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In the supplementary material, we first present additional
related work of transformer network in Sec .1 since we uti-
lize dual-branch transformer module to fuse the global and
local slices. In Sec .2, we then provide additional and de-
tailed cross domain training strategy. In Sec .3, we ex-
plore the generalization ability of our proposed BEV-SAN
by evaluating the performance on unseen and challenging
data distribution. In Sec .4, we demonstrate the robustness
of our method by comparing with baseline methods when
encountering cameras malfunctioning.

1. Additional related works
Vision transformer. Transformer network was first in-

troduced for neural machine translation tasks [15], and the
encoder and decoder of transformer leverage self-attention
mechanism to extract better feature representation and re-
serve contextual information [7,12,15]. Vision Transformer
(ViT) [2,14] first brings a transferring in backbone architec-
tures for computer vision, which is transferred from CNNs
to Transformers. This seminal work has led to subsequent
research that aims to improve its utility [10]. Meanwhile,
Swin Transformer [9] is a practical backbone for various
image recognition tasks, which adopts the inductive bi-
ases of locality, hierarchy and translation invariance. DeiT
[14] focuses on improving the efficiency and practicality of
transformer network, it proposes several training strategies
that allows ViT to be effective when training on smaller im-
age datasets. In this paper, we introduce a dual branches
transformer block to fuse global an local-level BEV slices
and generate the fused BEV feature map for task heads.

2. Additional implementation details
Our training process can be regarded as an end-to-end

training. Firstly, in order to fully leverage the feature ex-
traction ability of the model [5], we load the backbone of
ImageNet pretrained parameters. Then we train the model
with slice-attention module for 28 epochs with CBGS [16]
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and 40 epochs without. It should be noted that we freeze
the backbone starting from epoch 23 and fine-tune the
slice-attention module and detection head in the rest of the
epochs. We adopt 256 × 704 as image input size and the
same data augmentation methods as [5]. We apply AdamW
[11] optimizer with 2e-4 learning rate. We decay the learn-
ing rate on epochs 19, 23, and 33 with ratio α = 1e − 7.
As for further detailed image augmentation process, we fol-
low BEVDepth and adopt random cropping, random scal-
ing, random flipping, and random rotation. The BEV fea-
ture generated by the model is also augmented by random
scaling, random flipping, and random rotation. All experi-
ments are conducted on NVIDIA Tesla V100 GPUs.

3. Additional generalization exploration

Slice-attention module leverages the attention mecha-
nism of Transformer to fuse the features from different
global information to construct a more comprehensive BEV
feature. Therefore, BEV-SAN is of better generalization
ability in more display scenarios after integrating multiple
levels of information. We conduct further experiments on
some particular scenarios like rainy and night in NuSences
dataset to demonstrate the superiority generalization ability
of BEV-SAN.

As shown in Tab. 1, the baseline can only achieve 0.170
and 0.124 in NDS and mAP, respectively on the night vali-
dation set. Due to the faint light condition at night, the cam-
era based method will encounter great challenges. How-
ever, we observe that BEV-SAN shows satisfying perfor-
mance under such severe condition with 0.210 NDS and
0.129 mAP, respectively. As for rainy validation set, we
notice that BEV-SAN also outperforms the baseline with
significant margin by over 3% in NDS. These results verify
the generalization ability of BEV-SAN.

4. Additional robustness exploration

Though there are lots of recent works on autonomous
driving systems, only a few of them [6, 13] explore the ro-
bustness of the proposed methods. LSS [13] presents the

1



Table 1. Comparisons of Generalization ability with different methods on the validation set of unseen environment [1]. The unseen
environment includes night-time and rainy data. All methods utilize ResNet 50 [3] as backbone.

Test on Method Backbone NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

Night BEVDepth [5] R50 0.170 0.124 0.847 0.463 0.906 1.855 0.696
BEV-SAN R50 0.210 0.129 0.827 0.466 0.670 1.655 0.584

Rainy BEVDepth [5] R50 0.363 0.305 0.722 0.298 0.662 0.915 0.289
BEV-SAN R50 0.396 0.314 0.711 0.296 0.629 0.664 0.242

Table 2. Comparisons of the Robustness ability with different methods on the validation set [1]. We design a special experiment setting in
which one camera breaks down or is occluded. And we occlude the front-view images in inference time.

Occlude Method Backbone NDS ↑ mAP ↑
BEVDepth [5] R50 0.336 0.296

Front BEVDepth [5] R50 0.318 0.228
Ours(BEVDepth) R50 0.325 0.258

Front-Left BEVDepth [5] R50 0.331 0.265
Ours(BEVDepth) R50 0.332 0.279

Front-Right BEVDepth [5] R50 0.326 0.242
Ours(BEVDepth) R50 0.330 0.271

performance under extrinsic noises and camera dropout at
test time. Following previous work, we aim to give a qual-
itative analysis of our method under camera missing con-
dition. Camera image missing occurs when one camera
breaks down or is occluded. Multi-view images provide
panoramic visual information, yet it can also face the con-
dition when one of them is absent in the real-world. There-
fore, it is necessary to evaluate the robustness of our method
when encountering camera view missing.

As shown in Tab. 2, among six cameras of nuScenes
dataset, front-view data are the most important, and their
absence leads to a drop of 1.8% NDS and 6.8% mAP on
BEVDepth [5]. In term of our proposed method, front-view
camera missing only leads to a drop of 1.1% NDS and 3.8%
mAP, which demonstrates that BEV-SAN has great poten-
tial on robustness. For other views missing, the results show
a similar tendency.

5. additional comparative result

5.1. Ablation study of LiDAR-guided slicing

In order to construct the local slices, we need to slice
the overall height range [-6,4] into several bins. Instead of
uniform slicing, we propose to use the statistics of LiDAR
points along the height dimension (Fig. 3) to guide the slic-
ing. Specifically, we accumulate the histogram and choose
the local slices from the accumulated distribution. We call
this strategy as LiDAR-guided slicing (LiDAR-guided sam-
pling in the draft). LiDAR-guided slicing can make the lo-
cal slices focus on the informative foreground due to the
localization advantage of LiDAR points. To better evalu-

ate the effectiveness of LiDAR-guided slicing, we compare
it against uniform slicing under different numbers of bins
in Tab. 3. As can be seen, LiDAR-guided slicing consis-
tently outperforms uniform slicing, demonstrating its effec-
tiveness.

Table 3. Ablation study of LiDAR-guided slicing.

Statistics Local NDS mAP
3 Local Bins (Uniform) 0.352 0.298
4 Local Bins (Uniform) 0.349 0.299
5 Local Bins (Uniform) 0.352 0.307
6 Local Bins (Uniform) 0.359 0.310
7 Local Bins (Uniform) 0.358 0.300
8 Local Bins (Uniform) 0.359 0.305
6 Local Bins (LiDAR) 0.366 0.310

5.2. Detection results of each object

Tab.4 shows the results of local slices and global slices
on each object category. As can be seen, local slices can
benefit all the categories (except Bus). This is because Bus
is taller than other categories.

5.3. Comparison with more established methods

Tab.5 shows the comparison with more established meth-
ods [8] [5] [6] under the same image backbone for a more
comprehensive evaluation. As can be seen, our method is
still competitive with well-established methods.



Table 4. 3D object detection results (mAP) of each object category on nuScenes val set.

Method Truck trailer Car Bus Pedestrian Motorcycle Bicycle Barrier Traffic cone
BEVDepth [5] 0.237 0.153 0.466 0.332 0.247 0.289 0.267 0.417 0.465
SANet(Local) 0.240 0.176 0.476 0.345 0.257 0.296 0.283 0.498 0.432
SANet(Global) 0.250 0.156 0.471 0.333 0.248 0.300 0.274 0.479 0.409

SANet 0.244 0.165 0.491 0.350 0.265 0.302 0.272 0.432 0.503

Table 5. Comparison with more established methods under the same image backbone without CBGS.

Method Backbone NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
BEVFormer [6] R50 0.359 - - - - - -

PETRv2 [8] R50 0.350 - - - - - -
BEVDepth [5] R50 0.336 0.296 0.732 0.283 0.713 1.218 0.396

BEV-SAN R50 0.366 0.310 0.705 0.278 0.608 1.070 0.300

5.4. Computation Cost

Recently, BEVPoolv2 [4] presents an engineering opti-
mization for LSS operation. We re-implement our method
based on BEVPoolv2 and evaluate the computational cost
in Tab. 6. As can be seen, the efficiency can be significantly
improved with engineering optimization. Our method can
further improve the efficiency since our current implemen-
tation still repeats the naive LSS operation.

Table 6. We re-implement our method and evaluate the compu-
tational cost. -O denotes the engineering optimization based on
BEVPoolv2 [4].

Method FPS Backbone Pooling Fusion
BEVDepth (R50) [5] 22.6 41.84 2.35 0

SANet (R50) 15.4 42.00 20.02 2.99
SANet-O (R50) 19.1 41.79 7.45 3.00
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