[Supplementary Material] Look Around for Anomalies:
Weakly-supervised Anomaly Detection via Context-Motion Relational Learning
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Figure I. ROC curves of baseline, proposed framework without ICA or CoMo modules, and proposed framework score in the three
benchmarks. The first and second rows of the figure show curves in the range [0, 1] and curves zoomed in at the top left, respectively.

1. ROC Curves on Three Benchmarks

Fig. I shows the Area Under Curve (AUC) of the Re-
ceiver Operating Characteristic (ROC) curve of the pro-
posed method for the large-scale WVAD databases, i.e.,
UCF-Crimes [2] and XD-Violence [10], and the unsuper-
vised VAD ShanghaiTech [5] database that is split and re-
constructed for WVAD. The blue line is the curve of the
baseline, which is the backbone network with FC layers
trained by MIL loss; the green and yellow lines indicate
the proposed network without the ICA module or CoMo
module, respectively; the red line is the curve of the pro-
posed method. On UCF-Crimes, the AUC score of each
network is 82.43%, 83.26%, 85.22%, and 86.07%, respec-
tively. On XD-Violence, the AP scores are 73.1%, 75.4%,
76.99%, and 81.31%, respectively, and on ShanghaiTech,
the AUC scores are 93.46%, 96.19%, 96.33%, and 97.3%,
respectively.

The performance is considerably improved when the
proposed modules are added to the baseline, and there is a

noticeable performance gap between the red and blue lines.
When comparing the green and yellow lines, better perfor-
mance is shown with ICA than CoMo in all three bench-
marks. This demonstrates that it is difficult for a feature
obtained through a single backbone branch to have suffi-
cient representative information about normal and abnormal
classes, but ICA helps features to have discrepancies. Fur-
thermore, it shows that relational modeling of CoMo with
the ICA feature (red line) is much more effective than uti-
lizing the backbone feature (green line).

2. Detailed Implementations

The input frame size of the video data is 256 x 256, and
10-crop augmentation is preprocessed as described in the
following previous papers [3, 6, 9]. For UCF-Crimes, we
extract D = 2048 dimensional features using ResNet50-
I3D, the same backbone as RTFM, and use D = 1024 di-
mensional features of Inception-v1 I3D for other databases.
We utilize only RGB features without optical flow features.



Table I. Instantiation of framework. Output size is in the order of
(batchxsnippetxdimension) size.

| Module | Layers | Output Size |

Backbone I3D-‘miz_bc’ BxTxD

ICA Convld(3,1,2D) | BxT x2D

Maz Activation BxTxD

FCI FC(512) B x T x 512

CLAV FC2 FC(128) BxT x128
FC3 FC) BxTx1

CSN/CSA FC(D) BxKxD

. Convld(1,1,512) | BxT x 512
Dynamic path C(m.vlt(i(I, 1, 1)} BxTx1
Convld(3,1.D) | BxNxD

Context path Convld(1,1,512) | B x N x 512

CoMo Convld(1,1,C) BxNxC
projection Convld(1,1,32) | BxT %32

channel reduction | Convld(1,1,128) | B x T x 128

GCN node propagte Convld(1,1,32) | B x32x 128

state update Convld(1,1,128) | B x 32 x 128

interrelation Conv2d(1,1,1) | B x 32 x 128
FC FC(1) BxTx1

Video frames are stacked in groups of 16 to become a single
snippet, and among all snippets, 7" number of snippets are
uniformly selected and become input data.

The layer information for each module of the entire
framework is presented in Table 1. In ConuNd(E, s, ¢) and
FC(e), k, s, and c indicate the kernel, stride, and output
channel size, respectively. ReLU activation function and
batch normalization are followed between each layer, and
dropout with p = 0.7 is applied between FC layers. Input
snippets pass through the backbone to become (B x T x D)
size of feature B, and through ICA, the channel size dou-
bles and splits in half, followed by a max operation that
activates differently depending on the class, resulting in fea-
ture F'. Then, F passes through FC1 and FC2 to become
Freo of (B x T x 128) shape, which is input into FC3 and
CS module (CSN or CSA). The anomaly score S is calcu-
lated through FC3, which learns using loss function Ly;;.

In addition, the CS module reconstructs F;;;k and F;gpk to

predict Fg o = {F™ i}iciopr a0d Fyopp = {F* i }iciopk OF
(B x K x D) shape and learns patterns specific to normal
and abnormal classes through auxiliary loss L.e. Then, in
CoMo, dynamic path outputs motion intensity scores for T’
snippets through Conv1d layers with a temporal kernel size
of 1 by temporal independently. Through this value, the
bottom-N indices of static features {F';}, , ..o.mny With
low motion intensity are selected to become inputs of the
context path, and aggregation between static features is
performed through a layer with kernel size 3 and become
(B x N x D) size of features which N-mean becomes
(B x1x D) shape of context feature Fip;. In order to focus
on the appearance information of the static scene, context
path predicts the object class score S°% with (B x N x C)
size within the N snippets trained with L ;. In GCN, first,
the size of class-activated feature F' and context feature
Feont becomes (B x T x 128) and (B x 1 x 128), re-

Pseudo
Label

Predicted
motion score

Label

Pseudo

Predicted
motion score

(b) Road Accident

Figure II. Pseudo label and predicted motion score within the test
video on UCF-Crimes [Z]. For each video, motion score is (1) high
in the dynamic scene and (2) low in the static scene. For better
understanding, an abnormal event is marked using a red box.

spectively, through channel reduction, and the features are
projected from the temporal to interaction space by projec-
tion matrix P to become a (B x n x st)-size node and state
matrix where number of node and state is 32 and 128, re-
spectively. In interaction space, each relation is explored
through node propagation followed by state updation and
become V and V_on:. In the interrelation process, these
two relational information are concatenated and fused to
become R. Through reprojection with P, a final relation
vector F'p in temporal space is obtained, which becomes
Sr with an FC layer.

The hyper parameters are determined experimentally,
and the batch consists of normal and abnormal videos in
equal proportions for class balance, which is set within the
range of [16, 64] for each database. For input snippets,
we set to T' = 16 for large-scale and untrimmed UCF-
Crimes and XD-Violence database and 8 for ShanghaiTech
and CUHK Avenue, which are relatively small datasets. For
testing, the final score is calculated as a weighted sum of
the anomaly score S and the relational score Sg, where A
is set in the [0, 1] range. In the largest-scale XD-Violence
dataset composed of complex and diverse scenes, A is set to
1, which relies on the relational score the most. All models
are trained in an end-to-end manner using PyTorch [7] with
an Nvidia TITAN GPU.

3. Pseudo Labeling for Auxiliary Tasks

Dynamic Path. In CoMo, dynamic path predicts motion
scores to select static features. To learn motion information,
the ground truth of the motion score becomes the optical
flow intensity . We compute the optical flow of each frame
using the TV-L1 algorithm [11] and average the intensity



Table II. AUC scores by hyper-parameters K, Acs, and Ag on UCF-Crimes [5].
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Figure III. Anomaly score within the test videos. Each column is plot on the UCF-Crimes [%], XD-Violence [10], and ShanghaiTech [5]
dataset. The x-axis is the frame range, and the red highlighted ranges are ground-truth abnormal frames. The blue and red border lines of
the frame represent normal and abnormal scene, respectively, and for better understanding, an abnormal event is marked using a red box.

within the frame. As T frames are stacked for each snippet,
the mean value of intensity becomes the motion score of ev-
ery snippet. In Fig. II, the first row of each subplot shows
the intensity score of every snippet, which is pseudo label
I. The second row is the motion score S*™* predicted by
the dynamic path in the test video of UCF-Crimes, which
shows that the prediction is similar to the optical flow inten-
sity value. In addition, Fig. II (1) a high motion score in a
dynamic scene and (2) a low motion score in a static scene
are shown. The static feature corresponding to the bottom-
N motion score becomes the input of the context path.

Context Path. In order to focus on the appearance and
context information of surroundings rather than motion in-
formation, we select the features of the static snippet and
predict the object class score S°% appearing in the frames
within the snippet. For ground truth, we utilize the out-
put object classes’ confidence score of the YOLOVS [2]
pretrained model on the MS COCO [4] object detection
dataset. As the video anomaly detection (VAD) task is used
for surveillance systems in the real world, only the person,
car, motorcycle, truck, chair, and TV classes, which are sub-
jective classes appearing in normal and abnormal situations,
are considered (the average number of objects is 7 per frame

Table III. AUC score on XD dataset

Scenario w/o CoMo w CoMo
Movies 76.54 76.42
Non-movies 77.31 83.42
Total 76.99 81.31

and 119 per snippet on UCF-Crimes). A pseudo label O is
generated by the mean score of each object class within the
T frames.

4. Context Feature in Other Scenarios

Considering the XD dataset with high motion intensity
and changing background: As snippets corresponding to
the bottom-N of the motion intensity score predicted in
CoMo’s dynamic path are selected and input to the con-
text path, context features are extracted by exploring rela-
tively static scenes within the video; the background may
change due to mixed setups, such as handheld, sports, and
movies, but it is mostly a single place (in a train, on the road,
etc.). Although the camera moves, each video has simi-
lar contexts, and to compensate for this, general features



Table IV. Comparison of computational complexity with other
models.

Model | #params  GFLOPs

Noise-C [17]-C3D T8M 386.2G
RTFM [Y]-C3D 110M 101.1G
RTFM [Y]-I3D 60M 56.5G
MIST [1]-C3D 85M 39.3G
MIST [1]-I3D 31IM 45.7G
Ours-I3D T6M 64.4G
Ours-13D (Inception-v1) 24M 347G

are extracted using the IV static snippets. However, unlike
real-world scenarios, for movie clips, context capturing is
difficult when the scenes are switched. Tab. III shows that
the total AUC score improves with CoMo, but we observe
a large gap between the AUC of movies and non-movies
which is because of the confusion of context.

5. Experimental Results by Hyper-parameters

We experimentally set the parameters used for training,
and the results are presented in Table II. All settings of the
experiment are the same; only K, A., or A4 is different.
While training, we assume that the top-K snippets are ab-
normal for the weakly labeled abnormal video, and K = 3
shows better performance than learning only with the high-
est score of K = 1. When the snippet with the highest
score in an abnormal video is not an abnormal snippet, this
error brings a huge impact on training. Furthermore, when
there is more than one abnormal snippet, the chance to learn
about the remaining data is missed [9]. Therefore, learning
with the mean value of K snippets is effective and shows
the best performance when K = 3. There is an optimal K
value depending on the length of the abnormal interval in
the video of each dataset, but to reduce the dependence on
the data, we used the same K value in all datasets.

Acs and Ag are the weights of the class-specific loss and
relative distance loss, respectively, which indicate the im-
portance to the total training loss value. When A, is 0 and
1, it shows a large performance difference of 2.24%, indi-
cating that the CS module helps the framework in extracting
normal and abnormal class-representative features. In addi-
tion, the best result is achieved when Az = 10, which ad-
dresses relative distance loss complements MIL-based score
learning with feature learning to good effect.

6. Computational Complexity

We compare the number of parameters and FLOPs of
Noise-C [12], RTFM [Y], and MIST [1] with the proposed
model in Table IV. The complexity is computed accord-
ing to the backbone which the layers and feature dimen-
sion used for each model are different. We utilize the
‘mix 5¢’ layer of 2048-dim and 1024-dim features from
the ResNet-50 I3D and Inception-v1 I3D backbone, respec-

tively; for UCF-Crimes dataset, same as RTFM, the back-
bone of our model is the ResNet-50 I3D. In this case, our
model with 76M number of parameters and 64.4G FLOPs
has a higher complexity than RTFM, but the performance is
2.1% higher which is competitive. Furthermore, for other
datasets, we utilize Inception-v1 I3D backbone and shows
SOTA performance with low model complexity; compared
with MIST, our model shows 3.2% higher performance in
ShanghaiTech dataset with lower complexity.

7. Qualitative Results

Fig. III shows the abnormal score in the test video pre-
dicted by our framework. Columns in the figure give the re-
sults of the UCF-Crimes, XD-Violence, and ShanghaiTech
videos. As shown in the examples, UCF-Crimes and XD-
Violence databases consist of various real-world scenes that
are more complex than those in the ShanghaiTech database.
In score plots, high scores are shown not only in (a) explo-
sion and (e) car accident, which are abnormal events with
large motion, but also in (d) shoplifting, where anomalies
need to be inferred through relational information. Further-
more, comparing (h) and (g), there are high scores for riot
events but low scores without false alarms for the normal
event where a crowded group is waiting for an elevator and
boarding all at once. These examples address the impor-
tance of focusing on the relationship between motion and
context information for VAD.
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