
Author Contributions
In this paper, the authors made the following contribu-

tions:

• Jiawei Du developed the theoretical framework, and
proposed FTD. He also designed the experiments, an-
alyzed the results, plotted the figures, and wrote the
majority of the manuscript.

• Yidi Jiang implemented FTD and conducted the ex-
periments. She recorded the experimental logs and
analyzed the results. She also wrote the experimental
and related works sections.

• Vincent Y. F. Tan guided the formulation of FTD. He
also helped develop the theoretical framework and re-
vised the manuscript.

• Joey Tianyi Zhou and Haizhou Li supervised the project
and provided critical feedback on the research.

A. More Discussions and Experiments
A.1. Exploring the Accumulated Trajectory Error

We design experiments on the CIFAR-100 dataset with
ipc = 10 to verify the existence and observe the adverse
effect of the accumulation of the trajectory error (as defined
in Equation 8) of MTT.

We present the loss difference LTTest
(fθ)− LTTest

(fθ∗),
which quantifies how well the student trajectory matches the
teacher trajectory along the epochs during evaluation phase,
in Figure 1. We also present the loss difference during the
distillation phase that serves as a baseline. It can be seen that
the loss difference of MTT (blue line) in the evaluation phase
accumulates as the evaluation progresses, and is much higher
than the one in the distillation phase (cyan line). These
results demonstrate the existence the accumulation of the
trajectory error ϵt. Moreover, the loss difference of FTD
(purple line) is shown to be much lower than that of MTT
(blue line), which suggests that our proposed FTD reduces
the accumulated trajectory error ϵt effectively.

Table 6. Ablation results of the initialization discrepancy. The start
epoch indicates that the nth epoch’s set of weights from the teacher
trajectories is used to initialize the network. The epochs to train
indicates the remaining epochs to train the initialized network (1
epoch = 20 synthetic steps).

Start Epoch Epochs to train MTT Accuracy Our Accuracy

0 50 35.4 37.7
10 40 37.0 39.5
20 30 38.6 41.6
30 20 40.2 43.5
40 10 42.1 44.4
45 5 42.3 46.2

We also design experiments to show the existence of the
initialization error It in Equation 7. Recall that this is the
dominant factor leading to the accumulation of the trajectory
error as shown in Equation 8. We compare the accuracies of
several 3-layer ConvNets [12] trained using the same syn-
thetic dataset S but initialized with different weights. These
networks are initialized by the sets of weights in epochs
0, 5, 10, . . . , 40, 45 of the teacher trajectories, and are trained
until the 50th epoch. Specifically, the network initialized by
the sets of weights in epoch 0 serves as the baseline. These
weights are equivalent to being initialized from the student
trajectories in epochs 5, 10, . . . , 40, 45, respectively. Note
that training over the 50 epochs of the teacher trajectories
is equal to doing the same over 100 iterations of the student
trajectories (1 epoch = 20 synthetic steps), which is much
fewer than the 1000 iterations trained in the evaluation phase.
Thus the accuracy is degraded as compared to Table 1. Fol-
lowing the above settings, we evaluate MTT and FTD and
report the results in Table 6. It can be seen that the networks
initialized by the sets of weights from the teacher trajectories
always outperform the baseline. In fact, the fewer epochs
used to train, the better the accuracy. The results clearly
show the adverse effect of the initialization discrepancy. A
more precise initialization (closer to the initialization used
in distillation) will have a more significant impact on the
final performance. However, FTD is as expected to suppress
the initialization error It so that it eventually surpasses the
performance of MTT.

A.2. Exploring the Flat Trajectory

We conducted experiments in subsection 4.3 to show
that the performance gain of FTD is primarily due to the
regularized flat trajectory. Although a DNN trained on the
real dataset will generalize better if the training converges
to a flat minimum, unfortunately, the benefit of flat minima
is no longer valid if we consider the synthetic dataset. We
provide some theoretical explanations here.

We denote D as the natural distribution, LD(fθ) is equiv-
alent to the expected loss over test set. Each sample in the
real training dataset T is drawn i.i.d. from D. For simplicity,
we consider Gaussian priors and likelihoods, in which case
the posterior is also Gaussian. Hence, we assume that over
the parameter space, P = N (µP , σ

2
P I) is the prior distri-

bution andW = N (µW , σ2
W I) is the posterior distribution

trained on T , where µP ,µW ∈ Rk and I is the k×k identity
matrix. We assume that the matching error δ ∼ N (0, σ2

ϵ I).
Pierre et al. [11] states a generalization bound based on the
sharpness to theoretically justify the benefit of flat minima
derived from the PAC-Bayesian generalization bound [33] as
follows. For n = |T | and with probability at least 1−δ, over
the choice of the real training set T , the following inequality

holds

Eθ∼W
[
LD(fθ)

]
≤ Eθ∼W

[
LT (fθ)

]
+∆L(P), (14)

where

∆L(P) =

√
KL(W∥P) + log n

δ

2(n− 1)
.

In this bound ∆L quantifies the generalization error, i.e.,
the closeness between the test and training losses. As we
stated in subsection 3.3, the gradient-matching dataset distil-
lation is equivalent to mapping a initialization distribution
Pθ0 into the posterior distributionW . However, due to the
existence of the matching error, the posterior distribution W̃
trained on the synthetic set S is more dispersed thanW , i.e.,
W̃ = N (µW , σ2

W I+ σ2
ϵ I) for some σ2

ϵ ≥ 0. Since the KL
divergence can be written as [11],

KL(W∥P)

=
1

2

[
kσ2

W + ∥µP − µW ∥22
σ2
P

− k + k log

(
σ2
P

σ2
W

)]
=

k

2

[
σ2
W

σ2
P

− log
σ2
W

σ2
P

]
+

1

2

[
∥µP − µW ∥22

σ2
P

− k

]
,

where k is the number of parameters. Therefore, we have

KL(W̃∥P)−KL(W∥P)

=
k

2

[(
σ2
W + σ2

ϵ

σ2
P

− log
σ2
W + σ2

ϵ

σ2
P

)
−
(
σ2
W

σ2
P

− log
σ2
W

σ2
P

)]
≥ 0.

The final inequality holds as σ2
ϵ ≥ 0 and σ2

W ≥ σ2
P . Conse-

quently, the generalization error ∆L(W̃) over the synthetic
dataset S will be greater than ∆L(W) over the real dataset
T . The experiments in subsection 4.3 verify that the flat min-
ima of the synthetic dataset does not benefit generalization
ability as the generalization bound in Equation 14 is loose.

A.3. Implementation Details

A.3.1 Parameter Study

The coefficient ρ in Equation 12 controls the amplitude of
the perturbation ϵ, which affects the flatness of the obtained
teacher trajectories [11]. We study the effect of ρ by us-
ing grid searches from the set {0.005, 0.01, 0.03, 0.05, 0.1}
during the buffer phase. We report the accuracies of the
evaluated synthetic dataset in Figure 5. We observe that
ρ = 0.01 achieves the best improvement , which is different
from the suggested value ρ = 0.05 [11]. Lastly, it is not
sensitive to choose the value of ρ as FTD outperforms MTT
with every evaluated value of ρ.

0.005 0.01 0.03 0.05 0.1
ρ

39

40

41

42

43

44

A
cc

.(%
)

MTT
FTD

Figure 5. Parameter study of ρ on CIFAR-100 (ipc=10). We set the
x-axis to be in log scale for better illustration. Blue dashed line is the result
of MTT, which serves as the baseline.

A.3.2 Optimizing of the Flat Trajectory

As introduced in subsection 3.3, FTD only regularizes the
training in the buffer phase as in Equation 13 to obtain a flat
teacher trajectory. We provide the pseudocode for reproduc-
ing our results in Algorithm 1. The optimization of the flat
trajectory is solving a minimax problem. We follow Pierre
et al. [11] to approximate the solution ϵ̂ of the maximization
in Equation 12 as follows

ϵ̂ = argmax
ϵ∈Ψ

[
LT (fθ+ϵ)− LT (fθ)

]
= ρ

∇θLT (fθ)

∥∇θLT (fθ)∥2
, (15)

where Ψ = {ϵ : ∥ϵ∥2 ≤ ρ} and ρ > 0 is a given constant
that determines the permissible norm of ϵ. We denote gL =
∇θLT (fθt), which is the gradient to optimize the vanilla
loss function LT (fθ). Hence, from Equation 15, we have
that

ϵ̂ = ρ
gL
∥gL∥2

.

Suppose that θadv = θ + ϵ̂, we can rewrite Equation 13 as
follows,

θ∗ = argmin
θ

{
LT (fθ) + αS(θ)

}
= argmin

θ

{
LT (fθ) + α [LT (fθadv)− LT (fθ)]

}
= argmin

θ

{
αLT (fθadv) + (1− α)[LT (fθ)]

}
. (16)

We denote gS+L = ∇θLT (fθadv), which is the gradient to
optimize LT (fθadv). Hence, from Equation 16, the gradient
to optimize θ∗ is g = α · gS+L + (1− α) · gL as illustrated
in Line 6 of Algorithm 1. The parameter α is found using a
grid search, as described next.

Algorithm 1 Training with FTD in buffer phase.

Input: Real set T ; A network f with weights θ; Learning
rate η; Epochs E; Iterations T per epoch; FTD hyperpa-
rameter α, ρ.

1: for e = 1 to E do
2: for t = 1 to T , Sample a mini-batch B ⊂ T do
3: Compute gradients gL = ∇θLB(fθt)
4: θadv

t = θt + ρ · gL
∥gL∥2

5: Compute gradients gS+L = ∇θLB(fθadv
t
)

6: Compute g = α · gS+L + (1− α) · gL
7: Update weights θt+1 ← θt − ηg

8: Record weights θT ▷ Record the trajectory at the
end of each epoch

Output: A flat teacher trajectory.

A.3.3 Hyperparameter Details

The hyperparameters α and ρ of FTD are obtained via
grid searches in a validation set within the CIFAR-10
dataset. The hyperparameter ρ is searched within the set
{0.005, 0.01, 0.03, 0.05, 0.1}. The hyperparameter α is
searched within the set {0.1, 0.3, 0.5, 1.0, 3.0}. For the rest
of the hyperparamters, we report them in Table 7.

A.3.4 Neural Architecture Search.

Following the search space construction of 720 Con-
vNets in [50], we vary the different hyperparameters
including the width W ∈ {32, 64, 128, 256}, depth
D ∈ {1, 2, 3, 4}, normalization N ∈ {None, Batch-
Norm, LayerNorm, InstanceNorm, GroupNorm}, activa-
tion A ∈ {Sigmoid,ReLU,LeakyReLU}, pooling P ∈
{None,MaxPooling,AvgPooling}. Every candidate Con-
vNet is trained with the proxy dataset, and then evaluated on
the whole test dataset. These candidate ConvNets are then
ranked by their test performances. The architectures with the
top 5, 10 and 20 test accuracies are selected and the Spear-
man’s rank correlation coefficients between the searched
rankings of the synthetic dataset and the real dataset are
computed after training. We train each ConvNet for a total
of 3 times to obtain averaged validation and test accuracies.

A.3.5 Visualizations

We provide more visualizations of the synthetic datasets
for ipc = 1 from the different resolution datasets: 32× 32
CIFAR-10 dataset in Figure 6, 64×64 Tiny ImageNet dataset
in Figure 7, 128 × 128 ImageNette subset in Figure 8. In
addition, parts of the visualizations of synthetic images from
the CIFAR-100 dataset are showed in Figure 9.

B. More Related Work
Dataset Distillation. Dataset distillation presented

by [45] aims to obtain a new, synthetic dataset that is much
reduced in size which also performs almost as well as the
original dataset. Similar to [45], several approaches con-
sider end-to-end training [34, 36], however they frequently
necessitate enormous computation and memory resources
and suffer from inexact relaxations [34, 36] or training in-
stabilities caused by unrolling numerous iterations [32, 45].
Other strategies [48, 50] lessen the difficulty of optimization
by emphasizing short-term behavior, requiring a single train-
ing step on the distilled data to match that on the real data.
Nevertheless, errors may accrue during evaluation, when the
distilled data is used in multiple steps.

To address the difficulties of error accumulation in sin-
gle training step matching algorithms [48, 50], Cazenavette
et al. [1] propose to match segments of the parameter tra-
jectories trained on synthetic data with long-range training
trajectory segments of networks trained on the real datasets.
However, the error accumulation of the parameters in partic-
ular segments is still inevitable. Instead, our strategy further
mitigates the accumulated trajectory errors with the guid-
ance of a flat teacher trajectory inspired by the heuristic of
Sharpness-aware Minimization.

The geometry of the loss landscape. Minimizing the
spectrum of the Hessian matrix ∇2

θfθ as in Equation 11
is an difficult and expensive task. Fortunately, a series of
sharpness-aware minimization methods [10, 11, 51] have
been proposed to perform the task implicitly with low cost
for improved generalization. It has been argued in many
studies [7,17,18,20] that the spectrum of the Hessian matrix
constitutes a good characterization of the geometry of the
loss landscape (sharpness), which then translates to having a
strong relationship to the generalization abilities [7, 30, 31]
of the network. We leverage the approaches from [11, 51] to
efficiently optimizing the spectrum of the Hessian matrix to
minimize the accumulated trajectory error in this work.

Table 7. Hyperparameter values we used for the main result table.

CIFAR-10 CIFAR-100 Tiny ImageNet
ipc 1 10 50 1 10 50 1 10

Synthetic Step 50 30 30 40 20 80 30 20
Expert Epoch 2 2 2 3 2 2 2 2

Max Start Epoch 2 20 40 20 40 40 10 40
Synthetic Batch Size - - - - - 1000 - 500

Learning Rate (Pixels) 100 100 1000 1000 1000 1000 10000 10000
Learning Rate (Step Size) 1e-7 1e-5 1e-5 1e-5 1e-5 1e-5 1e-4 1e-4
Learning Rate (Teacher) 0.01 0.001 0.01 0.01 0.01 0.01 0.01 0.01

α 0.3 0.3 1 1 1 1 1 1
EMA Decay 0.9999 0.9995 0.999 0.9995 0.9995 0.999 0.999 0.999

Figure 6. Visualizations of synthetic images distilled from the 32× 32 CIFAR-10 dataset with ipc = 1.

Figure 7. Visualizations of part of synthetic images distilled from the 64× 64 Tiny ImageNet dataset with ipc = 1.

Figure 8. Visualizations of synthetic images distilled from the 128× 128 ImageNette subset with ipc = 1.

Figure 9. Visualizations of part of synthetic images distilled from the 32× 32 CIFAR-100 dataset with ipc = 10.

	. Introduction
	. Preliminaries and Related Work
	. Methodology
	. Matching Training Trajectories (MTT)
	. Accumulated Trajectory Error
	. Flat Trajectory helps reduce the accumulated trajectory error

	. Experiments
	. Experimental Setup
	. Results
	. Ablation and Parameter Studies
	. Neural Architecture Search (NAS)

	. Conclusion and Future Work
	. More Discussions and Experiments
	. Exploring the Accumulated Trajectory Error
	. Exploring the Flat Trajectory
	. Implementation Details
	Parameter Study
	Optimizing of the Flat Trajectory
	Hyperparameter Details
	Neural Architecture Search.
	Visualizations

	. More Related Work

