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1. Pre-training Implementation Details

We implement the projecting function that maps patch
or language token features to the FDT space as a fully-
connected layer with GELU activation (see Section 3.2).
Two different projecting functions are applied for mapping
patch and language token features, respectively. We regu-
larize the FDT using weight decay, with arate of 0.1. We set
the batch sizes as 4096, 8192, and 32768 when pretraining
the models under the 15M, 30M, and 145M settings, respec-
tively. To ensure a fair comparison with the DECLIP [12]
and FILIP [21] models, we use the same data augmentation
as these models when training the CLIP and CLIP+FDT
models. Consequently, our reported results of the CLIP
model on the 15M setting are better than those reported in
the 15M benchmark [5]. We train ViT-B/32 based [7] mod-
els considering our limited computation resource. The in-
put image resolution is 224 x 224, and the maximal input
language token number is 77. Following [5], we apply the
AdamW optimizer [15] with a weight decay rate of 0.1 dur-
ing pre-training. The learning rate is first linearly increased
to 0.001 with one epoch for warmup, and then decayed to
0 following the cosine strategy [!4]. We use NVIDIA A100
GPUs for pre-training.

2. Downstream Implementation Details
2.1. Downstream Datasets

Image Classification Tasks. Following [12], we evalu-
ate our method on 11 datasets, including CIFAR-10 [11],
CIFAR-100 [11], SUN397 [20], Stanford Cars [10],
FGVC Aircraft [16], Describable Textures [4], Oxford-IIIT
Pets [18], Caltech-101 [9], Oxford Flowers 102 [17], Food-
101 [3], and ImageNet-1K [6].

Image-Text Retrieval. Our method is tested on two stan-
dard benchmarks: Flickr30K [22] and MSCOCO [13]. For
MSCOCO, we report the results on the 5K setting.
Non-Linear Probe task. We conduct the experiments on
the VQAv2 dataset [2]. Following the standard protocol [§],
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we train the models with both training and validation data,
and test the models on the test-dev set.

2.2. Implementation Details

Zero-shot Image Classification. For a fair comparison, we
use the domain-specific prompts and category names pro-
posed by CLIP [19]. Note that we do not report the re-
sults on the StanfordCars and Aircraft datasets, because the
pertaining datasets contain few captions about the category
names of these datasets. For example, only 0.04% and 0%
of descriptions contain aircraft and car category names on
the 15M setting.

Linear Probe Image Classification. We train a logistic re-
gression classifier using L-BFGS, following CLIP [19]. We
set the maximum iterations number to 1,000, and determine
the L2 regularization weights following DECLIP’s hyperpa-
rameter sweeping strategy [ 2]. We do not report the results
on the ImageNet-1K dataset, due to the high computational
cost of conducting hyperparameter sweeping on the dataset.
Non-linear Probe Task. The downstream task head con-
sists of a fully-connected layer with GELU activation and a
fully-connected layer. The extracted FDT features of im-
ages and questions are concatenated and then fed to the
downstream task head to predict the answers. The encoders
and FDT are frozen during the training. The downstream
head is optimized by the AdamW optimizer [15]. We set
the learning rate as 0.005, and decay it to O following the
cosine strategy [14].

3. Completeness Probing Experiment Details

Given an image that contains N objects, its matched sen-
tence is “An photo contains 01, 05 ..., oy —1, and o, where
0; is the name of the ¢-th object in the images and all the ob-
jects are included. For the partially matched sentence, we
randomly remove an object and use the remaining N — 1
objects to construct a caption. For example, if the N-th
object is removed, the partially matched sentence is “An
photo contains oy, 03 ..., and on_1”. We can construct N



partially matched sentences for the image, resulting in N
sentence pairs for the image. In our experiments, we ob-
tain the object presence information of images based on the
object detection annotations of the MSCOCO [13] dataset.
We construct 305,723 sentence pairs using all images in the
MSCOCO training split.

4. FDT Visualization Details

We use the model pre-trained on the 145M setting for
visualization because it achieves the best performance. To
visualize an FDT token, we first calculate its relevance score
between patches/language tokens following Equations 4
and 6 without using max-pooing. We then display the rele-
vance scores between the FDT token and the images corre-
sponding to the top-5 most relevant patches, since we find
that the patches alone cannot fully convey the object infor-
mation. We increase the resolution by reducing the patch
stride to 4, following the method proposed in [1]. For text
modality, we show the top-5 most relevant language tokens
of the FDT token.

5. Additional Experiment Results
5.1. Text-to-Image Retrieval Cases

We further provide five cases for the text-to-image re-
trieval task in Figure 1. We have the same observation that
the images retrieved by the CLIP+FDT well match the text
queries, while those retrieved by the CLIP models often
overlook important concepts mentioned in the text queries.

5.2. Visualization of Learned FDT

We present eight learned FDT in Figure 2. These cases
further show that FDT can learn meaningful cross-modal
correspondence.

5.3. Pretraining Data Scale

The results of the models pretrained with different scales
of training data are reported in Table 1, 2, 3, and 4.

5.4. Image Encoder Architecture

To evaluate the influence of encoder architectures on our
methods, we pre-trained the models with different image
encoder architectures. The results for various downstream
tasks are reported in in Table 5, 6, 7, and 8. We also report
the computation costs when using different encoder archi-
tectures in Table 9.

5.5. FDT Number

The results of models trained with different FDT num-
bers are shown in Table 10, 11, 12, and 13.

5.6. Sparse Constraints

We report the results of the models trained with and with-
out sparse constraint in Table 14, 15, 16, and 17.
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Figure 1. Examples show the top-5 retrieved images for the given
text queries in the text-to-image retrieval task on MSCOCO.
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Figure 2. The top-5 most relevant image patches and text tokens of eight FDT tokens. Note that the redundant text tokens in the top-5 are
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removed. The color of the heatmap from blue to red denotes the relevance between patches and FDT from small to large.

Table 1. Zero-shot image classification accuracy (%) when using different scales of training data. The dataset names are abbreviated.
C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is ImageNet-1K. “AVG” is the average accuracy over

all datasets.

Table 2. Linear probing image classification accuracy (%) when using different scales of training data. The dataset names are abbreviated.
C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air is Aircraft. “AVG” is the average accuracy over all

datasets.

C10 C100 F101 PETS FLOWE SUN DTD CAL IN AVG

15M

CLIP 60.4 335 396 231 54.0 420 170 655 370 41.3
CLIP+FDT 67.7 399 429 258 55.5 455 265 69.6 393 459(14.6)

30M

CLIP 772 481 59.1 584 58.2 526 280 80.8 488 56.8
CLIP+FDT 819 565 626 623 59.5 56.7 336 848 533 61.2(144)

145M

CLIP 80.9 539 69.1 689 59.3 52.1 430 90.1 59.0 64.0
CLIP+FDT 87.1 63.7 735 71.0 65.0 562 477 905 604 69.0(15.0)

C10 C100 F101 PETS FLOW SUN CARS DTD CAL AIR AVG

15SM

CLIP 883 68.6 721 725 92.6 695 298 678 862 277 67.5

CLIP+FDT 89.1 712 744 73.0 93.4 708 314 694 877 279 68.8(11.3)

30M

CLIP 920 747 788  80.7 93.7 72.6 559 714 88.6 297 73.8

CLIP+FDT 938 77.8 81.6 826 94.5 743 544 739 923 309 756(11.8)

145M

CLIP 952 806 86.1 875 96.5 763 876 772 947 395 82.1

CLIP+FDT 948 80.8 855 858 95.7 759  88.1 785 946 429 823(10.2)




Flickr30K MSCOCO

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
R@] R@5 R@10 R@l R@5 R@I0 rsum R@l R@5 R@10 R@l R@5 R@I0 rsum
15M setting
CLIP 27.6 539 644 428 715 829 343.1 159 367 478 248 498 618 236.8
CLIP+FDT 326 586 685 51.0 783 875 3765(1334) 194 408 519 296 553  66.1  263.1(126.3)
30M setting
CLIP 436 728 813 588 842  90.6 431.3 233 469 586 348 633 739 300.8

CLIP+FDT 525 787 864 708 90.8 950 4742(1429) 283 533 643 430 690 792 337.1(136.3)
145M setting

CLIP 526 785 864 679 899 945 469.8 293 541 654 421 671 77.2 335.2
CLIP + FDT 563  80.7 876 759 936 953 4894 (119.6) 31.0 557 66.7 464 719 81.3  353.0(117.8)

Table 3. Zero-shot image-text retrieval results on the Flickr30K and MSCOCO (5K) datasets when using different scales of training data.

y/m  number other overall

15M setting

CLIP 67.7 31.9 33.6 47.5
CLIP + FDT  67.8 34.6 39.6 506 (13.1)

30M setting

CLIP 69.7 34.8 37.8 50.6
CLIP + FDT 68.8 36.4 42.0 53.4(12.8)
145M setting

CLIP 70.9 36.5 41.7 53.1

CLIP + FDT 715 379 452  55.2(12.1)

Table 4. Results of non-linear probing on VQA v2 dataset when using different scales of training data.

C10 C100 F101 PETS FLOW SUN DTD CAL IN AVG

ViT-B/32 604 335 396 231 54.0 420 17.0 655 370 41.3
ViT-B/32+FDT  67.7 399 429 258 55.5 455 265 69.6 393 459 (14.6)

ViT-B/16 64.6 321 497 257 59.7 434 213 679 421 452
ViT-B/16+FDT 740 42.1 494 285 62.2 505 251 714 456 499(14.7)

SwinV2-B 583 233 393 200 55.2 40.1 189 62.1 389 39.6
SwinV2-B+FDT 589 26.0 447 238 554 433 214 662 423 424(12.8)

Table 5. Zero-shot image classification accuracy (%) when using different image encoder architectures. The dataset names are abbreviated.
C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is ImageNet-1K. “AVG” is the average accuracy over
all datasets.

C10 C100 F101 PETS FLOW SUN CARS DTD CAL Air AVG

ViT-B/32 883 686 72.1 725 92.6 69.5 29.8 67.8 862 277 67.5
ViT-B/32+FDT 89.1 712 744 73.0 93.4 70.8 314 694 877 279 688(11.3)

ViT-B/16 892 695 803 751 95.9 734 334 715 883 320 68.8
ViT-B/16+FDT  89.3 716 823 758 96.1 742 340 71.8 88.6 293 71.3(125)

SwinV2-B 856 651 785 714 94.3 723 308 69.4 859 321 68.5
SwinV2-B+FDT 86.8 67.5 80.5 75.6 94.8 73.1 334 727 889 340 70.7(122)

Table 6. Linear probing image classification accuracy (%) when using different image encoder architectures. The dataset names are
abbreviated. C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air is Aircraft. “AVG” is the average
accuracy over all datasets.



Flickr30K MSCOCO

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
R@l R@5 R@10 R@l R@5 R@10 rsum R@l R@5 R@10 R@1 R@5 R@10 rsum
ViT-B/32 27.6 539 644 428 715 82.9 343.1 159 367 478 248 498 618 236.8
ViT-B/32+FDT 326 586 685 51.0 783 875 3765(1334) 194 408 519 296 553 66.1  263.1(126.3)
ViT-B/16 353 606 717 505 8l1.1 88.6 387.8 193 413 528 297 543 66.2 263.6
ViT-B/16+FDT 416 675 769 608 86.1 92.6  425.5(137.7) 234 467 580 353 604 71.6  295.4(131.8)
SwinV2-B 30,5 56.8 678 485 777 86.8 368.1 177 384 497 260 52.1 63.7 247.6

SwinV2-B+FDT 39.6 652 749 579 857 922 415501474 223 449 562 338 60.1 71.0  288.3(140.7)

Table 7. Zero-shot image-text retrieval results on the Flickr30K and MSCOCO (5K) datasets when using different image encoder architec-
tures.

y/n  number other overall
ViT-B/32 67.7 319 33.6 475
ViT-B/32 + FDT  67.8 34.6 39.6  50.6(13.1)
ViT-B/16 69.0 332 36.0 49.2
ViT-B/16 + FDT ~ 72.0 37.6 429  543(15.1)
SwinV2-B 67.8 29.4 32.1 46.5

SwinV2-B + FDT 68.6 34.5 41.0 51.6(15.1)

Table 8. Results of non-linear probing on VQA v2 dataset when using different image encoder architectures.

#param  FLOPs Training time  Inference throughput

(s/iter) (image-text pairs/s)
CLIP-ViT-B/32 151M 7.3G 0.50 808.5
CLIP-ViT-B/32+FDT  161M 9.4G 0.60 642.8
CLIP-ViT-B/16 I50M  20.5G 1.15 315.7
CLIP-ViT-B/16+FDT  160M  25.1G 1.29 272.5
CLIP-Swin-B 151M 18.4G 1.41 258.3
CLIP-Swin-B+FDT 161M  20.5G 1.51 248.1

Table 9. Computation cost when using different image encoder architecture.

FDTsize C10 C100 F101 PETS FLOW SUN DTD CAL IN AVG

- 604 335 396 231 54.0 420 170 655 370 413
8192 704 404 383 199 51.3 428 166 681 37.8 428
16384 67.7 399 429 258 55.5 455 265 69.6 393 459
24576 69.0 39.1 419 242 55.7 444 218 705 398 452

Table 10. Zero-shot image classification accuracy (%) of models with different FDT sizes. The row whose FDT value is “-” represents the
CLIP model. The dataset names are abbreviated. C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is
ImageNet-1K. “AVG” is the average accuracy over all datasets.

FDTsize C10 C100 F101 PETS FLOW SUN CARS DTD CAL Air AVG

- 883 686 721 725 92.6 695 298 67.8 862 277 675
8192 8.1 703 728 70.7 93.4 70.1 296 685 872 275 679
16384 89.1 712 744 73.0 93.4 708 314 694 877 279 68.8
24576 893 710 749 712 93.4 70.6  30.1 69.8 872 287 68.6

Table 11. Linear probing image classification accuracy (%) of models with different FDT sizes. The row whose FDT value is “-” represents
the CLIP model. The dataset names are abbreviated. C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air
is Aircraft. “AVG” is the average accuracy over all datasets.



Flickr30K

MSCOCO

Image Retrieval

Text Retrieval

Image Retrieval

Text Retrieval

FDTsize R@1 R@5 R@10 R@l R@5 R@I0 rsum R@1 R@5 R@10 R@! R@5 R@I10 rsum
- 27.6 539 644 428 715 829 3431 159 367 478 248 498 618 2368
8192 327 583 687 506 774 869 3746 185 404 517 291 53.6 648 2581
16384 326 586 685 51.0 783 875 3765 194 408 519 296 553 66.1  263.1
24576 333 603 704 504 781 86.0 3785 186 403 51.8 297 558 669 263.1

Table 12. Zero-shot image-text retrieval results on the Flickr30K and MSCOCO (5K) datasets of models with different FDT sizes. The

IR

row whose FDT value is

represents the CLIP model.

FDTsize y/mn number other overall
- 67.7 31.9 33.6 475
8192 68.1 333 385 50.1
16384 67.8 34.6 39.6 50.6
24576 68.7 35.2 40.3 514
Table 13. Results of non-linear probing on VQA v2 dataset of models with different FDT sizes. The row whose FDT value is “-”
the CLIP model.
C10 C100 F101 PETS FLOW SUN DTD CAL IN AVG
CLIP 604 335 396 231 54.0 420 170 655 370 413
CLIP+FDTsoftmax * 23.7 1.2 4.6 2.7 1.8 3.5 42 4.1 1.2 5.2
CLIP+FDTsparsemax * 599 247 173 209 35.1 3.2 20.8 568 250 324
CLIP+FDTsoftmax 68.7 369 355 279 53.8 438 231 66.6 386 439
CLIP+FDTsparsemax 677 399 429 258 55.5 455 265 69.6 393 45.6

represents

Table 14. Zero-shot image classification accuracy (%) of models trained with (Sparsemax) and without (Softmax) sparse constraints. The
rows marked with “*” are the results when using FDT weights as features. The dataset names are abbreviated. C10/100 is CIFAR10/100.
F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is ImageNet-1K. “AVG” is the average accuracy over all datasets.

C10 C100 F101 PETS FLOW SUN CARS DTD CAL Air AVG

CLIP 883 686 721 725 92.6 69.5 298 67.8 862 277 675
CLIP+FDTsoftmax ~ 88.0  71.7 748 719 93.8 704 305 69.8 873 28.6 687
CLIP+FDTsparsemax  89.1  71.2 744 73.0 934 70.8 314 694 877 279 6838

Table 15. Linear probing image classification accuracy (%) of models trained with (Sparsemax) and without (Softmax) sparse constraints.
The dataset names are abbreviated. C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air is Aircraft.

“AVG” is the average accuracy over all datasets.

Flickr30K MSCOCO
Image Retrieval Text Retrieval Image Retrieval Text Retrieval
FDT size R@l R@5 R@I10 R@! R@5 R@I0 rsum R@1 R@5 R@I10 R@l R@5 R@I0 rsum
CLIP 276 539 644 428 715 829 3431 159 367 478 248 498 61.8 2368
CLIP+FDTsoftmax * 54 120 163 1.7 3.8 6.3 455 24 6.8 9.7 0.8 24 4.1 26.2
CLIP+FDTsparsemax * 105 29.8 392 325 598 706 2424 60 165 241 183 405 521 1575
CLIP+FDTsoftmax 333 607 695 479 780 8.2 377.6 192 403 517 283 53.8 655 2588
CLIP+FDTsparsemax 326 586 685 510 783 875 3765 194 408 519 296 553 66.1 2631

Table 16. Zero-shot image-text retrieval results on the Flickr30K and MSCOCO (5K) datasets of models trained with (Sparsemax) and
without (Softmax) sparse constraints. The rows marked with “*” are the results when using FDT weights as features.

y/n  number other overall
CLIP 67.7 31.9 33.6 47.5
CLIP+FDTsoftmax 65.7 31.9 36.2 47.9
CLIP+FDTsparsemax ~ 67.8 34.6 39.6 50.6

Table 17. Results of non-linear probing on VQAv2 dataset of models trained with (Sparsemax) and without (Softmax) sparse constraints.
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