mask” is pre-trained on Gaussian noise,
σ = 15, and fine-tuned without mask. “pre-train w/ mask” is pre-trained on clean images and fine-tuned by masked training.

a.

c. d.

b.

C
KA

 S
im

ila
rit

ie
s

C
KA

 S
im

ila
rit

ie
s

C
KA

 S
im

ila
rit

ie
s

C
KA

 S
im

ila
rit

ie
s

Layer Index

baseline ours

baseline ours

baseline ours

baseline ours

Layer Index

Layer Index

Layer Index

Figure 3. CKA similarity to analyze the representation similarity of network layers.

the centered kernel alignment (CKA) [4, 12] to analyze the
differences between network representations obtained from
those two training methods. In detail, we calculate the rep-
resentations of two layers X ∈ Rm×p1 and Y ∈ Rm×p2

on the same m data points, with p1 and p2 neurons respec-
tively. Gram matrices K = XX⊤ and L = YY⊤ are used
to compute CKA:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)

where HSIC is the Hilbert-Schmidt independence criterion
[9]. Given the centering matrix H = In − 1

n11
⊤, and

centered Gram matrices K′ = HKH and L′ = HLH,
we have HSIC(K,L) = vec (K′) · vec (L′) /(m − 1)2.
More CKA results are shown in Figure 3. We first com-
pare the correlation of the features between different noise
types. For the baseline model, the correlation between the
features of Gaussian noise and other different noises at the
deep level is relatively low (a, b, c). Besides, the feature cor-
relation between the noise outside the training set is also low
(d). The model using the proposed masked training is able
to have a high correlation in all cases. Figure 3 (a) shows
the cross-model comparison between baseline and masked
training models. We find that a significant difference be-

tween the two is that the features of the deeper layers of the
baseline model have low correlations with all layers of our
model. This indicates that these two training methods have
inconsistent learning patterns for features, especially for the
deeper layers. To explore how the model performs on dif-
ferent noise, Figure 3 (b) shows the cross-noise comparison
between in-distribution noise and out-of-distribution noise
(Gaussian and Poisson noise). For the baseline model, there
is a low correlation between the different noise in the deep
layers. It shows that the network processes these two types
of noise differently for the deep layers. The other types of
noise share a similar phenomenon. We suggest that this is
because the baseline approach makes the deep layer of the
model focus on overfitting the patterns of the training set,
which leads to the poor generalization of the deep layers
to handle different noise. In our model, the correlation be-
tween adjacent layers in our model is high. The proposed
masked training forces the network to learn the distribution
of the images themselves, which is similar to different types
of noise. This allows our method to have a stronger gener-
alization capability.

 DnCNN RIDNet RNAN SwinIR Restormer Dropout baseline Ours

PS
N

R
SS

IM
LP

IP
S

Speckle Noise LevelSpatially-correlated Noise Level Poisson Noise Level Mixture Noise Level

1 2 3 4 5

22

26

30

1 2 3 4 5

0.4

0.6

0.8

1 2 3 4 5

0.2

0.3

0.4

0.5

0.6

40 45 50 55 60

24

26

28

40 45 50 55 60
0.3

0.4

0.5

40 45 50 55 60
0.5

0.6

0.7

0.8

0.018 0.024 0.03 0.036 0.04

26

28

30

32

0.018 0.024 0.03 0.036 0.04

0.15

0.2

0.25

0.3

0.018 0.024 0.03 0.036 0.04
0.6

0.7

0.8

0.9

2 2.5 3 3.5

0.4

0.5

0.6

0.7

0.8

2 2.5 3 3.5
0.2

0.3

0.4

0.5

0.6

2 2.5 3 3.5
20

22

24

26

28

30

Figure 4. Performance comparisons on four noise types with different levels on the Kodak24 dataset [6]. All models are trained only on
Gaussian noise. Our masked training approach demonstrates good generalization performance across different noise types.

References
[1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S

Brown. A high-quality denoising dataset for smartphone
cameras. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1692–1700,
2018.

[2] Saeed Anwar and Nick Barnes. Real image denoising with
feature attention. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 3155–3164,
2019.

[3] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen,
Dillon Sharlet, and Jonathan T Barron. Unprocessing images
for learned raw denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11036–11045, 2019.

[4] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh.
Algorithms for learning kernels based on centered alignment.
The Journal of Machine Learning Research, 13:795–828,
2012.

[5] Arthur Firmino, Jeppe Revall Frisvad, and Henrik Wann
Jensen. Progressive denoising of monte carlo rendered im-
ages. In Computer Graphics Forum, volume 41, pages 1–11.
Wiley Online Library, 2022.

[6] Rich Franzen. Kodak lossless true color image suite. source:
http://r0k.us/graphics/kodak/, 1999.

[7] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
image super-resolution from transformed self-exemplars. In
CVPR, 2015.

[8] Xiangtao Kong, Xina Liu, Jinjin Gu, Yu Qiao, and Chao
Dong. Reflash dropout in image super-resolution. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6002–6012, 2022.

[9] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network represen-

tations revisited. In International Conference on Machine
Learning, pages 3519–3529. PMLR, 2019.

[10] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In CVPR, 2021.

[11] David Martin, Charless Fowlkes, Doron Tal, and Jitendra
Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and
measuring ecological statistics. In Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001,
volume 2, pages 416–423. IEEE, 2001.

[12] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks? Advances
in Neural Information Processing Systems, 34:12116–12128,
2021.

[13] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022.

[14] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising. IEEE transactions on image
processing, 26(7):3142–3155, 2017.

[15] Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. Color
demosaicking by local directional interpolation and nonlo-
cal adaptive thresholding. Journal of Electronic imaging,
20(2):023016, 2011.

[16] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun
Fu. Residual non-local attention networks for image restora-
tion. arXiv preprint arXiv:1903.10082, 2019.

CBSD68: img 0067

Salt-and-pepper noise, d = 0.02 DnCNN [14] RIDNet [2] RNAN [16]

Restormer [13] SwinIR [10] baseline Masked Training

urban100: img 054

Speckle noise, σ2 = 0.016 DnCNN [14] RIDNet [2] RNAN [16]

Restormer [13] SwinIR [10] baseline Masked Training

kodak24: img 14

Poisson noise 2 DnCNN [14] RIDNet [2] RNAN [16]

Restormer [13] SwinIR [10] baseline Masked Training

McM: img 2

Spatially-correlated noise, σ = 45 DnCNN [14] RIDNet [2] RNAN [16]

Restormer [13] SwinIR [10] baseline Masked Training

kodak24: img 10

Poisson noise, α = 1.7 DnCNN [14] RIDNet [2] RNAN [16]

Restormer [13] SwinIR [10] baseline Masked Training

CBSD68: img 0009

Mixture noise, level 1 DnCNN [14] RIDNet [2] RNAN [16]

Restormer [13] SwinIR [10] baseline Masked Training

Figure 5. Visual comparison.

Speckle noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 30.74 0.8281 0.1806 29.31 0.7891 0.2082 27.49 0.7353 0.2533 25.22 0.6620 0.3292
RIDNet [2] 31.01 0.8337 0.1665 29.51 0.7916 0.1944 27.57 0.7331 0.2436 25.17 0.6554 0.3212
RNAN [16] 30.15 0.8101 0.1660 28.59 0.7662 0.1972 26.76 0.7101 0.2449 24.59 0.6377 0.3203
SwinIR [10] 29.64 0.7939 0.1555 28.16 0.7514 0.1851 26.43 0.6981 0.2305 24.37 0.6298 0.3004
Restormer [13] 29.95 0.8135 0.1521 28.84 0.7810 0.1767 27.50 0.7395 0.2113 25.66 0.6839 0.2649
Dropout [8] 29.97 0.8382 0.1709 29.03 0.8041 0.1974 27.77 0.7570 0.2413 26.14 0.6925 0.3110
baseline 29.84 0.8016 0.1778 28.34 0.7608 0.2082 26.56 0.7071 0.2536 24.44 0.6367 0.3242

Ours 31.22 0.8739 0.1594 30.81 0.8617 0.1683 30.20 0.8412 0.1849 29.10 0.8000 0.2248

Poisson noise α = 2 α = 2.5 α = 3 α = 3.5
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 28.41 0.7359 0.2284 24.38 0.5767 0.3887 21.63 0.4571 0.5330 19.65 0.3711 0.6521
RIDNet [2] 28.17 0.7231 0.2215 24.00 0.5546 0.3849 21.34 0.4379 0.5246 19.48 0.3567 0.6397
RNAN [16] 27.55 0.7000 0.2231 23.66 0.5402 0.3783 21.14 0.4263 0.5184 19.33 0.3486 0.6355
SwinIR [10] 27.32 0.6877 0.2081 23.68 0.5398 0.3487 21.17 0.4294 0.4860 19.32 0.3506 0.6059
Restormer [13] 29.22 0.7639 0.1662 26.11 0.6452 0.2608 23.98 0.5613 0.3530 22.55 0.5174 0.4306
Dropout [8] 28.47 0.7601 0.2209 25.61 0.6245 0.3652 23.53 0.5218 0.4986 21.97 0.4454 0.6136
baseline 27.70 0.7040 0.2339 23.85 0.5524 0.3782 21.27 0.4377 0.5109 19.45 0.3550 0.6241

Ours 30.59 0.8510 0.1662 28.80 0.7709 0.2488 27.04 0.6834 0.3493 25.46 0.6039 0.4502

Spatially-correlated σ = 40 σ = 45 σ = 50 σ = 55
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 29.63 0.8036 0.3527 28.17 0.7474 0.4192 26.85 0.6898 0.4718 25.70 0.6360 0.5173
RIDNet [2] 28.94 0.7766 0.4109 27.58 0.7189 0.4746 26.39 0.6637 0.5208 25.34 0.6131 0.5580
RNAN [16] 28.86 0.7644 0.3943 27.50 0.7078 0.4532 26.32 0.6542 0.4980 25.28 0.6050 0.5373
SwinIR [10] 28.73 0.7524 0.4056 27.38 0.6951 0.4620 26.20 0.6414 0.5070 25.17 0.5930 0.5458
Restormer [13] 23.42 0.6533 0.4412 23.06 0.6109 0.4783 22.82 0.5709 0.5072 22.59 0.5353 0.5356
Dropout [8] 29.35 0.8173 0.3188 28.27 0.7719 0.3800 27.19 0.7206 0.4400 26.19 0.6694 0.4943
baseline 29.34 0.7834 0.3706 27.82 0.7205 0.4375 26.55 0.6628 0.4878 25.46 0.6118 0.5295

Ours 29.55 0.8296 0.2949 28.84 0.8045 0.3358 28.05 0.7735 0.3762 27.27 0.7388 0.4163

Salt & pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 24.75 0.6785 0.3639 21.15 0.4952 0.5626 17.55 0.2993 0.8196 15.47 0.2066 0.9779
RIDNet [2] 25.19 0.6769 0.3617 21.38 0.4934 0.5498 17.65 0.2969 0.8029 15.60 0.2066 0.9598
RNAN [16] 23.59 0.6416 0.3829 20.42 0.4639 0.5599 17.21 0.2850 0.8048 15.31 0.2006 0.9644
SwinIR [10] 23.42 0.6329 0.3873 20.21 0.4511 0.5710 17.00 0.2688 0.8103 15.14 0.1875 0.9614
Restormer [13] 23.81 0.6384 0.3919 20.99 0.4831 0.5551 19.79 0.3878 0.6512 19.25 0.3257 0.7574
Dropout [8] 27.44 0.7180 0.3041 24.36 0.5557 0.4898 21.01 0.3790 0.7415 19.03 0.2902 0.9047
baseline 25.36 0.6510 0.3694 21.93 0.4747 0.5642 18.42 0.2939 0.8153 16.46 0.2106 0.9656

Ours 30.52 0.8477 0.1768 28.48 0.7681 0.2786 25.01 0.5958 0.5039 22.48 0.4622 0.6979

Mixture noise level 1 level 2 level 3 level 4
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 28.31 0.7514 0.2299 26.53 0.6636 0.3011 23.55 0.5117 0.4522 21.66 0.4162 0.5622
RIDNet [2] 28.13 0.7335 0.2215 26.11 0.6320 0.2971 23.13 0.4776 0.4461 21.34 0.3899 0.5514
RNAN [16] 27.46 0.7090 0.2280 25.67 0.6126 0.2948 22.90 0.4657 0.4369 21.19 0.3826 0.5431
SwinIR [10] 27.44 0.7049 0.2051 25.73 0.6113 0.2682 23.03 0.4689 0.4073 21.29 0.3847 0.5145
Restormer [13] 29.23 0.7859 0.1639 28.22 0.7330 0.1965 25.69 0.6034 0.2894 24.05 0.5257 0.3662
Dropout [8] 28.61 0.7797 0.2071 27.23 0.7039 0.2777 24.96 0.5715 0.4290 23.49 0.4906 0.5324
baseline 28.12 0.7295 0.2259 26.22 0.6346 0.2985 23.28 0.4795 0.4441 21.44 0.3885 0.5463

Ours 30.31 0.8518 0.1617 29.63 0.8251 0.1903 28.12 0.7513 0.2732 26.91 0.6841 0.3530

Table 2. Quantitative comparison on Kodak24 [6].

Speckle noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 30.67 0.8254 0.1506 29.24 0.7927 0.1840 27.54 0.7551 0.2269 25.49 0.7095 0.2856
RIDNet [2] 30.77 0.8261 0.1444 29.31 0.7934 0.1757 27.58 0.7551 0.2168 25.49 0.7081 0.2750
RNAN [16] 29.77 0.8066 0.1492 28.32 0.7745 0.1814 26.67 0.7377 0.2224 24.75 0.6932 0.2796
SwinIR [10] 29.17 0.7947 0.1258 27.83 0.7660 0.1524 26.30 0.7322 0.1893 24.46 0.6909 0.2412
Restormer [13] 28.89 0.8005 0.1300 27.95 0.7790 0.1515 26.81 0.7523 0.1807 25.30 0.7173 0.2213
Dropout [8] 28.64 0.8153 0.1416 27.85 0.7852 0.1688 26.89 0.7501 0.2032 25.64 0.7062 0.2525
baseline 28.86 0.7283 0.1353 27.61 0.7014 0.1593 26.15 0.6679 0.1938 24.38 0.6251 0.2437

Ours 30.33 0.8157 0.1130 30.01 0.8016 0.1238 29.53 0.7800 0.1412 28.66 0.7463 0.1761

Poisson noise α = 2 α = 2.5 α = 3 α = 3.5
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 29.13 0.7771 0.1772 25.40 0.6740 0.2915 22.78 0.5910 0.3972 20.86 0.5261 0.4846
RIDNet [2] 29.00 0.7706 0.1681 25.17 0.6636 0.2838 22.59 0.5836 0.3877 20.76 0.5227 0.4730
RNAN [16] 28.13 0.7488 0.1760 24.58 0.6476 0.2897 22.18 0.5710 0.3916 20.44 0.5119 0.4765
SwinIR [10] 27.85 0.7419 0.1468 24.48 0.6459 0.2472 22.12 0.5710 0.3419 20.35 0.5122 0.4229
Restormer [13] 28.74 0.7765 0.1310 25.78 0.6936 0.2082 23.57 0.6296 0.2778 21.94 0.5792 0.3342
Dropout [8] 27.74 0.7699 0.1649 25.56 0.6751 0.2645 23.84 0.5986 0.3558 22.47 0.5377 0.4355
baseline 27.89 0.7024 0.1557 24.51 0.6025 0.2522 22.19 0.5361 0.3427 20.49 0.4761 0.4207

Ours 30.01 0.8016 0.1120 28.67 0.7439 0.1683 27.23 0.6876 0.2329 25.99 0.6347 0.2976

Spatially-correlated σ = 40 σ = 45 σ = 50 σ = 55
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 29.92 0.8159 0.2221 28.59 0.7672 0.2718 27.35 0.7160 0.3197 26.23 0.6665 0.3654
RIDNet [2] 29.36 0.7958 0.2608 28.06 0.7433 0.3146 26.90 0.6910 0.3624 25.85 0.6426 0.4056
RNAN [16] 29.16 0.7792 0.2542 27.85 0.7257 0.3053 26.70 0.6751 0.3514 25.68 0.6286 0.3941
SwinIR [10] 29.10 0.7710 0.2498 27.77 0.7165 0.3005 26.61 0.6658 0.3446 25.59 0.6193 0.3876
Restormer [13] 24.46 0.6408 0.2867 23.90 0.6043 0.3217 23.48 0.5723 0.3542 23.18 0.5431 0.3874
Dropout [8] 28.15 0.7946 0.2123 27.32 0.7542 0.2562 26.47 0.7097 0.3021 25.65 0.6649 0.3493
baseline 29.43 0.7731 0.2365 28.05 0.7191 0.289 26.61 0.6532 0.3513 25.82 0.6223 0.3770

Ours 28.96 0.7996 0.1952 28.36 0.7779 0.2216 27.65 0.7529 0.2507 27.01 0.7251 0.2827

Salt & pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 23.53 0.6675 0.3607 20.13 0.4878 0.5403 16.72 0.2966 0.7748 14.73 0.2057 0.9320
RIDNet [2] 24.01 0.6639 0.3581 20.48 0.4864 0.5288 16.93 0.2960 0.7584 14.92 0.2065 0.9131
RNAN [16] 22.62 0.6428 0.3731 19.54 0.4651 0.5374 16.43 0.2854 0.7626 14.59 0.2007 0.9193
SwinIR [10] 22.68 0.6391 0.3580 19.50 0.4581 0.5226 16.32 0.2749 0.7379 14.47 0.1914 0.8889
Restormer [13] 23.04 0.6398 0.3667 20.10 0.4829 0.5207 18.64 0.3555 0.6163 18.34 0.3156 0.6797
Dropout [8] 25.83 0.6771 0.3082 23.04 0.5197 0.4693 19.89 0.3536 0.6918 17.96 0.2709 0.8487
baseline 24.06 0.6224 0.3485 20.87 0.4630 0.5183 17.69 0.2959 0.7378 15.86 0.2156 0.8867

Ours 29.51 0.7929 0.1504 27.45 0.7117 0.2476 24.03 0.5508 0.4350 21.59 0.4313 0.5968

Mixture noise level 1 level 2 level 3 level 4
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 28.41 0.7627 0.1869 26.88 0.6989 0.2406 24.16 0.5781 0.3564 22.33 0.4877 0.4447
RIDNet [2] 28.38 0.7509 0.1781 26.65 0.6811 0.2337 23.82 0.5558 0.3479 22.03 0.4659 0.4335
RNAN [16] 27.52 0.7285 0.1886 25.99 0.6616 0.2414 23.42 0.5412 0.3510 21.75 0.4533 0.4351
SwinIR [10] 27.57 0.7271 0.1601 26.07 0.6619 0.2050 23.56 0.5453 0.3059 21.86 0.4557 0.3869
Restormer [13] 28.59 0.7674 0.1410 27.53 0.7210 0.1703 25.29 0.6263 0.2462 23.71 0.5578 0.2991
Dropout [8] 27.47 0.7515 0.1694 26.41 0.6924 0.2190 24.58 0.5856 0.3255 23.27 0.5086 0.4079
baseline 28.05 0.7472 0.1665 26.40 0.6810 0.2148 23.70 0.5418 0.3229 21.91 0.4397 0.4061

Ours 29.91 0.8267 0.1094 29.44 0.8111 0.1312 28.24 0.7570 0.1870 27.15 0.7018 0.2452

Table 3. Quantitative comparison on McMaster [15].

Speckle noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 29.90 0.8380 0.1699 28.57 0.8044 0.1982 26.90 0.7610 0.2374 24.84 0.7035 0.2996
RIDNet [2] 30.11 0.8404 0.1597 28.75 0.8044 0.1884 27.03 0.7590 0.2305 24.87 0.6999 0.2927
RNAN [16] 29.36 0.8228 0.1593 27.95 0.7883 0.1872 26.28 0.7451 0.2276 24.28 0.6870 0.2893
SwinIR [10] 28.89 0.8101 0.1602 27.55 0.7774 0.1867 25.98 0.7362 0.2251 24.07 0.6810 0.2849
Restormer [13] 29.16 0.8279 0.1518 28.13 0.8015 0.1742 26.84 0.7667 0.2049 25.17 0.7202 0.2523
Dropout [8] 29.13 0.8447 0.1684 28.28 0.8171 0.1953 27.16 0.7804 0.2347 25.69 0.7311 0.2936
baseline 29.11 0.8122 0.1794 27.75 0.7801 0.2077 26.15 0.7393 0.2465 24.19 0.6837 0.3050

Ours 30.46 0.8777 0.1435 30.08 0.8697 0.1511 29.49 0.8502 0.1691 28.53 0.8169 0.2060

Poisson noise α = 2 α = 2.5 α = 3 α = 3.5
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 28.13 0.7790 0.1957 24.40 0.6417 0.3284 21.77 0.5295 0.4524 19.83 0.4446 0.5639
RIDNet [2] 28.00 0.7705 0.1878 24.08 0.6199 0.3237 21.50 0.5082 0.4459 19.67 0.4279 0.5542
RNAN [16] 27.38 0.7505 0.1902 23.73 0.6081 0.3201 21.29 0.5003 0.4405 19.51 0.4220 0.5498
SwinIR [10] 27.12 0.7392 0.1849 23.69 0.6049 0.3094 21.27 0.4992 0.4282 19.46 0.4200 0.5393
Restormer [13] 28.68 0.7973 0.1506 25.67 0.6951 0.2361 23.54 0.6167 0.3139 22.25 0.5598 0.3831
Dropout [8] 28.03 0.7953 0.1975 25.42 0.6823 0.3220 23.45 0.5901 0.4366 21.94 0.5182 0.5418
baseline 27.55 0.7517 0.2085 23.92 0.6173 0.3346 21.42 0.5087 0.4510 19.63 0.4259 0.5572

Ours 30.01 0.8656 0.1390 28.48 0.8053 0.2072 26.84 0.7318 0.2974 25.33 0.6616 0.3937

Spatially-correlated σ = 40 σ = 45 σ = 50 σ = 55
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 29.38 0.8304 0.2819 28.02 0.7839 0.3379 26.78 0.7349 0.3864 25.68 0.6880 0.4290
RIDNet [2] 28.74 0.8092 0.3306 27.45 0.7603 0.3865 26.32 0.7122 0.4300 25.31 0.6670 0.4672
RNAN [16] 28.68 0.7983 0.3192 27.39 0.7499 0.3703 26.25 0.7029 0.4122 25.25 0.6591 0.4500
SwinIR [10] 28.56 0.7883 0.3353 27.26 0.7389 0.3853 26.13 0.6918 0.4298 25.13 0.6484 0.4664
Restormer [13] 24.54 0.7076 0.3661 24.17 0.6689 0.4007 23.70 0.6320 0.4348 23.35 0.5978 0.4640
Dropout [8] 28.89 0.8383 0.2580 27.89 0.7999 0.3109 26.90 0.7563 0.3656 25.96 0.7123 0.4135
baseline 29.11 0.8109 0.3071 27.69 0.7578 0.3658 26.48 0.7078 0.4147 25.42 0.6625 0.4537

Ours 29.08 0.8445 0.2431 28.43 0.8242 0.2765 27.71 0.7985 0.3127 27.03 0.7719 0.3476

Salt & pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 24.39 0.7102 0.3205 20.88 0.5423 0.5032 17.33 0.3499 0.7615 15.27 0.2510 0.9304
RIDNet [2] 24.83 0.7065 0.3165 21.12 0.5400 0.4912 17.44 0.3470 0.7459 15.41 0.2510 0.9096
RNAN [16] 23.32 0.6768 0.3312 20.19 0.5127 0.4970 16.99 0.3343 0.7464 15.12 0.2443 0.9133
SwinIR [10] 23.21 0.6724 0.3416 20.04 0.5035 0.5123 16.84 0.3206 0.7541 14.97 0.2320 0.9190
Restormer [13] 23.58 0.6779 0.3429 20.77 0.5292 0.5016 19.13 0.4143 0.6322 18.37 0.3500 0.7409
Dropout [8] 26.92 0.7433 0.2739 23.97 0.5999 0.4380 20.70 0.4330 0.6832 18.75 0.3431 0.8508
baseline 25.09 0.6879 0.3289 21.71 0.5261 0.5088 18.25 0.3480 0.7621 16.30 0.2594 0.9216

Ours 29.96 0.8558 0.1512 28.01 0.7893 0.2295 24.69 0.6391 0.4408 22.23 0.5174 0.6331

Mixture noise level 1 level 2 level 3 level 4
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 27.91 0.7876 0.1955 26.28 0.7151 0.2561 23.52 0.5791 0.3825 21.70 0.4867 0.4833
RIDNet [2] 27.80 0.7740 0.1888 25.97 0.6885 0.2510 23.14 0.5463 0.3777 21.38 0.4589 0.4752
RNAN [16] 27.16 0.7543 0.1946 25.52 0.6718 0.2515 22.89 0.5366 0.3711 21.22 0.4532 0.4683
SwinIR [10] 27.10 0.7477 0.1827 25.51 0.6668 0.2378 22.96 0.5363 0.3563 21.29 0.4523 0.4533
Restormer [13] 28.54 0.8091 0.1493 27.50 0.7625 0.1796 25.17 0.6509 0.2599 23.52 0.5729 0.3270
Dropout [8] 28.01 0.8076 0.1841 26.78 0.7455 0.2455 24.70 0.6296 0.3722 23.29 0.5532 0.4672
baseline 27.81 0.7717 0.2022 26.06 0.6916 0.2659 23.27 0.5476 0.3927 21.48 0.4563 0.4886

Ours 29.74 0.8672 0.1342 29.14 0.8466 0.1551 27.80 0.7900 0.2231 26.62 0.7305 0.2964

Table 4. Quantitative comparison on CBSD68 [11].

Speckle noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 28.66 0.8207 0.1456 27.28 0.7880 0.1745 25.64 0.7478 0.2138 23.67 0.6962 0.2716
RIDNet [2] 28.73 0.8218 0.1386 27.31 0.7874 0.1683 25.63 0.7457 0.2086 23.63 0.6933 0.2662
RNAN [16] 27.99 0.8047 0.1414 26.60 0.7726 0.1697 25.01 0.7333 0.2085 23.14 0.6826 0.2652
SwinIR [10] 27.50 0.7931 0.1408 26.19 0.7626 0.1683 24.68 0.7256 0.2059 22.88 0.6772 0.2609
Restormer [13] 28.22 0.8100 0.1370 27.17 0.7851 0.1578 25.86 0.7529 0.1874 24.15 0.7106 0.2302
Dropout [8] 27.69 0.8258 0.1516 26.83 0.7981 0.1797 25.78 0.7639 0.2167 24.42 0.7200 0.2693
baseline 27.66 0.7916 0.1611 26.33 0.7617 0.1877 24.80 0.7242 0.2241 22.98 0.6753 0.2772

Ours 28.97 0.8771 0.1062 28.60 0.8642 0.1180 28.04 0.8421 0.1421 27.12 0.8055 0.1832

Poisson noise α = 2 α = 2.5 α = 3 α = 3.5
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 27.72 0.7814 0.1656 24.06 0.6682 0.2738 21.52 0.5807 0.3740 19.65 0.5128 0.4638
RIDNet [2] 27.51 0.7728 0.1600 23.75 0.6536 0.2697 21.27 0.5675 0.3686 19.51 0.5025 0.4561
RNAN [16] 26.88 0.7550 0.1634 23.37 0.6428 0.2682 21.02 0.5593 0.3662 19.30 0.4953 0.4544
SwinIR [10] 26.59 0.7451 0.1586 23.27 0.6392 0.2575 20.95 0.5575 0.3533 19.21 0.4929 0.4426
Restormer [13] 28.39 0.7964 0.1326 25.34 0.7049 0.2043 22.89 0.6266 0.2802 21.25 0.5684 0.3524
Dropout [8] 27.19 0.7928 0.1722 24.82 0.6989 0.2706 22.98 0.6269 0.3607 21.55 0.5698 0.4437
baseline 26.94 0.7511 0.1790 23.45 0.6425 0.2788 21.09 0.5593 0.3712 19.40 0.4936 0.4556

Ours 28.72 0.8710 0.1051 27.48 0.8142 0.1668 26.04 0.7446 0.2464 24.71 0.6845 0.3232

Spatially-correlated σ = 40 σ = 45 σ = 50 σ = 55
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 29.87 0.8526 0.1912 28.50 0.8110 0.2371 27.23 0.7677 0.2795 26.09 0.7258 0.3173
RIDNet [2] 29.24 0.8364 0.2216 27.89 0.7908 0.2702 26.68 0.7464 0.3116 25.62 0.7051 0.3464
RNAN [16] 29.07 0.8203 0.2248 27.72 0.7767 0.2674 26.54 0.7351 0.3052 25.50 0.6961 0.3385
SwinIR [10] 28.99 0.8116 0.2360 27.64 0.7678 0.2769 26.46 0.7265 0.3131 25.43 0.6882 0.3455
Restormer [13] 26.38 0.7360 0.2593 25.56 0.7011 0.2902 24.77 0.6686 0.3189 24.06 0.6384 0.3455
Dropout [8] 28.68 0.8529 0.1797 27.78 0.8191 0.2204 26.86 0.7808 0.2635 25.96 0.7411 0.3046
baseline 29.58 0.8440 0.2092 28.11 0.7950 0.2567 26.84 0.7492 0.2974 25.74 0.7076 0.3323

Ours 28.06 0.8586 0.1720 27.55 0.8410 0.1976 26.98 0.8196 0.2266 26.40 0.7951 0.2562

Salt & pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 24.01 0.7372 0.2643 20.55 0.5828 0.4143 17.05 0.4029 0.6335 15.01 0.3062 0.7973
RIDNet [2] 24.56 0.7372 0.2613 20.88 0.5835 0.4062 17.20 0.4023 0.6220 15.16 0.3072 0.7824
RNAN [16] 23.01 0.7132 0.2744 19.87 0.5582 0.4137 16.71 0.3892 0.6223 14.86 0.2999 0.7840
SwinIR [10] 22.90 0.7075 0.2823 19.74 0.5507 0.4215 16.56 0.3790 0.6231 14.71 0.2910 0.7773
Restormer [13] 23.42 0.7145 0.2799 20.53 0.5772 0.4086 18.65 0.4571 0.5308 17.81 0.3967 0.6311
Dropout [8] 26.33 0.7591 0.2326 23.48 0.6279 0.3647 20.29 0.4781 0.5635 18.35 0.3943 0.7181
baseline 24.92 0.7224 0.2667 21.56 0.5752 0.4130 18.11 0.4103 0.6263 16.15 0.3225 0.7840

Ours 28.58 0.8655 0.1158 26.93 0.8074 0.1850 24.01 0.6780 0.3530 21.75 0.5652 0.5140

Mixture noise level 1 level 2 level 3 level 4
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DnCNN [14] 27.62 0.7842 0.1656 26.08 0.7221 0.2120 23.41 0.6112 0.3116 21.64 0.5332 0.3907
RIDNet [2] 27.51 0.7725 0.1592 25.75 0.7011 0.2076 23.01 0.5844 0.3080 21.31 0.5099 0.3851
RNAN [16] 26.85 0.7535 0.1651 25.28 0.6866 0.2092 22.75 0.5759 0.3046 21.13 0.5041 0.3813
SwinIR [10] 26.79 0.7475 0.1566 25.26 0.6816 0.1973 22.81 0.5751 0.2878 21.19 0.5040 0.3634
Restormer [13] 28.45 0.8085 0.1269 27.39 0.7665 0.1517 25.03 0.6716 0.2171 23.26 0.5984 0.2749
Dropout [8] 27.22 0.7976 0.1608 26.11 0.7431 0.2077 24.22 0.6484 0.3035 22.91 0.5849 0.3770
baseline 27.47 0.7795 0.1718 25.79 0.7136 0.2191 23.12 0.5931 0.3170 21.38 0.5131 0.3925

Ours 28.57 0.8749 0.0995 28.08 0.8566 0.1186 26.97 0.8053 0.1747 25.97 0.7516 0.2337

Table 5. Quantitative comparison on Urban100 [7].

