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1. More Details about the Datasets Used

The imbalance ratio of a dataset is defined as the number
of training images of the most frequent class divide by the
number of images of the least frequent class.

CIFAR100-LT. CIFAR100 [3] is a balanced dataset for
image recognition, which has 50,000 training images and
10,000 test images from 100 categories. The CIFAR100-
LT dataset used in our experiments are obtained by down-
sampling the original training set while keeping the test set
unchanged. Following Zhou et al. [7], we use the expo-
nential function 𝑁𝑖 = 𝑁0 × `𝑖 to determine the number of
training images for each category, where 𝑁0 = 500. By
varying `𝑖 , we are able to construct datasets with different
imbalance ratios. In our experiments, we only use the one
with imbalance ratio 100.

ImageNet-LT and Places-LT. ImageNet [2] and
Places [8] are also two balanced dataset. Unlike CIFAR,
these two datasets have larger scale and are more difficult.
ImageNet-LT and Places-LT are their long-tailed version
constructed by Liu et al. [4]. The number of training im-
ages for each class is determined using the Pareto distribu-
tion with a power value 𝛼 = 6. Their original test sets are
left unchanged.

2. Implementation Details of the Fine-tuning
Stage

CIFAR100-LT. For data augmentation, we randomly
crop a 32 × 32 patch from the original image or its hori-
zontal flip with 4 pixels padded on each side. We use the
stochastic gradient descent (SGD) to optimize the network
with momentum of 0.9 and weight decay of 5 × 10−4. We
train the model for 40 epochs. The initial learning rate is set
to 5× 10−2 and decrease it at the 10th epoch by 0.2. We use
a batch size of 128.

*J. Wu is the corresponding author. This research was partly sup-
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Methods G-Mean H-Mean Lowest Recall

CE + GML 36.59 31.26 6.00

CE + CE (re-weighting) 35.30 27.55 4.00
CE + CE (re-sampling) 30.84 18.52 2.00

Table 1. Comparing with better baselines.

ImageNet-LT and Places-LT. For data augmentation,
we resize the image by setting the shorter side to 256 and
then take a random crop of 224×224 from it or its horizontal
flip. Finally, color jittering is applied. We train our model
for 40 epochs with a batch size of 512. We use stochastic
gradient descent (SGD) with momentum of 0.9 and weight
decay of 5×10−4. The initial learning rate is set to 5×10−2

and is decreased at the 20th epoch by 0.2. For Places-LT,
when applied to MiSLAS [6], since MiSLAS is a two-stage
method, we find it fairer to also apply their proposed la-
bel aware smoothing loss in the fine-tuning stage. So when
computing the loss function, we combine two loss functions
together as L = _ ∗ LGML + LLAS. During the experiment,
we simply use _ = 1 without tuning it.

3. Additional Ablation Studies
We present some additional ablation studies here.

3.1. Better Baselines

Since our method requires re-training the classifier, the
model is essentially trained longer. To better understand
the performance improvement, here we conduct some ex-
periments on CIFAR100-LT that serve as better baselines.
Specifically, in the fine-tuning stage of our method, instead
of using the proposed GML, we use either balanced cross-
entropy or pure cross-entropy but combined with a balanced
sampler. All the other settings remain unchanged. The re-
sults are shown in Tab. 1. As we can see, our proposed GML
is better than them in terms of the harmonic mean of recall
and the lowest recall value.
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Figure 1. Bar plot of per-class recall on the imbalanced CIFAR100
(with imbalance ratio 100) before and after the fine-tuning when
GML is applied to BSCE [5].
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Figure 2. Bar plot of per-class recall on the imbalanced CIFAR100
(with imbalance ratio 100) before and after the fine-tuning when
GML is applied to MiSLAS [6].

3.2. More Visualizations of the Per-Class Recall

Here we present more visualization results of the per-
class recall when GML is applied to different methods. All
experiments are conducted on CIFAR100-LT (with imbal-
ance ratio 100). The results are shown in Fig. 1, Fig. 2
and Fig. 3.
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Figure 3. Bar plot of per-class recall on the imbalanced CIFAR100
(with imbalance ratio 100) before and after the fine-tuning when
GML is applied to PaCo [1].
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