
Supplementary Material:
SDFusion: Multimodal Shape Completion, Reconstruction, and Generation

We provide the implementation details of the VQ-VAE,
diffusion models, and multimodal conditional model. We
also provide a index.html file for better visualization of
the generated 3D shapes. It contains the animated .gif
files for more shape completion, single-view reconstruc-
tion, and text-guided generation. They can be found at
supp webpage/index.html.

In the following we first discuss implementation de-
tails (Sec. A) before providing additional results for un-
conditional generation (Sec. C), shape completion (Sec. D),
single-view reconstruction (Sec. E), text-guided generation
(Sec. F), multi-modal conditional generation (Sec. G).

A. Implementation Details
We will release our code and learned models for repro-

ducibility, but also describe the experiments in additional
detail in the following.

A.1. VQ-VAE Training

Dataset Details. We train the VQVAE using the objects
from 13 categories of the ShapeNet [1] data. These cate-
gories include [airplane, bench, cabinet, car, chair, display,
lamp, speaker, rifle, sofa, table, phone, watercraft]. For
BuildingNet [5], we train on all the provided shapes. To
extract the signed distance function (SDF), we follow the
preprocessing steps by DISN [7] and PixelTransformer [6].
We first normalize the shapes to an origin-centered cube
in [−1, 1]3. Their signed distance function is evaluated at
locations in a uniformly sampled 643 grid for ShapeNet,
and 1283 for BuildingNet. To obtain the Truncated-SDF
(T-SDF), we use a threshold of 0.2.

Training Details. Given an input shape X, the encoder
Eφ encodes it into a latent vector z. We then perform the
quantization step to obtain the quantized vector ẑ = VQ(z).
After the quantization, we use decoder Dτ to reconstruct
the shape X′. We then use the training objective proposed
in the VQ-VAE work [4], i.e.,

LVQ−VAE = − log p(X|z) + ∥sg[ẑ]− z∥2

+ ∥ẑ− sg[z]∥2 ,
(S1)

where the first term is the reconstruction loss and sg[·] de-
notes the stop gradients. The second and third term in
Eq. S1 is the VQ objective and the commitment loss re-
spectively.

A.2. Multimodal Conditional Model Training

Cross attention. Given the encoded condition vector ci
and the latent vector zt, the cross-attention layer is per-
formed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V. (S2)

where

Q =W
(i)
Q · ψi(zt), K =W

(i)
K · Eϕi

(ci), V =W
(i)
V · Eϕi

(ci).
(S3)

and ψi(zt) is a flattened vector produced by ith layer of the
3D UNet.

B. Ablations, Results and Design Choices
Evaluation of unconditional generation. We compare
the proposed method to GET3D [2] using their pretrained
weight on ShapeNet’s chair category. Following the eval-
uation in GET3D, in Table S1 we compare diversity with
COV metric and fidelity using MMD metric. The proposed
method is comparable with GET3D in terms of diversity
and fidelity.

Table S1. Quantitative evaluation of unconditional generation
and the comparison with GET3D.

COV (%, �) MMD (�)

Method LFD CD LFD CD

GET3D 75.70 71.62 3083 3.69
Ours 78.80 67.45 3042 3.23

Improvement over AutoSDF. To better understand the
impact of each component, we train 1) SDFusion’s en-
coder (Ours Enc.) with AutoSDF’s transformer, and 2) Au-
toSDF’s encoder (AutoSDF Enc.) with a latent diffusion
model. Table S2 shows that the proposed encoder and the
diffusion model improve both the fidelity and diversity, es-
pecially the diversity.
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Table S2. Ablation and comparison with AutoSDF.

Method UHD � TMD �

AutoSDF 0.0567 0.0341
Ours Enc. + Transformer 0.0582 0.0491
AutoSDF Enc. + Diffusion 0.0563 0.0594
Ours 0.0557 0.0885

Importance of discrete latent space. To understand the
impact of a discrete latent space, we train the proposed
method on ShapeNet chairs with a plain VAE. Table S3
shows the advantage of a discrete latent space in both fi-
delity and diversity. The pros of a discrete latent space are
two-fold: 1) stable training of the encoder due to the regu-
larization of the latent space; 2) simplified learning of the
diffusion model. The cons: 1) additional quantization op-
eration and additional loss for the codebook; 2) the expres-
siveness of the model is limited by the codebook size.

Table S3. Continuous vs. discrete latent space.

Method UHD � TMD �

Continuous 0.0585 0.0620
Discrete 0.0557 0.0885

Computation and Memory Savings. In Table S4, we mea-
sure MACs (multiply–accumulate operation) and memory
consumption for diffusion models using raw voxels and
the encoded latent space (ours) with batch size 1 using
ShapeNet. The resolution of the raw voxels is 643. We
can see that SDFusion saves both computation and memory
compared to operating on raw inputs.

Table S4. Comparisons of computation (MACs) and memory.

Method MACs (G) Memory (MB)

Raw Voxel 15745 OOM (> 48685)
Ours 725 4845

C. Unconditional Generation Results

We show the unconditional generation results on
ShapeNet and BuildingNet at Figure S1.

D. Shape Completion Results
More Comparisons of Multimodal Shape Completion.
We provide additional comparisons of our shape completion
results to baselines in Figure S3. Further, we compare our
generated SDF to results from AutoSDF [3] in Figure S2.

More Results of Multimodal Shape Completion. We
show more results for shape completion in Figure S4.

E. Single-view Reconstruction Results
We provide more single-view reconstruction results in

this section. Additional comparisons to baselines are pre-
sented in Figure S5, and more results from our proposed
method are available in Figure S6.

F. Text-guided Generation Results
More comparisons of text-guided generation. We pro-
vide additional comparisons with AutoSDF in Figure S7.

More results of text-guided generation. We provide
more text-guided generation results in Figure S8.

G. Multimodal Conditional Generation Re-
sults

We showcase more multimodal conditional generation
results in Figure S9.
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Figure S1. Qualitative results of unconditional generation from SDFusion.

Input Ours AutoSDF [22]

Figure S2. Qualitative comparisons of the meshes with the AutoSDF [3].
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Input Ours AutoSDF [22] MPC [38]

Figure S3. Qualitative comparisons of shape completion.
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Multimodal Shape CompletionInput Input Multimodal Shape Completion

Figure S4. Qualitative results of shape completion.
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GT VoxelInput Ours AutoSDF [22] Pix2Vox [39]ResNet2SDFResNet2Vox

Figure S5. Qualitative comparisons of single-view reconstruction.

Input Output Input Output Input Output Input Output

Figure S6. Qualitative results of single-view reconstruction from SDFusion.
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“no arm rest”

“has little pillow”

“chair with wheels”

OursInput AutoSDF [22]

“the one with the 

holes in the back”

“single leg on base”

“short stubby legs”

Figure S7. Qualitative comparisons of the text-guided shape generation.

a tall arm-less stool with long legs and with 

horizontal supporting braces on all sides

it’s an armed chair.

back in semi oval shape

square table that has a single

leg the shape of a cross

a large, tilting desk that is white 

with a steel base

this is a round table with a second 

round shelf beneath it

this chair has a backrest. 

it has four legs

this is a wooden shelf.

it has two bottom shelves

single seater couch with cushioned 

seat, designed arm support

chair with wheels. chair 

has no hands

Figure S8. Qualitative results of text-guided shape generation of SDFusion.
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Partial Shape + Text → Outputs

“chair with square back”

“a chair with wheels”

“chair with open back”

“a chair with base”

Partial Shape + Image → Outputs

Figure S9. Qualitative results of multimodal conditional generation results.
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