Supplementary Material for:
Masked Image Training for Generalizable Deep Image Denoising

Appendix
A. Details of the Test Noise

We evaluate the generalization performance of the mod-
els on six different synthetic noise types to evaluate the gen-
eralization performance on the noise out of the training set:
(1) Speckle noise is a kind of noise that can occur during the
acquisition of medical images or tomography images. We
use different variances o to obtain different levels of noise.
The imnoise function in MATLAB is used for generating
Speckle noise. We add multiplicative noise according to the
equation J = I + n x I, where n is uniformly distributed
random noise with mean 0 and variance o2, J is the noisy
image.

(2) Poisson noise is a kind of signal-dependent noise that
occurs during the acquisition of digital images. We am-
plified the noise using different scaling factor « using the
equation J = I + n * a,, where we generate Poisson noise
n first, then multiply it by a scaling factor a.

(3) Spatially-correlated noise indicates additive Gaussian
noise filtered with an average kernel of size 3 x 3. Different
levels indicate different standard deviations o for the used
Gaussian noise. This is to synthesize the complex artifact
after denoising using a flawed algorithm.

(4) Salt & pepper noise. Different noise levels represent
different noise densities, denoted by d. The imnoise func-
tion in MATLAB is used for generating Salt & pepper noise.
This noise can appear during image acquisition as a result
of camera imaging pipeline errors.

(5) Image signal processing (ISP) noise. Modern digital
cameras aim to produce visually pleasing and accurate im-
ages that match human perception. The raw sensor data
captured by the camera cannot directly produce a usable
image, and several post-processing stages are required to
convert its linear intensities into the final image [3]. As the
original raw image contains noise, the post-processed image
exhibits more complex noise. Since there are no adequate
real noisy and noise-free image pairs, many denoising algo-
rithms perform poorly on real data due to the gap between
synthetic and real noise. In our experiments, we use the
default parameter settings of [3] to synthesize ISP noise on
RGB images.
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Figure 1. Training curve of different methods validated using our
SIDD testset.

(6) Mixture noise is obtained by mixing the above dif-
ferent types of noise with different levels. We consider
the real-world case where the image suffers from multi-
ple degradations. The order of noise adding is Gaussian
noise (variances 03), speckle noise (variances 2, ), Poisson
noise (scale «), Salt & pepper noise (density d), speckle
noise (variances 0%,). Since speckle noise is a multiplica-
tive noise, it will have different effects when used in dif-
ferent positions. It will be multiplied by the noise already
existing in the image to obtain complex noise degradation.
There are 4 levels:

1. 0’3 = 0.003, 0'?1 = 0.003, « = 1, d = 0.002, 0-?2 —
0.003;

2. 03 = 0.004, 0% = 0.004, « = 1,d = 0.002, 02, =

0.004;

3. 02 = 0.006, 02, = 0.006, & = 1, d = 0.003, 0% =

0.006;

4. 02 = 0.008, 02 = 0.008, @ = 1,d = 0.004, 02, =

0.008;

The noise patterns produced by these four settings are com-
pletely different from existing studies.

We also include two real noise types in this work:
the Smartphone Image Denoising Dataset (SIDD) [!] and
Monte Carlo (MC) rendered image noise [5].



SIDD Masked

ID  Pre-train . . PSNR  SSIM LPIPS
Fine-tune  Traning
1 Gaus. 15 3211 0.6606  0.5434
2 Gaus. 15 v 33.01  0.6999 0.4626
3 None v 38.36  0.8879  0.3555
4 Gaus. 15 v 37.08  0.7920 0.3622
5 Gaus. 15 v v 38.15  0.8822  0.3237
6 Clean v v 39.11 09135 0.2614

Table 1. Masked pre-training for limited paired data. Our method
of pre-training on clean images by masked training first and then
fine-tuning on target limited dataset yields the best results.

B. Additional Comparisons

Methods for Comparison. We compare our method with
several classical methods: DnCNN [14], RIDNet [2],
RNAN [16], SwinIR [10], Restormer [13], Dropout [&].
Among them, Dropout [8] was proposed to improve the
generalization ability and relieve the overfitting problem.
Following [8], we apply the dropout layer with a dropout
probability of 0.7 before the output convolutional layer of
the baseline model.

Masked Training as Pre-training. In many real-world
scenarios, we can only access very limited image pairs for
training. It is not enough to adequately train a denoising
network because the network can easily overfit the training
data. The performance of the network will be limited if it
is trained only on limited data. The pre-training and fine-
tuning paradigm may be helpful in this case. One approach
is to train the network on the synthetic data first and then
fine-tune it on the target data [ 1 4], but the performance may
also be unsatisfactory because of the gap between the pre-
train data and the target data. In this paragraph, we will
introduce a practical approach that uses the masked train-
ing method for pre-training. We first pre-train the model
on clean images with the masked training strategy, and then
fine-tune the model on the limited real training samples with
the mask. This allows the model to obtain generalization
ability even when trained on extremely limited training data.
Pre-training on clean images enables the network to learn
the content representation of natural images and thus bene-
fits the fine-tuning of target noise. To conduct such exper-
iments, we use images from the SIDD dataset [1]. SIDD
contains real noisy images with high-quality clean refer-
ences. Due to different lighting and different cameras, the
noise of the image is also different. It is consistent with the
complex noise situation in the real world. In order to simu-
late a scenario with extremely limited training samples, the
training set only contains two 4K noisy — clean image pairs
from SIDD. We also selected one image from each of the
ten scenes, for a total of ten images as a test set. Table 1
shows the experiment settings and results. For experiment
3, we directly train the model on the limited training sam-

ples. For experiment 4 and 5, we first pre-train the models
using Gaussian noise with ¢ = 15 and then fine-tune them
on target noise. While for experiment 6, we pre-trained
the model on clean (noise-free) images with the proposed
masked training strategy, and then fine-tuned it on the tar-
get training samples. The model pre-trained on clean im-
ages using the proposed masked training achieves the best
results. This demonstrates the potential of our approach as a
new low-level pre-training method. In addition, our method
pre-trained on noisy images is not as effective as pre-trained
on clean images, which illustrates that our method bene-
fits from learning information about the image’s distribu-
tion. Visual results are shown in Figure 2. Our method
preserves the most texture detail. Figure 1 shows the train-
ing curves for different experiments. The numerical per-
formance of the model pre-trained on Gaussian noise and
fine-tuned without masking (red line) is generally low and
does not increase with training. For the model trained from
scratch directly on SIDD (blue line), its PSNR starts to fluc-
tuate at the beginning of training and does not improve any
further. Its SSIM even drops with training. This indicates
a severe overfitting problem. In contrast, the method us-
ing the proposed masked training (purple and yellow lines)
can continue to improve the performance during the train-
ing process. This indicates that the model has not yet had
an overfitting problem. The method pre-trained with clean
images (purple line) performs better.

Quantitative Comparison. In Figure 4, we present the
complete test curves including the LPIPS results on dif-
ferent noise types and levels. Our method demonstrates a
slower performance degradation compared to other models,
indicating a better generalization ability, especially when
dealing with more severe noise types. We provide full nu-
merical results in Table 2, Table 4, Table 3, and Table 5,
where we evaluate our method on four benchmark datasets,
namely CBSDG68 [11], Kodak24 [6], McMaster [15], and
Urban100 [7]. Our method outperforms other state-of-the-
art models significantly across all noise types. Particularly,
we obtain a significant lead in LPIPS performance, sug-
gesting that our results have better human visual perceptual
quality.

Additional Visual Results. Figure 5 shows more visual
comparisons. The model’s performance without masked
training is significantly limited over the various noise types.
Our model still effectively removes noise when dealing with
a variety of noise outside the training set.

C. Additional Analyses of CKA

In the main text, in order to investigate how masked
training differs from normal training strategy, we utilize
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Figure 2. Visual comparison of dlfferent methods on real smartphone noise dataset SIDD [1]. “SwinIR” is trained on Gaussian noise,
o = 15. ”from scratch” is trained directly on the target two SIDD training samples. “pre-train w/o mask” is pre-trained on Gaussian noise,
o = 15, and fine-tuned without mask. “pre-train w/ mask” is pre-trained on clean images and fine-tuned by masked training.
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Figure 3. CKA similarity to analyze the representation similarity of network layers.

the centered kernel alignment (CKA) [4, 12] to analyze the
differences between network representations obtained from
those two training methods. In detail, we calculate the rep-
resentations of two layers X € R™*Pt and Y € R™*P2
on the same m data points, with p; and p2 neurons respec-
tively. Gram matrices K = XX " and L =YY are used
to compute CKA:

HSIC(K, L)
v/HSIC(K, K)HSIC(L, L)

CKA(K,L) =

where HSIC is the Hilbert-Schmidt independence criterion
[9]. Given the centering matrix H = I,, — %11T, and
centered Gram matrices K/ = HKH and L' = HLH,
we have HSIC(K,L) = vec(K') - vec (L') /(m — 1)2.
More CKA results are shown in Figure 3. We first com-
pare the correlation of the features between different noise
types. For the baseline model, the correlation between the
features of Gaussian noise and other different noises at the
deep level is relatively low (a, b, ¢). Besides, the feature cor-
relation between the noise outside the training set is also low
(d). The model using the proposed masked training is able
to have a high correlation in all cases. Figure 3 (a) shows
the cross-model comparison between baseline and masked
training models. We find that a significant difference be-

tween the two is that the features of the deeper layers of the
baseline model have low correlations with all layers of our
model. This indicates that these two training methods have
inconsistent learning patterns for features, especially for the
deeper layers. To explore how the model performs on dif-
ferent noise, Figure 3 (b) shows the cross-noise comparison
between in-distribution noise and out-of-distribution noise
(Gaussian and Poisson noise). For the baseline model, there
is a low correlation between the different noise in the deep
layers. It shows that the network processes these two types
of noise differently for the deep layers. The other types of
noise share a similar phenomenon. We suggest that this is
because the baseline approach makes the deep layer of the
model focus on overfitting the patterns of the training set,
which leads to the poor generalization of the deep layers
to handle different noise. In our model, the correlation be-
tween adjacent layers in our model is high. The proposed
masked training forces the network to learn the distribution
of the images themselves, which is similar to different types
of noise. This allows our method to have a stronger gener-
alization capability.
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Figure 4. Performance comparisons on four noise types with different levels on the Kodak24 dataset [6]. All models are trained only on
Gaussian noise. Our masked training approach demonstrates good generalization performance across different noise types.
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Speckle noise a2 =0.02 a2 =0.024 o? =0.03 o? =0.04
Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 30.74 0.8281 0.1806 | 29.31 0.7891 0.2082 | 27.49 0.7353 0.2533 2522 0.6620  0.3292
RIDNet [2] 31.01 0.8337  0.1665 29.51  0.7916  0.1944 | 27.57 0.7331 0.2436 | 25.17 0.6554 0.3212
RNAN [16] 30.15 0.8101 0.1660 | 28.59 0.7662 0.1972 | 26.76  0.7101 0.2449 | 24.59 0.6377 0.3203
SwinlR [10] 29.64  0.7939  0.1555 28.16  0.7514  0.1851 26.43  0.6981  0.2305 2437  0.6298  0.3004
Restormer [13]  29.95  0.8135 0.1521 28.84 0.7810 0.1767 | 27.50 0.7395 0.2113 25.66  0.6839  0.2649
Dropout [&] 2997 0.8382 0.1709 | 29.03 0.8041 0.1974 | 27.77 0.7570 0.2413 26.14  0.6925 0.3110
baseline 29.84 0.8016 0.1778 | 28.34  0.7608 0.2082 | 26.56 0.7071 0.2536 | 2444 0.6367 0.3242
Ours 31.22  0.8739 0.1594 | 30.81 0.8617 0.1683 | 30.20 0.8412 0.1849 | 29.10 0.8000  0.2248
Poisson noise a=2 a=25 a=3 a=3.5

Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 28.41 0.7359 0.2284 | 2438 0.5767 0.3887 | 21.63 0.4571 0.5330 19.65 03711  0.6521
RIDNet [2] 28.17  0.7231 0.2215 24.00 0.5546 03849 | 21.34 0.4379 0.5246 19.48  0.3567 0.6397
RNAN [16] 27.55 0.7000 0.2231 23.66  0.5402 0.3783 21.14  0.4263 0.5184 19.33  0.3486  0.6355
SwinIR [10] 2732 0.6877 0.2081 23.68  0.5398  0.3487 21.17 04294 0.4860 1932 0.3506  0.6059
Restormer [13]  29.22  0.7639  0.1662 | 26.11 0.6452  0.2608 2398 0.5613 03530 | 22.55 0.5174 0.4306
Dropout [8] 28.47  0.7601  0.2209 | 25.61 0.6245 0.3652 | 23.53 0.5218 0.4986 | 21.97 0.4454 0.6136
baseline 2770  0.7040 0.2339 | 23.85 0.5524 0.3782 | 21.27 04377 0.5109 19.45 0.3550 0.6241
Ours 30.59 0.8510 0.1662 | 28.80 0.7709 0.2488 | 27.04 0.6834 0.3493 | 2546 0.6039  0.4502
Spatially-correlated o =40 o =45 o =50 o =255

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 29.63  0.8036  0.3527 28.17 0.7474 0.4192 | 26.85 0.6898 04718 | 25.70 0.6360 0.5173
RIDNet [2] 2894  0.7766  0.4109 | 27.58 0.7189 04746 | 26.39 0.6637 0.5208 | 25.34 0.6131 0.5580
RNAN [16] 28.86  0.7644  0.3943 2750 0.7078 0.4532 | 2632 0.6542 0.4980 | 2528  0.6050 0.5373
SwinIR [10] 28.73  0.7524 0.4056 | 2738  0.6951 04620 | 2620 0.6414 0.5070 | 25.17 0.5930 0.5458
Restormer [13] 2342 0.6533 04412 | 23.06 0.6109 04783 2282 0.5709 05072 | 2259 0.5353 0.5356
Dropout [8] 2935 0.8173 0.3188 28.27  0.7719 03800 | 27.19 0.7206  0.4400 | 26.19  0.6694 0.4943
baseline 29.34  0.7834 03706 | 27.82  0.7205 0.4375 26.55 0.6628 0.4878 | 2546 0.6118 0.5295
Ours 2955 0.8296 0.2949 | 28.84 0.8045 0.3358 | 28.05 0.7735 03762 | 27.27 0.7388 0.4163
Salt & pepper d = 0.002 d = 0.004 d = 0.008 d=0.012
Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 2475  0.6785 0.3639 | 21.15 0.4952 0.5626 1755  0.2993 0.8196 1547  0.2066 0.9779
RIDNet [2] 25.19 0.6769 03617 | 21.38  0.4934  0.5498 17.65  0.2969  0.8029 15.60 0.2066 0.9598
RNAN [16] 2359 0.6416 0.3829 | 2042 0.4639 0.5599 17.21 0.2850  0.8048 15.31 0.2006  0.9644
SwinlIR [10] 2342  0.6329 0.3873 20.21 04511 0.5710 17.00  0.2688 0.8103 15.14  0.1875 0.9614
Restormer [13]  23.81 0.6384  0.3919 | 2099 0.4831 0.5551 19.79  0.3878  0.6512 19.25 0.3257 0.7574
Dropout [8] 27.44  0.7180 0.3041 2436  0.5557 0.4898 21.01  0.3790 0.7415 19.03  0.2902  0.9047
baseline 2536  0.6510 0.3694 | 2193 04747 0.5642 1842  0.2939 0.8153 1646  0.2106  0.9656
Ours 30.52 0.8477 0.1768 | 2848 0.7681 0.2786 | 25.01 0.5958 0.5039 | 2248 0.4622 0.6979
Mixture noise level 1 level 2 level 3 level 4

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 28.31 0.7514  0.2299 | 26.53 0.6636  0.3011 23.55 0.5117 04522 | 21.66 04162 0.5622
RIDNet [2] 28.13  0.7335 0.2215 26.11 0.6320 0.2971 23.13 04776 0.4461 21.34  0.3899 0.5514
RNAN [16] 2746  0.7090 0.2280 | 25.67 0.6126 0.2948 2290 04657 04369 | 21.19 0.3826 0.5431
SwinIR [10] 27.44  0.7049  0.2051 2573  0.6113 0.2682 | 23.03 0.4689 0.4073 21.29  0.3847 0.5145
Restormer [13]  29.23  0.7859  0.1639 | 28.22  0.7330 0.1965 25.69  0.6034 0.2894 | 24.05 0.5257 0.3662
Dropout [8] 28.61 0.7797  0.2071 27.23  0.7039  0.2777 2496  0.5715 0.4290 | 2349 0.4906 0.5324
baseline 28.12  0.7295 0.2259 | 26.22 0.6346  0.2985 23.28 0.4795 0.4441 21.44  0.3885 0.5463
Ours 30.31 0.8518 0.1617 | 29.63 0.8251 0.1903 | 28.12 0.7513 0.2732 | 2691 0.6841 0.3530

Table 2. Quantitative comparison on Kodak24 [6].



Speckle noise a2 =0.02 a2 =0.024 o? =0.03 o? =0.04
Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 30.67 0.8254  0.1506 | 29.24  0.7927 0.1840 | 27.54 0.7551 0.2269 | 2549 0.7095 0.2856
RIDNet [2] 30.77 0.8261 0.1444 | 2931 0.7934 0.1757 27.58 0.7551 0.2168 25.49  0.7081  0.2750
RNAN [16] 29.77  0.8066  0.1492 | 2832 0.7745 0.1814 | 26.67 0.7377 0.2224 | 2475 0.6932 0.2796
SwinIR [10] 29.17  0.7947 0.1258 | 27.83 0.7660 0.1524 | 2630 0.7322 0.1893 2446  0.6909 0.2412
Restormer [13]  28.89  0.8005 0.1300 | 2795 0.7790 0.1515 26.81  0.7523  0.1807 2530 0.7173  0.2213
Dropout [&] 28.64 0.8153 0.1416 | 27.85 0.7852  0.1688 26.89  0.7501 0.2032 | 25.64 0.7062  0.2525
baseline 28.86  0.7283  0.1353 27.61  0.7014  0.1593 26.15 0.6679  0.1938 2438  0.6251 0.2437
Ours 30.33 0.8157 0.1130 | 30.01 0.8016 0.1238 | 29.53 0.7800 0.1412 | 28.66 0.7463 0.1761
Poisson noise a=2 a=25 a=3 a=3.5

Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 29.13  0.7771  0.1772 | 2540 0.6740 0.2915 2278  0.5910 03972 | 20.86 0.5261 0.4846
RIDNet [2] 29.00 0.7706  0.1681 25.17  0.6636  0.2838 22.59  0.5836  0.3877 20.76 ~ 0.5227  0.4730
RNAN [16] 28.13  0.7488 0.1760 | 2458 0.6476 0.2897 | 22.18 0.5710 0.3916 | 20.44 05119 0.4765
SwinIR [10] 27.85 0.7419 0.1468 | 2448  0.6459 0.2472 | 22.12 0.5710 0.3419 | 20.35 05122 0.4229
Restormer [13]  28.74  0.7765 0.1310 | 25.78 0.6936  0.2082 | 23.57 0.6296 0.2778 21.94  0.5792 0.3342
Dropout [8] 2774  0.7699  0.1649 | 2556  0.6751 0.2645 23.84  0.5986  0.3558 22.47  0.5377 0.4355
baseline 27.89  0.7024  0.1557 | 24.51 0.6025 0.2522 | 22.19 0.5361 0.3427 20.49 04761  0.4207
Ours 30.01 0.8016 0.1120 | 28.67 0.7439 0.1683 | 27.23 0.6876 0.2329 | 25.99 0.6347 0.2976
Spatially-correlated o =40 o =45 o =50 o =255

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 29.92  0.8159 0.2221 28.59 0.7672  0.2718 2735 0.7160 03197 | 2623  0.6665 0.3654
RIDNet [2] 29.36  0.7958  0.2608 28.06  0.7433 03146 | 2690 0.6910 0.3624 | 25.85 0.6426 0.4056
RNAN [16] 29.16  0.7792 0.2542 | 27.85 0.7257 0.3053 26.70  0.6751 0.3514 | 25.68 0.6286 0.3941
SwinIR [10] 29.10  0.7710  0.2498 27.77  0.7165  0.3005 26.61 0.6658  0.3446 | 25.59 0.6193 0.3876
Restormer [13] 2446  0.6408 0.2867 2390 0.6043  0.3217 2348 0.5723 0.3542 | 23.18 0.5431 0.3874
Dropout [8] 28.15 0.7946  0.2123 2732 0.7542 0.2562 | 2647 0.7097 0.3021 25.65 0.6649 0.3493
baseline 29.43  0.7731  0.2365 28.05 0.7191 0.289 26.61 0.6532  0.3513 2582  0.6223  0.3770
Ours 2896 0.7996 0.1952 | 2836 0.7779  0.2216 | 27.65 0.7529 0.2507 | 27.01 0.7251 0.2827
Salt & pepper d = 0.002 d = 0.004 d = 0.008 d=0.012
Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 23.53  0.6675 0.3607 | 20.13  0.4878 0.5403 16.72  0.2966  0.7748 1473 0.2057 0.9320
RIDNet [2] 24.01 0.6639  0.3581 20.48  0.4864 0.5288 16.93  0.2960 0.7584 1492  0.2065 0.9131
RNAN [16] 22.62 0.6428 0.3731 19.54  0.4651 0.5374 16.43  0.2854 0.7626 1459  0.2007 09193
SwinlIR [10] 22.68 0.6391 0.3580 19.50 0.4581 0.5226 16.32  0.2749  0.7379 1447  0.1914 0.8889
Restormer [13]  23.04  0.6398 0.3667 | 20.10 0.4829 0.5207 18.64 03555 0.6163 1834 03156 0.6797
Dropout [8] 2583 0.6771 0.3082 | 23.04 0.5197 0.4693 19.89  0.3536 0.6918 1796  0.2709 0.8487
baseline 24.06  0.6224  0.3485 20.87  0.4630 0.5183 17.69  0.2959  0.7378 15.86  0.2156  0.8867
Ours 29.51 0.7929 0.1504 | 2745 0.7117 0.2476 | 24.03 0.5508 0.4350 | 21.59 0.4313 0.5968
Mixture noise level 1 level 2 level 3 level 4

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 28.41 0.7627  0.1869 | 26.88  0.6989 0.2406 | 24.16 0.5781 0.3564 | 2233 04877 0.4447
RIDNet [2] 2838  0.7509 0.1781 26.65 0.6811 0.2337 | 23.82 0.5558 0.3479 | 22.03 0.4659 0.4335
RNAN [16] 27.52  0.7285 0.1886 | 2599 0.6616 0.2414 | 23.42 0.5412 0.3510 | 21.75 0.4533 0.4351
SwinIR [10] 27.57 0.7271  0.1601 26.07 0.6619 0.2050 | 23.56 0.5453 0.3059 | 21.86 0.4557 0.3869
Restormer [13] 2859  0.7674 0.1410 | 27.53  0.7210 0.1703 2529  0.6263  0.2462 | 23.71 0.5578  0.2991
Dropout [8] 27.47  0.7515 0.1694 | 2641 0.6924 0.2190 | 24.58 0.5856  0.3255 23.27  0.5086 0.4079
baseline 28.05 0.7472  0.1665 2640 0.6810 0.2148 23.70  0.5418 0.3229 | 21.91 0.4397  0.4061
Ours 2991 0.8267 0.1094 | 2944 0.8111 0.1312 | 2824 0.7570 0.1870 | 27.15 0.7018 0.2452

Table 3. Quantitative comparison on McMaster [15].



Speckle noise a2 =0.02 a2 =0.024 o? =0.03 o? =0.04
Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 2990 0.8380 0.1699 | 28.57 0.8044 0.1982 | 2690 0.7610 0.2374 | 24.84 0.7035 0.2996
RIDNet [2] 30.11 0.8404  0.1597 | 28.75 0.8044 0.1884 | 27.03 0.7590 0.2305 24.87  0.6999  0.2927
RNAN [16] 29.36  0.8228  0.1593 2795 0.7883 0.1872 | 26.28 0.7451 0.2276 | 2428 0.6870 0.2893
SwinlR [10] 28.89  0.8101 0.1602 | 27.55 0.7774 0.1867 2598 0.7362  0.2251 24.07  0.6810 0.2849
Restormer [13]  29.16  0.8279  0.1518 | 28.13  0.8015 0.1742 | 26.84 0.7667 0.2049 | 25.17 0.7202 0.2523
Dropout [8] 29.13  0.8447 0.1684 | 28.28  0.8171 0.1953 27.16  0.7804  0.2347 25.69  0.7311  0.2936
baseline 29.11 0.8122  0.1794 | 27.75 0.7801  0.2077 26.15 0.7393  0.2465 24.19  0.6837  0.3050
Ours 3046 0.8777 0.1435 | 30.08 0.8697 0.1511 | 2949 0.8502 0.1691 | 28.53 0.8169 0.2060
Poisson noise a=2 a=25 a=3 a=3.5

Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 28.13  0.7790 0.1957 | 2440 0.6417 0.3284 | 21.77 0.5295 0.4524 19.83  0.4446 0.5639
RIDNet [2] 28.00 0.7705 0.1878 | 24.08 0.6199  0.3237 21.50 0.5082  0.4459 19.67 04279 0.5542
RNAN [16] 2738 0.7505 0.1902 | 23.73  0.6081 0.3201 21.29  0.5003  0.4405 19.51 0.4220  0.5498
SwinIR [10] 27.12  0.7392  0.1849 | 23.69 0.6049 0.3094 | 21.27 0.4992 0.4282 19.46  0.4200 0.5393
Restormer [13]  28.68  0.7973  0.1506 | 25.67 0.6951 0.2361 23.54 0.6167 03139 | 2225 0.5598 0.3831
Dropout [8] 28.03  0.7953  0.1975 2542  0.6823  0.3220 | 2345 0.5901 04366 | 21.94 05182 0.5418
baseline 27.55 0.7517  0.2085 2392 0.6173 03346 | 2142 0.5087 0.4510 19.63 04259 0.5572
Ours 30.01 0.8656 0.1390 | 2848 0.8053 0.2072 | 26.84 0.7318 0.2974 | 25.33 0.6616  0.3937
Spatially-correlated o =40 o =45 o =50 o =255

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 2938 0.8304 0.2819 | 28.02 0.7839 0.3379 | 26.78 0.7349  0.3864 | 25.68 0.6880  0.4290
RIDNet [2] 28.74  0.8092 0.3306 | 2745 0.7603  0.3865 2632 0.7122 0.4300 | 25.31 0.6670  0.4672
RNAN [16] 28.68 0.7983 0.3192 | 27.39 0.7499 0.3703 26.25 0.7029 04122 | 2525 0.6591 0.4500
SwinIR [10] 28.56  0.7883  0.3353 2726 0.7389  0.3853 26.13  0.6918 0.4298 | 25.13 0.6484 0.4664
Restormer [13] 2454  0.7076  0.3661 24.17  0.6689  0.4007 23.70  0.6320 0.4348 | 2335 0.5978 0.4640
Dropout [8] 28.89  0.8383 0.2580 | 27.89  0.7999 0.3109 | 2690 0.7563 0.3656 | 2596 0.7123 0.4135
baseline 29.11  0.8109 0.3071 27.69  0.7578  0.3658 26.48 0.7078 0.4147 | 2542  0.6625 0.4537
Ours 29.08 0.8445 0.2431 | 2843 0.8242 0.2765 | 27.71  0.7985 0.3127 | 27.03 0.7719 0.3476
Salt & pepper d = 0.002 d = 0.004 d = 0.008 d=0.012
Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 2439  0.7102  0.3205 20.88  0.5423  0.5032 1733 0.3499 0.7615 1527  0.2510 0.9304
RIDNet [2] 2483  0.7065 0.3165 21.12  0.5400 0.4912 17.44  0.3470 0.7459 1541  0.2510 0.9096
RNAN [16] 2332 0.6768 0.3312 | 20.19 0.5127 0.4970 1699  0.3343  0.7464 15.12  0.2443 09133
SwinlIR [10] 23.21 0.6724  0.3416 | 20.04 0.5035 0.5123 16.84  0.3206 0.7541 1497  0.2320 0.9190
Restormer [13]  23.58  0.6779  0.3429 | 20.77 0.5292 0.5016 19.13 04143  0.6322 1837  0.3500 0.7409
Dropout [8] 2692  0.7433  0.2739 | 2397 0.5999 0.4380 | 20.70 0.4330 0.6832 18.75 0.3431 0.8508
baseline 25.09 0.6879 0.3289 | 21.71 0.5261  0.5088 18.25 0.3480 0.7621 16.30  0.2594  0.9216
Ours 2996 0.8558 0.1512 | 28.01 0.7893 0.2295 | 24.69 0.6391 0.4408 | 22.23 0.5174 0.6331
Mixture noise level 1 level 2 level 3 level 4

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 2791 0.7876  0.1955 26.28  0.7151  0.2561 23.52  0.5791  0.3825 21.70  0.4867 0.4833
RIDNet [2] 27.80 0.7740 0.1888 | 2597 0.6885 0.2510 | 23.14 0.5463 0.3777 21.38 04589 0.4752
RNAN [16] 27.16  0.7543 0.1946 | 2552 0.6718 0.2515 22.89  0.5366 0.3711 2122 04532 0.4683
SwinIR [10] 27.10  0.7477 0.1827 | 25.51 0.6668  0.2378 2296 0.5363 0.3563 21.29 04523 0.4533
Restormer [13]  28.54  0.8091 0.1493 2750 0.7625 0.1796 | 25.17  0.6509 0.2599 | 23.52 0.5729 0.3270
Dropout [8] 28.01 0.8076  0.1841 26.78  0.7455  0.2455 2470  0.6296 03722 | 2329  0.5532 0.4672
baseline 27.81 0.7717  0.2022 | 26.06 0.6916 0.2659 | 2327 0.5476  0.3927 21.48 0.4563 0.4886
Ours 29.74  0.8672 0.1342 | 29.14 0.8466 0.1551 27.80 0.7900 0.2231 26.62  0.7305 0.2964

Table 4. Quantitative comparison on CBSD68 [11].



Speckle noise a2 =0.02 a2 =0.024 o? =0.03 o? =0.04
Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 28.66 0.8207 0.1456 | 27.28 0.7880  0.1745 25.64  0.7478  0.2138 23.67 0.6962 0.2716
RIDNet [2] 2873  0.8218 0.1386 | 27.31 0.7874 0.1683 25.63  0.7457 0.2086 | 23.63  0.6933 0.2662
RNAN [16] 27.99 0.8047 0.1414 | 26.60 0.7726 0.1697 | 25.01 0.7333  0.2085 23.14  0.6826  0.2652
SwinlR [10] 27.50  0.7931 0.1408 | 26.19 0.7626  0.1683 24.68  0.7256  0.2059 | 22.88  0.6772  0.2609
Restormer [13] 2822  0.8100 0.1370 | 27.17 0.7851 0.1578 2586  0.7529 0.1874 | 24.15 0.7106  0.2302
Dropout [&] 27.69  0.8258 0.1516 | 26.83  0.7981  0.1797 2578  0.7639  0.2167 2442  0.7200 0.2693
baseline 27.66  0.7916 0.1611 2633  0.7617 0.1877 2480  0.7242  0.2241 2298 0.6753 0.2772
Ours 2897 0.8771 0.1062 | 28.60 0.8642 0.1180 | 28.04 0.8421 0.1421 | 27.12 0.8055 0.1832
Poisson noise a=2 a=25 a=3 a=3.5

Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 2772  0.7814 0.1656 | 24.06 0.6682 0.2738 2152 0.5807 0.3740 19.65 0.5128 0.4638
RIDNet [2] 27.51 0.7728  0.1600 | 23.75 0.6536  0.2697 21.27  0.5675 0.3686 19.51  0.5025 0.4561
RNAN [16] 26.88  0.7550 0.1634 | 23.37 0.6428 0.2682 | 21.02 0.5593 0.3662 19.30 0.4953  0.4544
SwinIR [10] 26.59 0.7451 0.1586 | 23.27  0.6392  0.2575 2095 0.5575 0.3533 19.21 0.4929  0.4426
Restormer [13] 2839  0.7964 0.1326 | 25.34 0.7049 0.2043 22.89 0.6266 0.2802 | 21.25 0.5684 0.3524
Dropout [§] 27.19  0.7928 0.1722 | 24.82 0.6989 0.2706 | 2298 0.6269 0.3607 21.55 0.5698  0.4437
baseline 2694  0.7511 0.1790 | 2345 0.6425 0.2788 21.09 0.5593 0.3712 19.40 04936 0.4556
Ours 28.72  0.8710 0.1051 27.48 0.8142 0.1668 | 26.04 0.7446 0.2464 | 24.71 0.6845 0.3232
Spatially-correlated o =40 o =45 o =50 o =255

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 29.87 0.8526 0.1912 | 2850 0.8110 0.2371 2723  0.7677  0.2795 26.09  0.7258 0.3173
RIDNet [2] 29.24  0.8364 0.2216 | 27.89 0.7908 0.2702 | 26.68 0.7464 0.3116 | 25.62 0.7051 0.3464
RNAN [16] 29.07 0.8203 0.2248 27.72  0.7767 0.2674 | 26.54 0.7351 03052 | 25.50 0.6961 0.3385
SwinIR [10] 28.99 0.8116 0.2360 | 27.64 0.7678 0.2769 | 2646  0.7265 0.3131 2543  0.6882  0.3455
Restormer [13] 26.38  0.7360  0.2593 25.56  0.7011 0.2902 | 24.77 0.6686 03189 | 24.06 0.6384 0.3455
Dropout [8] 28.68  0.8529  0.1797 27.78  0.8191 0.2204 | 26.86 0.7808  0.2635 2596  0.7411 0.3046
baseline 29.58  0.8440 0.2092 | 28.11 0.7950  0.2567 26.84 0.7492 0.2974 | 2574 0.7076  0.3323
Ours 28.06 0.8586 0.1720 | 27.55 0.8410 0.1976 | 26.98 0.8196 0.2266 | 26.40 0.7951 0.2562
Salt & pepper d = 0.002 d = 0.004 d = 0.008 d=0.012
Method PSNR  SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 24.01 0.7372  0.2643 20.55 0.5828 0.4143 17.05  0.4029 0.6335 15.01 0.3062  0.7973
RIDNet [2] 2456  0.7372  0.2613 20.88  0.5835 0.4062 17.20  0.4023  0.6220 15.16  0.3072 0.7824
RNAN [16] 23.01 0.7132  0.2744 19.87 0.5582 0.4137 16.71 0.3892  0.6223 1486  0.2999  0.7840
SwinlIR [10] 2290 0.7075 0.2823 19.74  0.5507 0.4215 16.56  0.3790 0.6231 1471  0.2910 0.7773
Restormer [13] 2342  0.7145 0.2799 | 20.53 0.5772 0.4086 18.65 0.4571  0.5308 17.81 0.3967 0.6311
Dropout [8] 2633  0.7591 0.2326 | 2348 0.6279 0.3647 20.29 04781 0.5635 1835 0.3943 0.7181
baseline 2492  0.7224 0.2667 | 21.56  0.5752 0.4130 18.11  0.4103 0.6263 16.15 0.3225 0.7840
Ours 28.58 0.8655 0.1158 | 2693 0.8074 0.1850 | 24.01 0.6780 0.3530 | 21.75 0.5652 0.5140
Mixture noise level 1 level 2 level 3 level 4

Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
DnCNN [14] 27.62  0.7842 0.1656 | 26.08 0.7221 0.2120 | 2341 0.6112 0.3116 | 21.64 0.5332  0.3907
RIDNet [2] 27.51 0.7725 0.1592 | 2575 0.7011 0.2076 | 23.01 0.5844 0.3080 | 21.31 0.5099 0.3851
RNAN [16] 26.85 0.7535 0.1651 2528 0.6866 0.2092 | 22.75 0.5759 0.3046 | 21.13 0.5041 0.3813
SwinIR [10] 26.79  0.7475 0.1566 | 2526  0.6816 0.1973 22.81 0.5751 0.2878 21.19  0.5040 0.3634
Restormer [13] 2845  0.8085 0.1269 | 27.39  0.7665 0.1517 25.03 0.6716 0.2171 2326 0.5984  0.2749
Dropout [8] 2722 0.7976  0.1608 | 26.11  0.7431 0.2077 2422  0.6484 0.3035 2291 0.5849 0.3770
baseline 2747 07795 01718 | 2579 0.7136  0.2191 23.12  0.5931 0.3170 | 21.38 0.5131 0.3925
Ours 28.57 0.8749 0.0995 | 28.08 0.8566 0.1186 | 26.97 0.8053 0.1747 | 2597 0.7516 0.2337

Table 5. Quantitative comparison on Urban100 [7].



