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8. Supplementary Material

In this supplementary material, we provide additional
details about:

1. Supplementary video for qualitative assessment of our
model’s performance.

2. Replay-NVAS dataset details (referenced in Sec. 4.1
of the main paper).

3. SoundSpaces-NVAS dataset details.

4. Implementation and training details (referenced in Sec.
5.6).

5. Baseline details (referenced in Sec. 6).

8.1. Supplementary Video

This video includes examples for the Replay-NVAS
dataset and the SoundSpaces-NVAS dataset as well our
model’s prediction on both datasets. Listen with a head-
phone for the spatial sound.

8.2. Replay-NVAS Dataset Details

Multi-view camera calibration. We estimate camera
poses with COLMAP [2] Structure-from-Motion (SfM)
framework on each scene separately. Each scene is filmed
with 8 static DSLR cameras and 3 wearable GoPro cam-
eras (the latter are not used in our acoustic synthesis exper-
iments). We first run SfM on the segments of the GoPro
recordings where the wearers move significantly; followed
by registration of the static camera frames to the model and
a final round of bundle adjustment where we enforce con-
stant relative poses between static camera frames taken at
the same timestamp. This two-stage procedure greatly re-
duces the scale of the problem by making SfM focus first
on the most diverse part of the data. Upon feature extrac-
tion stage, we cull the local features belonging to potentially
dynamic object categories (such as people or animals) as
detected by Detectron2 instance segmentation [4]. We then
exploit the stationarity of DSLRs by picking a medoid cam-
era pose among the frames filmed by each camera. Finally,
we rotate and scale the coordinate system so that Z axis is
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Figure 5. Coordinates of static cameras estimated by COLMAP,
aggregated over scenes. The same colours correspond to the same
camera position estimated from different scenes; they do not col-
lapse to a point since the cameras could be moved between record-
ings.

pointing roughly upwards and scale the scene so that dis-
tances between cameras match the approximate field mea-
surements in centimeters. Fig. 5 plots all camera coordi-
nates and orientations projected to XY plane.

Training data construction. We temporally align differ-
ent DSLR videos using the clapper sound that is prominent
in the waveform, which gives us synchronized multi-view
audio-visual data. However, this data is not directly usable
for training because some of it is noisy (e.g., people fre-
quently talking over each other) or silent, which leads to
additional learning challenges for the model. Thus, we de-
sign an automatic process for filtering out noisy clips. More
specifically, we first extract all one-second audio clips of
all videos and obtain the corresponding near-range audio
clips and bounding boxes for each speaker. As described in
Sec. 5.2, we select the active speaker based on the maxi-
mum energy of near-range audio with At = 0.2. For a one-
second video clip, we obtain 5 candidate bounding boxes.
We choose a threshold 6% and only keep clips where more
than §% of the bounding boxes belong to the same person.
We set § to 80. In this way, we keep clips where there is only
one dominant speaker talking, and this speaker’s bounding
box is used as the localization feature V7.



Figure 6. Environment mesh.

8.3. SoundSpaces-NVAS Dataset Details

For the single environment experiment, we use an apart-
ment environment from the Gibson dataset [5]'. Fig. 6
shows the mesh of the environment (the ceiling is removed).
For the novel environment experiment, we use the public
train/val/test splits.

For all images, we render with a resolution of 256 x 256
and a field of view of 120 degrees. We render binaural audio
at a sample rate of 16000.

8.4. Implementation and Training Details

All audio clips during training are one second long with
a sample rate of 16000. The shape of Ag and Ar is thus
2 x 16000. The audio encoder is a convld layer that en-
codes audio from 2 channel (binaural) to latent features of
64 channels, i.e., A’} is of shape 64 x 16000. For acoustic
synthesis, we have M = 30 gated multi-modal fusion lay-
ers, which are equally divided into 3 blocks. In each block,
the dilation of the dilated convld increases exponentially
with base 3. The kernel size for each dilated convld is also
3. Both the skip and residual layers are conv1d layers with
kernel size 1. The decoder network is a convld layer that
encodes the latent audio features from 64 channels back to
2 channels.

The image resolutions are downsampled to 216 x 384
and 256 x 256 for Replay-NVAS (downsampled) and
SoundSpaces-NVAS respectively. After being processed by
a condld layer and flattened, the output visual feature Vp
is of size 672 for Replay-NVAS and 512 for SoundSpaces-
NVAS. The fusion layer consists of two fully connected lay-
ers with the first output dimension being 512 and the second
being 256.

We train all models for 1000 epochs on the
SoundSpaces-NVAS dataset and for 600 epochs on
the Replay-NVAS dataset with a learning rate of 0.001. We
evaluate the checkpoint with the lowest validation loss on
the test set.

"http://gibsonenv.stanford.edu/models/?id=Oyens

8.5. Baseline Details

For the Digital Signal Processing (DSP) baseline, we use
the head-related transfer function (HRTF) measured by a
KEMAR Dummy-Head Binaural Microphone. We apply a
Wiener filter [3] to estimate the inverse HRTF. We adjust
the gain of the HRTF by performing a binary search on the
validation dataset and selecting the best gain value for test-
ing. For the VAM [1] baseline, we take the original model
from the paper, and we make minimal modifications by con-
catenating the visual feature with the target viewpoint pose
Pr. We train the model with the same hyper-parameters
described in the paper until convergence on both datasets.
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