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A. Methodology
Multi-label classification objective. We use the SPLC

+ Focal margin [9] loss to optimize the whole model. For
an input image, we denote its visual representation as f and
the label feature as zi, which can be derived by the image
encoder and text encoder, respectively (see Eq. (5)). The
multi-classification loss Lcls can be computed as

Lcls = −
C∑

c=1

{
yc(1− pmc )

α
log(pmc ) + (1− yc)[

I(p ≤ β)pc
α log(1− pc)+

(1− I(p ≤ β))(1− pc)
α
log(pc)

]}
,

(1)

where pmc = σ(sim(f , zi)/τ −m) is the likelihood and m
is a margin parameter. α is set to 2 and β is a threshold to
identify negative label.

B. Experiment Settings
B.1. Datesets for MLR with incomplete labels

For the single positive label setting, we conduct ex-
periments on four standard benchmarks, i.e., MS-COCO
(COCO), PASCAL VOC 2012 (VOC), NUSWIDE (NUS)
and CUB. The statistics of all benchmark datasets on train-
ing datasets are shown in Tab. 1. COCO contains 82,081
training images with 80 classes and a test set of 40,137
images. VOC consists of 5,717 training images with 20
classes and 5,823 images for test. NUS is a public multi-
label image classification dataset which contains 269,648
images and each image is manually annotated with some
of 81 categories. CUB consists of 5,994 training images
covering 312 categories and 5,794 test images. For a fair
comparison with [5], [9], we perform two different setups.
The LargeLoss setup divides the training dataset into 80%
for training and 20% for validation. The SPLC setup only
trains on the overall training set and tests on the test set. The
validation sets and test sets are always fully labeled.

For the partial label setting, we adopt three benchmarks,
i.e., MS-COCO (COCO), PASCAL VOC 2007 (VOC2007)

and Visual Genome (VG-200). COCO dataset is same as the
one used in the single positive label setting. VOC2007 con-
tains a training set of 5,011 images and a test set of 4,952
images. VG-200 contains a total of 108,249 images cov-
ering tens of thousands of classes, most of which have only
few samples. Following [7], we choose 200 frequent classes
as the VG-200 subset, in which 10,000 images are randomly
selected as the test set and the remaining 82,904 images are
used as the training set.

B.2. Implementation details

For the single positive label setting, we use a single GPU
with batch size 128. Each image of ours is uniformly re-
sized to 224 × 224 while other methods resize to 448 ×
448. We use the Adam optimizer and OneCycle learning
rate schedule with the max learning rate of 3e-5. It is trained
with 30 epochs in total.

For the partial label setting, we use two GPUs with batch
size 32 and the max learning rate is 1e-5. We also train for
30 epochs on all benchmark datasets.

For data augmentation, we adopt the random horizontal
flip and random resized crop for the weak transformation
and the RandAugment for the strong transformation.

C. More experiments results
C.1. Model Analysis

Effect of different modules on the ResNet. To in-
vestigate the effectiveness of our proposed method with
CNN-based MLR models, we conduct the ablation study
on replacing the pretrained CLIP with the ResNet model.
As shown in Tab. 2, each component can lead to perfor-
mance improvement. Compared with the baseline, intro-
ducing SAM can achieve a performance improvement of
1.01%, which shows that exploiting the implicit label-to-
label correspondence can benefit the MLR with incomplete
labels. In addition, using the overall proposed PESSL can
accomplish 0.53% mAP improvement, well demonstrating
the advantage of incorporating the structured semantic prior
to calibrate the semantic distribution. Finally, our proposed
method significantly outperforms the baseline model with



Table 1. The statistics of all benchmark datasets on training sets.

Experiment setting Dataset Samples Classes Labels Avg.label/img

Single positive label

COCO 82,081 80 241,035 2.9
VOC 5,717 20 8,331 1.5

NUS (LargeLoss) 150,000 81 284,611 1.9
NUS (SPLC) 119,103 81 289,460 2.4

CUB 5,994 312 188,343 31.4

Partial labels
COCO 82,081 80 241,035 2.9

VOC2007 5,011 20 7,306 1.5
VG-200 82,904 200 886,618 10.7

Real partial labels OpenImages V3 3,552,103 5,000 13,440,371 3.8

Table 2. Analysis of different modules on the ResNet50 (%).

ResNet SAM PESSL mAP
✓ 73.18
✓ ✓ 74.19
✓ ✓ ✓ 74.72

Table 3. Analysis on different combination of encoders (%).
ResNet50 is pretrained on the ImageNet. ResNet50r is randomly
initialized.

Image Encoder Label Encoder mAP
ResNet50 Linear 73.18

CLIP Linear 73.33
ResNet50 CLIP 64.85
ResNet50r CLIP 41.71

CLIP CLIP 74.36

1.54% improvement, well indicating the effectiveness and
superiority of our method.

Combination of different encoders. We investigate
different combinations of image encoders and label en-
coders. As shown in Tab. 3, compared with our method
(the last row), replacing the CLIP label encoder with a
linear prediction layer leads to inferior performance for a
pretrained/CLIP-based ResNet50 (Row 1/2). Besides, re-
placing the CLIP image encoder with a pretrained/random
ResNet50 (Row 3/4) also encounters great performance
drops due to the destruction of image-label correspondence.
This evidence shows the superiority of applying CLIP as the
base MLR model.

Effect of the prompt learning. We investigate the effect
of the prompt learning with the CMP model. As shown in
Tab. 4, we can observe that with the random initialization,
different prompt length can obtain similar performance. Af-

Table 4. Effect of the prompt in the CMP (%).

Length Initialization mAP
4 template 74.36
4 Random 73.85
8 Random 73.87

16 Random 73.85

Table 5. Analysis on the semantic association module (SAM) (%).

Label Feature
HL H0,HL H0 +HL

75.01 75.65 76.42

Correlation Matrix
Original Sparse Ours

75.96 76.13 76.42

ter leveraging the prompt template, i.e., a photo of a, CMP
with 4 prompts can achieve the best performance, indicat-
ing the positive effect of the hard prompt [8] as the prompt
initialization.

Analysis on SAM. For the proposed SAM component,
we first investigate how to construct the label feature. We
discuss three variants: 1) directly using HL, 2) using H0

and HL in a multi-task learning strategy, and 3) the pro-
posed residual connection, i.e., H0 + HL. From Tab. 5,
we can see that the residual connection obtains the best per-
formance. We further analyze the effect of different label
correlation matrix. We verify three strategies: 1) using orig-
inal label correlation matrix (see Eq. (1)), 2) resulting in a
sparse matrix by retaining the top K elements (see Eq. (2)),
and 3) our adjusted the sparse matrix (see Eq. (4)), which is
our proposed structured semantic prior, i.e., A∗. As shown
in Tab. 5, our proposed method can achieve the state-of-the-
art performance, demonstrating that the label-to-label corre-
spondence can be well captured by the proposed structured
semantic prior.



GT : elephant, bird.

Baseline : elephant (0.97), sheep (0.83).

SCPNet : elephant (0.94), bird (0.78).

GT : bicycle, bus, car, person, traffic light.

Baseline : bicycle (0.95), car (0.97), person (0.81),

traffic light (0.97), truck (0.62).

SCPNet : bicycle (0.71), bus (0.66), car (0.85),

person (0.94), traffic light (0.74).

GT : bowl, oven, sink.

Baseline : oven (0.80), umbrella (0.80).

SCPNet : bowl (0.57), oven (0.80), sink (0.64).

GT : broccoli, cake.

Baseline : none.

SCPNet : broccoli (0.53), cake (0.72).

GT : potted plant.

Baseline : none.

SCPNet : potted plant (0.61).

GT : motorcycle.

Baseline : none.

SCPNet : motorcycle (0.97).

Figure 1. Visualization of example results compared our SCPNet with the baseline model. Red color means results of false recognition
and missing recognition. Blue color denotes ours results. GT means ground truth and the precision of recognition is in brackets.

Table 6. Different pseudo label selection of PESSL (%).

Lcst Soft Label Threshold Ours
mAP 75.88 75.80 76.42

Analysis of the pseudo label selection. We further in-
vestigate different pseudo label selection for weak transfor-
mation in the PESSL. We discuss three strategies: 1) using
the weak transformation prediction probabilities as soft la-
bel, 2) setting threshold to filter the pseudo label, and 3) our
method which further selects the top highest probability to
construct a set of confident labels. As shown in Tab. 6, our
method obtains the best performance, demonstrating that
the selective construction of confidence labels is more com-
patible with the MLR task.

Stress-testing on domain-specific datasets. We con-
duct experiments on a common satellite dataset (AID1)
and a common medical dataset (ChestX-ray142) under the
single positive label setting to perform stress-testing on

1https://github.com/Hua-YS/AID-Multilabel-Dataset
2https://nihcc.app.box.com/v/ChestXray-NIHCC

Table 7. Stress-testing on domain-specific datasets (%).

Method AID ChestX-ray14
SPLC [9] 71.26 25.60

CMP (ours) 67.48 22.42
SCPNet (ours) 73.32 27.92

domain-specific datasets which are far from those used in
CLIP pretraining. As shown in Tab. 7, compared with
CMP, our SCPNet can obtain 5.84% and 5.50% perfor-
mance improvement on the AID and ChestX-ray14, respec-
tively. These results show that our method achieves the best
performance although CLIP cannot generalize well in these
datasets, well demonstrating the generalization.

DualCoOp vs. SCPNet. First, in terms of the model
performance, for fair comparison, we implemented our
method with a frozen image encoder on DualCoOp’s code
under the same setting, achieving 83.2% mAP (+1.3%).
We also tuned DualCoOp under the SCPNet setting, where
DualCoOp achieved inferior mAP with 82.4% (vs. ours:
83.8%). Second, in terms of the computation efficiency,
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Figure 2. Results of the few-shot partial label setting on COCO, VOC, NUS and CUB dataset (left: in the LargeLoss setup, right: in the
SPLC setup).

Table 8. DualCoOp vs. SCPNet in terms of computation cost

DualCoOp SCPNet
Training speed [iters/sec] 4.27 2.82

Trainable parameters 1.31M 3.41M
GPU memory for training 7.4G 9.8G

Inference speed [samples/sec] 318.59 322.76
GPU memory for inference 3.4G 3.4G

mAP performance on COCO 81.9% 83.2%

we compare our method with DualCoOp under the Dual-
CoOp’s setting. As shown in Tab. 8, during training, SCP-
Net consumes more resources than DualCoOp. But the re-
quired cost is not unaffordable in practice. During infer-
ence, both methods can derive label features offline. There-
fore, SCPNet is comparable to DualCoOp in terms of com-
putational cost while enjoying the superior performance.
This shows SCPNet is more advanced or at least compa-
rable when applied in practical scenarios.

These results clearly demonstrate the effectiveness and
superiority of our method, compared to DualCoOp.

Hyper-parameters selection. For the single positive la-
bel setting, most hyper-parameters are directly borrowed
from COCO, except for some dataset-dependent hyper-
parameters, e.g., K in Eq. (2) (best at 60/15/50/280 for
COCO/VOC/NUS/CUB). s in Eq. (3) is empirically set to
0.2. For the partial label setting, most hyper-parameters
are directly borrowed from the single positive label setting,
except for the learning rate. Even so, our method can ob-
tain consistent performance improvements in all scenarios,
well demonstrating the robustness of hyper-parameters. We

show that after more hyperparameter searches, we can ob-
tain slightly better performance than the reported one, e.g.,
49.6% vs. 49.4% on VG-200.

C.2. Multi-label Recognition Results

Here we present the multi-label recognition results on
the single positive label setting. As shown in Fig. 1, our
proposed method can successfully recognize more accurate
labels with lower false identifications (see examples in the
first row). Besides, compared with the baseline model, our
method can achieve fewer missing recognition for difficult
labels, e.g., “broccoli” in the middle of the second row.
These results further demonstrate the effectiveness and the
superiority of our proposed method.

C.3. Few-Shot Single Positive Label Setting

To investigate the effectiveness of the proposed method
with a smaller number of training images, we further con-
duct the experiments in the few-shot single positive label
setting under both the LargeLoss setup [5] and the SPLC
setup [9].

As illustrated in Fig. 2 (left), in the LargeLoss setup,
following [5], we randomly sample the training images
from 10% to 100% and conduct experiments on the COCO
dataset. We further compare our method with LargeLoss [5]
on the other benchmark datasets, i.e., VOC, NUS and CUB.
Only given 10% of the training images, our method can
obtain a maximal performance improvement of 12.16%,
7.47%, and 13.48% on COCO, VOC and NUS dataset, re-
spectively. For CUB dataset, we achieve a maximal im-
provement of 9.22% with giving the training images of
20%. Overall, our method can accomplish an average



Table 9. Results with real partial label on OpenImage V3 dataset.

Method G1 G2 G3 G4 G5 All Gs
CL [3] 70.4 71.3 76.2 80.5 86.8 77.1

IMCL [4] 71.0 72.6 77.6 81.8 87.3 78.1
Naive AN 77.1 78.7 81.5 84.1 88.1 82.0
WAN [2] 71.8 72.8 76.3 79.7 84.7 77.0
LSAN [2] 68.4 69.3 73.7 77.9 85.6 75.0

LargeLoss [5] 77.7 79.3 82.1 84.7 89.4 82.6
P-ASL [1] 73.2 78.6 85.1 87.7 90.6 83.0

SCPNet (ours) 79.6 81.8 85.3 87.9 92.1 85.3

performance improvement of 7.16%, 3.20%, 9.35%, and
7.62% on four datasets with the training images from 10%
to 100%. Besides, as shown in Fig. 2 (right), in the SPLC
setup, we present the comparison results with SPLC [9]
on four benchmark datasets as well. The maximum per-
formance improvement achieved by our method can reach
10.31%, 10.43% and 14.14% on COCO, VOC and NUS
dateset, respectively. Our method can bring a maximum
improvement of 9.78% with 20% training images on CUB
dataset. Our SCPNet can obtain 5.06%, 4.79%, 8.76%, and
7.82% improvement on average for the four datasets, re-
spectively.

These experimental results show that our proposed SCP-
Net can significantly achieve state-of-the-art performance
in different few-shot single positive label setting, well indi-
cating the generalization and superiority.

C.4. Real Partial Label Scenario

Dataset and implementation details. To analyze the
effectiveness of the proposed method in real partial label
scenario, we conduct experiments on the OpenImage V3
[6] dataset with 5,000 classes. The details are shown in
Tab. 1, OpenImage V3 contains 3.5M training images, 42k
validation images, and 125k test images. Follwing [5], we
divide the training images into 5 groups, where G1 has the
smallest number of the counted images and G5 is the largest
one. All Gs corresponds to the set of all categories.

Compared methods. We compare our method with Cur-
riculumn Labeling(CL) [3], IMCL [4], Naive AN, Weak
AN (WAN) [2], Label Smoothing with AN (LSAN) [2],
LargeLoss [5] and P-ASL [1].

Results. As shown in Tab. 9, our method outperforms
the state-of-the-art methods on G1, G2, G3, G4 and G5 with
an improvement of 1.9%, 2.5%, 0.2%, 0.2% and 1.5%, re-
spectively. As a whole, our proposed SCPNet can accom-
plish a performance improvement of 2.3% on all Gs, well
demonstrating the effectiveness and generalization to prac-
tical scenarios.
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