
Supplementary of “GFPose: Learning 3D Human Pose Prior with Gradient
Fields”

1. Details of subVP SDE
In this work, we use the subVP SDE proposed in [5] to

perturb the 3D pose data. Formally,

dx = −1

2
β(t)xdt+

√
β(t)(1− e−2

∫ t
0
β(s) ds)dw, (1)

where x ∈ RJ×3 denotes the 3D human pose, β(t) de-
notes the noise scale at timestep t. The drift coefficient of
x(t) is f(x, t) = − 1

2β(t)x. The diffusion coefficient is

g(t) =

√
β(t)(1− e−2

∫ t
0
β(s) ds). t ∈ [0, 1] is a continuous

variable. We adopt the linear scheduled noise scales:

β(t) = β(0) + t (β(1)− β(0)) . (2)

We empirically set the minimum and maximum noise scale
β(0) and β(1) to 0.1 and 20.0, respectively.

2. Closed Form of Loss Function
Because the drift coefficient f(x, t) is affine, according

to [5], the transition kernel p0t(x(t) | x(0), c) in the loss
function (Eq. 6 in the main text) is always a Gaussian distri-
bution, where the mean and variance can be obtained in the
closed form:

N
(
x(t);x(0)e−

1
2

∫ t
0
β(s) ds,

[
1− e−

∫ t
0
β(s) ds

]2
I

)
. (3)

Following [4], we choose the weighting function λ(t) =
σ(t)2. Thus, the loss function can be written as:

L = EU(t;0,1)

[
λ(t)

∥∥∥∥sθ (x(t), t, c) + x(t)− µ

σ2

∥∥∥∥2
2

]
= EU(t;0,1)

[
∥σ(t)sθ (x(t), t, c) + z∥22

]
,

(4)

where z ∼ N (0, 1) is random noise. sθ (x(t), t, c) is the
score network we would like to learn. According to Eq. 3,
we can get σ(t) = 1− e−

∫ t
0
β(s) ds.

During training, we uniformly sample the time variable
t from [0, 1] and sample a noise vector z ∈ RJ×3 from a

standard normal distribution. Then we perturb the ground-
truth 3D human pose x(0) according to Eq. 3 to get the
noisy 3D pose x(t):

x(t) = x(0)e−
1
2

∫ t
0
β(s) ds + z ·

(
1− e−

∫ t
0
β(s) ds

)
. (5)

Then we can compute the loss according to Eq. 4 to train
the score network.

3. Network Architecture
Fig. 1 shows the architecture of our score network sθ. It

is a simple fully-connected network with a structure similar
to [3]. Following [3], we set the hidden dimension of all FC
layers to 1024. We adopt group normalization [6] with the
number of groups set to 32. We use SiLU [1] as nonlinear
activation and set the dropout rate to 0.25.

4. Pose Sampling
To sample human poses from the learned pose prior

pdata(x|c), we need to solve the reverse-time SDE (Eq. 5
in the main text). Following [5], we simulate the RSDE
via the Predictor-Corrector (PC) sampler. We use the Euler-
Maruyama solver as the predictor and Identity as the correc-
tor. We set the number of sampling steps N = 1000, start
time T = 1.0 and the end time eps = 1e − 3. Please refer
to Alg. 1 for the detailed sampling process.

5. Detailed Settings for Different Tasks
In this section, we detail how we train and use our model

for each task described in the main text. The difference lies
in the types of conditions, masking strategy and sampling
process.

Monocular 3D Human Pose Estimation During train-
ing, GFPose conditions on the detected 2D pose without any
condition masking strategy, i.e., HPJ-000. At inference, we
sample a noise vector x(T ) ∈ RJ×3 from a standard nor-
mal distribution N (0, 1), and gradually adjust it according
to the standard sampling process described in Alg. 1.
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Figure 1. Architecture of the score network sθ . It is a plain fully connected network consisting of 2 residual blocks. x ∈ RJ×3 denotes
noisy 3D poses. c denotes different task conditions, e.g.detected 2D poses. t denotes the timestep. ⊕ denotes the sum operator.

Algorithm 1 Sampling from pdata(x|c)
Require: learned sθ; sampling step N ; condition c; start

time T ; end time eps
1: f(x, t)← − 1

2β(t)x

2: g(t)←
√
β(t)(1− e−2

∫ t
0
β(s) ds)

3: dt← 1
N

4: xN ∼ N (0, 1)
5: for i← N − 1 to 0 do
6: t← eps+ (T − eps) · i+1

N
7: x′

i ← xi+1 −
[
f(xi+1, t)− g(t)2sθ (xi+1, t, c)

]
dt

8: z ∼ N (0, 1)
9: xi ← x′

i + g(t)
√
dtz

10: end for
11: return x0

Pose Completion (2D → 3D) During training, GFPose
conditions on the detected 2D pose with masking strategy
HPJ-001 and HPJ-020 for missing joint and part comple-
tion, respectively. Here, we explore three sampling ap-
proaches. The first is the standard conditional inference
process as described in Alg. 1. The second is the impu-
tation approach proposed in [5]. We also try combining
these two inference techniques as the third approach. In
this task, we adopt the combination approach as it performs
best. In Sec. 7, we will further compare different inference
approaches.

Pose Completion (3D → 3D) During training, GFPose
conditions on the gt 3D pose with a masking strategy HPJ-
020 for missing body part completion. We also adopt the
combination approach during sampling.

Denoising Mocap Data In this task, GFPose is trained
with a masking strategy HPJ-T00, i.e., human level mask

is always activated and the condition is always zero. To
use this model for denoising, we condition the model on
Ø and start the sampling process from a noisy 3D pose
x(T ) ∈ RJ×3 instead of a noise vector. We set the start
time T of reverse-time SDE to a small value of 0.05 or 0.1
instead of the default value 1.0, as shown in Table 7 in the
main text. Intuitively, a smaller start time notifies the score
network sθ that we are not starting from pure noise, so a
small adjustment is sufficient.

Pose Generation For generation, GFPose is trained with
a masking strategy HPJ-T00. During inference, GFPose
conditions on Ø and gradually adjusts the noise vector
x(T ) ∈ RJ×3 sampled from a standard normal distribution
N (0, 1) to generate realistic and diverse 3D poses.

6. Train A Unified Model for Various Tasks
Instead of training separate models for different tasks,

we can also train one unified model for all tasks. Concretely,
we active all three levels of masks during training. There
are two different choices to train such a unified model. 1)
We only condition on the detected 2D pose, i.e. c ⊂ {x2d}.
We call this model “U2D”. 2) We condition on the detected
2D pose 0.9 and the 3D pose with a probability of 0.1, i.e.
c ⊂ {x2d,x3d}. We call this model “U3D”. Note that the
3D condition shares the same masking strategy as the 2D
condition. This helps the model to explicitly establish the
relationship between different 3D body parts. We quantita-
tively study the unified model in the following.

Monocular 3D Pose Estimation We first ablate condi-
tion masking strategies on monocular 3D human pose es-
timation. Table 1 reports the minMPJPE(mm) for differ-
ent models on H3.6M dataset. We can find that training
with human- or part- level masks slightly boosts the per-



ph pp pj 2D 3D minMPJPE (S = 1/200)

0.0 0.0 0.0 ✓ ✗ 51.0 / 35.6
0.1 0.0 0.0 ✓ ✗ 50.8 /35.8
0.0 0.1 0.0 ✓ ✗ 50.5 / 35.1
0.0 0.0 0.1 ✓ ✗ 51.7 / 36.4
0.1 0.1 0.0 ✓ ✗ 51.0 / 36.0
0.0 0.1 0.1 ✓ ✗ 51.1 / 35.5
0.1 0.1 0.1 ✓ ✗ 52.3 / 36.7
0.1 0.2 0.1 ✓ ✗ 52.4 / 36.5
0.1 0.1 0.1 ✓ ✓ 51.3 / 35.9
0.1 0.2 0.1 ✓ ✓ 51.6 / 36.4

Table 1. Effects of condition masking strategies on monocular 3D
human pose estimation. We report minMPJPE(mm) on H3.6M
dataset under protocol #1. S denotes the number of samples. ph,
pp and pj respectively denote the probability of activating human-,
part- and joint- level masks.

formance of pose estimation (∼0.5mm). Training with the
mixed masking strategy, i.e. the unified model “U2D” (3rd
and 4th row from last) causes a slight drop (∼1mm) in re-
construction accuracy. Further incorporating 3D pose (1st
and 2nd row from last, “U3D”) can benefit the pose estima-
tion task.

Pose Completion We compare the two unified models
“U2D” and “U3D” on the pose completion task. From Table
2, we can observe that the unified models perform slightly
worse than the specifically trained model when recovering
occluded body parts. However, they achieve competitive
results as the specifically trained model when recovering
occluded random joints and significantly outperforms the
SOTA [2]. From Table 3, we can find that the unified model
“U3D” performs quite well when recovering from partial
3D observations. Note that “U2D” cannot directly apply
to this task unless through the imputation technique intro-
duced in the next section.

Pose Denoising Table 4 shows that the unified model per-
forms slightly better on small noise intensities while the
specifically trained model (HPJ-T00) performs slightly bet-
ter on large noise intensities.

Pose Generation We train 3 deterministic pose estima-
tors on the synthetic poses generated by HPJ-T00, “U2D”
and “U3D”, respectively. Table 5 shows that the specifically
trained model HPJ-T00 can generate the best quality poses.
Unified models also show competitive results.

Summary We can trade very little performance loss for a
versatile unified model “U3D”.

Occ. Parts Sep. U2D U3D Li et al. [2]

1 Joint 37.8 37.5 37.6 58.8
2 Joints 39.6 39.8 39.5 64.6

2 Legs 53.5 54.9 53.8 -
2 Arms 60.0 62.1 60.4 -
Left Leg + Left arm 54.6 56.4 55.2 -
Right leg + Right arm 53.1 54.3 53.5 -

Table 2. Recover 3D pose from partial 2D observation. We com-
pare the unified models (“U2D” and “U3D”) and the model specif-
ically trained for this task (Sep. here means HPJ-001 and HPJ-020,
reported in the main text. Please refer to Section 5). We report
minMPJPE(mm) on H3.6M dataset under protocol #1. 200 sam-
ples are drawn.

Occ. Parts Sep. U3D

Right Leg 5.2 5.6
Left Leg 5.8 5.9
Left Arm 9.4 9.7
Right Arm 8.9 9.0

Table 3. Recover 3D pose from partial 3D observation. We com-
pare the unified models (“U2D” and “U3D”) and the model specif-
ically trained for this task (Sep., reported in the main text. Please
refer to Section 5 for details) on H3.6M dataset and report minM-
PJPE(mm) under protocol #1. 200 samples are drawn.

Noisy Data Base Sep. U2D U3D Start T

GT 0 14.7 13.8 14.0 0.05

GT + N (0, 25) 33.1 25.0 25.1 24.8 0.05
GT + N (0, 100) 65.5 42.8 44.0 43.5 0.05
GT + N (0, 400) 126.0 64.6 65.5 65.2 0.1
GT + U(25) 49.1 32.8 33.5 33.0 0.05
GT + U(50) 96.2 50.9 51.0 51.0 0.1
GT + U(100) 178.2 89.4 91.4 91.1 0.1

Table 4. Denoising results on H3.6M dataset. We report MPJPE
(mm) under Protocol #2. “Sep.” here indicates model “HPJ-T00”.
(Please refer to Section 5) “Base” represents the MPJPE(mm) of
noisy data. N and U denote Gaussian and uniform noise, respec-
tively. T denotes the start time of RSDE.

Model Sep. U2D U3D

MPJPE 58.1 60.8 59.7

Table 5. Quality comparison of generated poses. We train 3 deter-
ministic pose estimators on the poses generated by 3 different GF-
Pose models (Sep. here means “HPJ-T00”. Please refer to Section
5). Then we evaluate them on the H3.6M test set. MPJPE(mm)
under Protocol #1 is reported.



Model Cond. Impt. Cond.+Impt.

HPJ-010 35.1 49.5 36.8
HPJ-T00 - 42.3 -
U2D 36.7 43.0 37.2
U3D 35.9 43.0 37.1

Table 6. Comparison between different sampling approaches on
3D pose estimation. HPJ-T00 means we always activate the hu-
man level mask and learn an unconditional score model.

Model Cond. Impt. Cond.+Impt.

HPJ-020 53.9 72.8 53.5
HPJ-T00 - 64.9 -
U2D 55.8 67.4 54.9
U3D 54.6 66.8 53.8

Table 7. Comparison between different sampling approaches on
pose completion from partial 2D observation (2 legs). HPJ-T00
indicates an unconditional score model.

7. Different Sampling Approaches

Imputation [5] provides a flexible way to use score mod-
els for imputation tasks, like image inpainting and coloriza-
tion. By repeatedly replacing part of the data in x(t) with
the observed data xobs during the sampling process, imputa-
tion allows us to use unconditional score models to impute
the missing dimensions of data. Here, we can also view
the 3D pose estimation and the completion task as imputa-
tion tasks, i.e., we impute the depth of 2D poses or impute
the missing body joints. We compare the performance of
imputation, conditional inference and the combination of
these 2 techniques in Table 6, 7, 8. We can get the follow-
ing observations: (1) conditional inference generally per-
forms better than imputation. (2) Combining two inference
approaches can yield consistently better results than either
approach alone on pose completion tasks. (3) Conditional
inference performs best on the 3D human pose estimation
task. (4) Imputation works better with unconditional mod-
els (HPJ-T00).

8. More Qualitative Results

We show more qualitative results for multi-hypothesis
3D pose estimation (Figure 2), pose completion (Figure
3), pose denoising and generation (Figure 4). All poses
are sampled from the unified model “U3D”. Please find
the demo videos and qualitative comparisons with other
methods from our project webpage: https://sites.
google.com/view/gfpose/.

Model Cond. Impt. Cond.+Impt.

HPJ-020 5.3 8.3 5.2
HPJ-T00 - 6.0 -
U2D - 6.2 -
U3D 8.6 6.1 5.6

Table 8. Comparison between different sampling approaches on
pose completion from partial 3D observation (rigth leg). HPJ-T00
indicates an unconditional score model.
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Figure 2. Multi-hypothesis 3D human pose estimation. We randomly sample 5 hypotheses from GFPose and show them from 4 different
viewpoints. From left to right, the plausible poses are rotated 90 degrees clockwise around the z-axis.
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Figure 3. Pose completion. GFPose can recover full 3D human body from partial observations. 3D poses corresponding to the visible
observation and missing observation are plotted in different colors for clarity. (a)(b) Recover full 3D human body from partial 2D image.
We show five plausible poses sampled from GFPose. (a) Left side of the body is invisible. (b) Lower body is invisible. (c)(d) Recover full
3D human body from partial 3D poses. For each instance, we sample and plot one plausible completion. (c) Left arm and right leg are
missing. They are completed by GFPose. (d) Upper body are missing and completed by GFPose.
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Figure 4. Pose denoising and generation. (a) Pose denoising. We add Gaussian noise ∼ N (0, 100) onto GT and denoise it with GFPose.
Noisy poses and denoised poses are plotted in different colors. GFPose can effectively correct unreasonable poses. (b) Pose generation.
GFPose can generate diverse and realistic poses.
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