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Figure 1. Illustration of neural dependencies that emerge (a) within a single network and (b) between two independently learned
networks. Taking the intra-network dependency as an instance, the logits predicted for the category “macaw” can be safely replaced by a
linear combination of the logits predicted for a few other categories, barely scarifying the accuracy.

Abstract

This work presents two astonishing findings on neural
networks learned for large-scale image classification. 1)
Given a well-trained model, the logits predicted for some
category can be directly obtained by linearly combining
the predictions of a few other categories, which we call
neural dependency. 2) Neural dependencies exist not only
within a single model, but even between two independently
learned models, regardless of their architectures. Towards
a theoretical analysis of such phenomena, we demon-
strate that identifying neural dependencies is equivalent
to solving the Covariance Lasso (CovLasso) regression
problem proposed in this paper. Through investigating
the properties of the problem solution, we confirm that
neural dependency is guaranteed by a redundant logit
covariance matrix, which condition is easily met given
massive categories, and that neural dependency is highly
sparse, implying that one category correlates to only a few
others. We further empirically show the potential of neural
dependencies in understanding internal data correlations,
generalizing models to unseen categories, and improving

model robustness with a dependency-derived regularizer.
Code to reproduce the results in this paper is available at
https://github.com/RuiLiFeng/Neural-Dependencies.

1. Introduction

Despite the tremendous success of deep neural networks
in recognizing massive categories of objects [8-10, 12, 14—
16,24,28,30], how they manage to organize and relate dif-
ferent categories remains less explored. A proper analysis
of such a problem is beneficial to understanding the network
behavior, which further facilitates better utilization of this
powerful tool.

In this work, we reveal that a deep model tends to
make its own way of data exploration, which sometimes
contrasts sharply with human consciousness. We reveal
some underlying connections between the predictions from
a well-learned image classification model, which appears
as one category highly depending on a few others. In
the example given in Fig. la, we can directly replace the
logits predicted for “macaw” with a linear combination
of the logits for “ostrich”, “bittern”, efc. (without tuning



the network parameters) and achieve similar performance.
We call this phenomenon as neural dependency, which
automatically emerges from learning massive categories.
A more surprising finding is that neural dependencies
exist not only within a single model, but also between
two independently learned models, as shown in Fig. 1b.
It is noteworthy that these two models can even have
different architectures (e.g., one with convolutional neural
network [12] and the other with transformer [10, 16]) and
different training strategies.

Towards figuring out what brings neural dependencies
and whether they happen accidentally, we make a the-
oretical investigation and confirm that identifying neural
dependencies is equivalent to solving a carefully designed
convex optimization—the Covariance Lasso (CovLasso)
regression problem proposed in this paper. Such a problem
owns a smooth solution path when varying its hyper-
parameters [22], which has two appealing properties. First,
the solution is guaranteed by a redundant covariance matrix
of the category-wise logits. This condition is easily met
when the model is trained on a sufficiently large number
of categories [11]. Second, the solution admits elegant
sparsity. It implies that a category involved in neural
dependencies only relates to several instead of numerous
other categories.

We further study the potential utilities of neural depen-
dencies, as a support to our theoretical contributions. One
straightforward application is to help interpret the internal
data correlations, such as what categories are more likely
to link to each other (Sec. 3.1). Another application is to
investigate how we can generalize a well-learned model
to unseen categories with the help of neural dependencies
(Sec. 3.2). We also propose a regularizer to test whether dis-
couraging the neural dependencies could assist the model in
learning a more robust representation (Sec. 3.3). We believe
the findings in this paper would deepen our understanding
of the working mechanism of deep neural networks, and
also shed light on some common rules in knowledge learn-
ing with visual intelligence systems.

2. Neural Dependencies

We consider the n-category classification neural network
f + R™ — R™, which takes an input image € R"™ and
outputs the logits vector of x being any of the n-categories
of the task. We assume the network is well-trained and
produce meaningful outputs for each category. Naively,
each element of the logits vector reports the confidence of
the network predicting  belonging to the corresponding
category. We are curious about whether those confidences
can be used to predict each other. Before we start, we
formally introduce the key concept of neural dependency
in this work.

Definition 1 We say the target category c; and categories
{ey; };?:1 have neural dependency, if and only if for almost
every T ~ Ddata, there are 0 < €,0 < 1 and a few constant
non-zero coefficients {0, }j v 1 # 1 € [n],k < n, such

that
Z 0’]

Remark 1 We do not normalzze nor centralize the logits
output f(x) so that no information is added or removed
for logits of each category. Different from usual linear
dependency system (where y = Ax + b), we omit bias
in the neural dependency, ie., we require b = 0 if
flx); =~ Z] 1 0i, f(x)i; +b. Thus the existence of neural
dependencies suggests that the network believes category c;
is nearly purely decided by categories c;,, - - , c;, without
its own unique information.

x)|<e)>1-6 (1)

What Does It Means? The neural dependency means that
a linear combination of a few categories is in fact another
category. It is natural to believe that those categories should
admit certain intrinsic correlations. However, for an idea
classifier, each category should hold a unique piece of
information thus they should not be purely decided by other
categories. What’s more, we will find that some neural
dependencies are also not that understandable for humans.
Overall, the neural dependencies reveal a rather strong
intrinsic connection of hidden units of neural networks, and
are potentially interesting for understanding the generality
and robustness of networks.

Between Network Dependencies. We can also solve and
analyze the between network neural dependencies through
the above methodology for two different neural networks
f, g trained on the same dataset independently. Here we
want to find a few constant non-zero coefficients {6, Lk i=1
such that Pr(|g(x); — ijl 0;,f(x);,| <e)>1-06.To
find those coefficients, we only need to use the ¢-th row of
g(x) toreplace f(x); in Eq. (2). The concepts of within and
between network dependencies are also illustrated in Fig. 1.

Notations. We use bold characters to denote vectors and
matrix, under-subscript to denote their rows and upper-
subscript to denote their columns. For example, for a matrix
p, 1% denote the sub-matrix of p consists of the elements
with row indexes in set A and column indexes in set B;
for a vector 8, we use 0; to denote its i-th row which is a
scalar. For a function f : R™ — R", f(x); denote the i-
th row of vector f(x), while f;(x) is some other function
that connected with sub-script 4. For an integer n € N, we
use [n] to denote the set {1,---,n}. We always assume
that matrices have full rank unless specifically mentioned;
low-rank matrices are represented as full rank matrices with
many tiny singular values (or eigenvalues for symmetry
low-rank matrices).



Experiments Setup in This Section. In this section
we reveal the neural dependencies empirically among
some most popular neural networks, i.e., ResNet-18,
ResNet-50 [12], Swin-Transformer [16], and Vision-
Transformer [10]. As a benchmark for massive category
classification, we use ImageNet-1k [9], which includes
examples ranging from 1,000 diverse categories, as the
default dataset. Training details of those networks, and
other necessary hyper-parameters to reproduce the results
in this paper can be found in the Appendix.

2.1. Identifying Neural Dependencies through Co-
variance Lasso

We propose the Covariance Lasso (CovLasso) problem
which will help us identify the neural dependencies in the
network and play an essential role in this paper:
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Let 8*()\) be the solution of Eq. (2) given hyper-parameter
A > 0, we can have the following observations

1. 6*(\) will be a sparse n-dimensional vector, meaning
many of its elements will be zero, due to the property
of /1 penalty [21];

2. the prediction error |f;(x) — > 1, 0*(N)i, fir (x)] =
10*T (X\) f(x)||% will be very small for most  ~ pgatas
due to the property of minimization of expectation.

Combining these two observations, it is easy to find out
the solution of Eq. (2) naturally induces the linear neural
dependencies in Definition 1. Rigorously, by Markov
inequality, if anpdm [[167 f(x)||3] < €5, we have

Pr(|f(z); — Y 0;f();] <e)
JFi
=1—Pr(|f(x Z@f il >e€ 3)
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so we can have the following theorem.

Theorem 1 The solution to Eq. (2) satisfies Definition 1 for
some small € and § and appropriate \.

The CovLasso problem is a convex problem; we can effi-
ciently solve it by various methods like coordinate descent
or subgradient descent [4]. Finding the neural dependencies
for some category c; is now transferring into solving the
CovLasso problem under the constraint 8; = —1.

Results. Fig. 2 reports some results of both within and
between network neural dependencies acquired by solving
Eq. (2). In the center we report the target category and
in the surroundings we enumerate those categories that

emerge neural dependencies with it. We show more
results in the Appendix. For the cases in Fig. 2, Tab. 1
further reports the absolute and relative errors of predicting
the logits of target categories using formula f(x); =
>r_10i. f(x);,, and the corresponding classification
accuracy on this category (using the replaced logits
(f(w)l, T f(w)ifl’ Zj;éi ajf(w)j’ f(w)iJrlv T ?f(w)n)T
instead of f(x)), tested both on positive samples only and
the full validation set of ImageNet. We can find that, as
claimed by Definition 1, a small number of other categories
(3 or 4 in the illustrated cases) are enough to accurately
predict the network output for the target category.
Moreover, the predictions are all linear combinations:
for example, Fig. 2f tells that for almost every image
T ~ Ddata, We have

R5O(w)hamster ~ 3.395 x S(w)broccoli

+ 3.395 % S(m)guineapig + 3.395 x S(w)com, @)
where R50 denotes the ResNet-50 and S denotes the Swin-
Transformer. We can achieve comparable classification
performance if using the above linear combination to re-
place the logits output for category ‘hamster’ of ResNet-
50. For both single models and two independently trained
models with different architectures, we can observe clear
neural dependencies. Future work may further investigate
connections and differences in neural dependencies from
different networks.

Peculiar Neural Dependencies. As we have mentioned
before, the solved neural dependencies are not all that
understandable for humans. Fig. 2 actually picks up a few
peculiar neural dependencies for both within and between
network dependencies. For example, the dependencies
between ‘jellyfish’ and ‘spot’ in Fig. 2a, ‘egretta albus’ and
‘ostrich’ in Fig. 2b, ‘basketball’ and ‘unicycle’ in Fig. 2c,
‘komondor’ and ‘swab’ in Fig. 2d, ‘bustard’ and ‘bittern’
in Fig. 2e, and ‘hamster’ and ‘brocoli’ in Fig. 2f. This
reveals the unique way of understanding image data of
neural networks compared with human intelligence that has
been unclear in the past [20, 31]. Further investigating
those cases can be of general interests to future works in Al
interpretability and learning theory, and potentially provide
a new way to dig intrinsic information in image data.

2.2. What Brings Dependencies

After identifying the neural dependencies in deep net-
works, we are curious about why this intriguing phe-
nomenon can broadly exist in different architectures. So we
need a further understanding of the sources of it, which can
be discovered through a careful analysis on Eq. (2). This
section will reveal how a redundant covariance matrix for
the terminal representations induces neural dependencies.
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Transformer. Much more results can be found in Appendix.

Table 1. Prediction error and classification accuracy of neural dependencies in cases in Fig. 2. Both the error of logits prediction and the

(f) Swin-T = ResNet-50

classification networks.

loss in classification accuracy are tiny. Much more results can be found in Appendix.

(a;b;c) Within-network neural dependencies in
ResNet18, ResNet50, Swin-Transformer and VIT-Transformer; (e;f) Between-network neural dependencies between ResNet50 and Swin-

Metrics ResNet-18 | ResNet-50 Swin-T VIT-S R-50 — Swin-T | Swin-T — R-50
Abs Err 2.568 1.063 0.926 4.276 1.776 3.939
Rel Err (%) 18.7 6.8 10.4 29.7 20.7 21.1
Acc (Ori. Acc) 60.9 (61.0) | 64.9 (64.9) | 40.1 (40.1) | 45.9 (45.9) 69.5 (69.5) 49.0 (49.2)
Pos Acc (Ori. Pos Acc) || 72.0 (84.0) | 92.0 (92.0) | 94.0 (92.0) | 96.0 (100.0) 94.0 (96.0) 94.0 (100.0)




Observe that Egp,... [|07 f(2)|3] = 67 Cov6, where
Cov = Egmpyo lf (@) f(x)T] is the (uncerntralized and
unnormalized) covariance matrix of the terminal repre-
sentations. Let err;(6) = 6TCovO be the predicting
error of using coefficient @ for category c;, the property
of Lasso regression indicates that (see proof in Appendix)
err;(60*()\)) is continuous about A and

det[Cov]

det [Covm sz]

= err;(0™(0)
®)

< erri(0* (Amax)) = Cov',

<err;(0*(\)) < err;(0*(\))

where A < X, and A\ = 2||Covfn]\l-||oO is the

supremum of valid hyper-parameter )\, ie., 0*(\) =

—e; = (0,-+-,0,—1,0,---,0), YA > A\pax, and 0*(\) #
o

—e;, V0 < XA < Apax.

Regardless of the sparsity, to yield neural dependency for
the target category c;, we expect a very small err;(6*(\)).
So if the lower bound err;(6*(0)) is already far larger
than €, the predicting error can be too large to yield
neural dependencies. Reversely, using the continuity of
err;(0*(\)) about A, we can know that if the lower bound
err;(0*(0)) is very small, then there should be a small
A such that err;(8*()\)) is also very small. Eq. (2) can
then bring neural dependencies to category c;. (This need
to exclude a trivial case where the predicting error upper
bound Covi = Egmp,...[f(x)?] is already very small as
it does not reveal any meaningful dependencies but that
the network may be very unconfident about category c;.
While this is rare for well-trained networks, we leave the
discussion of this case in Appendix.)

So to have neural dependencies, we require the term
err;(0*(0)) to be as small as possible. For term
err;(60*(0)) we can have the following observations from

two different perspectives (see Appendix for deduction):
det[Cov]

1. Information Volume: err;(0*(0)) = TetlCon T

Vol(Cov)
VOI(COV{:R::)
dimensional volumes of the parallelotope Cov and the
n — 1 dimensional volumes of Cov removing the i-th
row and ¢-th column; if assume Gaussian distributions
of random variable f(x),T ~ Pdata, they are also
the normalizing constants of the probability density
of the terminal representations with and without the
i-th category; this term measures the information loss
while removing the ¢-th category and is small if the -
th row and ¢-th column of Cov carry little information
and are redundant;

erry(0*(0)) =

measures the ratio between the n-

det[Cov]

[n]\i
det[Cov[n]\i]

2. Geometry:
2
J

ol _
(S5 )

which will be small if some

. . 2 .
a; corresponding to tiny oj is large, where
0% > ... > o2 are the eigenvalues of Cov and
qi, - ,q, are the corresponding eigenvectors,

a; = (€;,q;j),j € [n]; this further means that the
i-th coordinate axis is close to the null space (linear
subspace spanned by eigenvectors corresponding to
tiny eigenvalues) of the covariance matrix Cov, which
suggests the i-th category is redundant geometrically.

det[Cov]
det[Cov%:Ri]
¢;, both perspectives lead to the same conclusion that:

Let be the metric for redundancy of category

Redundancy of the target category c; in the terminal
representations brings it neural dependencies.

Remark 2 Unfortunately, though it can help us understand
the intrinsic mechanism that brings neural dependencies,
this principle is only intuitive in practice—we cannot accu-
det[Cov] .

——— e Lnmost cases due to
det[Cov[n]\i}

numerical instability. det[Cov{ZRﬂ tends to have some tiny
singular values (smaller than le — 3), making the quotient
operation extremely sensitive to minor numerical errors in

computation, and thus often induces NaN results.

rately calculate the value

2.3. What Brings Sparsity

The last section omits the discussion of sparsity, which
we want to study carefully in this section. We want to find a
value that estimates whether two categories have neural de-
pendencies, which we will show later is the (uncerntralized)
covariance between the logits for two different categories.

The sparsity property, i.e., whether category c; is in-
volved in the neural dependencies with c;, can be identified

by the KKT condition of Eq. (2). Let Cov = Covmsi,

0: = O[n]\z’ i) = COV’En]\i, andj' = _] + 1(]>1) such that

0; = 0-, then Eq. (2) can be transferred into
‘min 87CovO — 2676 + \||6]];. (6)
OcRn—1

By KKT conditions, the optimal value is attained only if

0 c CovO*(\) — b+ %auélll. (7)

and the sparsity can be estimated by the following proposi-
tion (see detailed deduction in Appendix)

|Cov;0*(\) — bj| < % =0*(\);=0,j€[n—1]. (8)

This means that we can know whether two categories admit
neural dependencies by estimating |Cov;0*(\) — I;J| A
surprising fact is that the term | Cov;; 6*(\)— Bj | can actually
be estimated without solving Eq. (2), but using the slope of
the solution path of the Lasso problem. By convexity of
Eq. (2), the slope of Eq. (2) admits the following bound.



Theorem 2 Let Cov = QXQT be the eigenvalue decom-
position of Cov, and A = QX'/2QT, then we have for
>\/a )‘H € [07 )\Inax]y
|vajé*()\’) - Bj . CAOVjé*()\N) - i)j |
A/ A// (9)

o 1 1
<[|A;|l2[|A iFb||2|;\7 —

l,j €[n—1].

Remark 3 Using this theorem we can also get a finer
estimation of the value of err;(0*(\)) than Eq. (5), see
Appendix for detail.

Using triangular inequality and the closed-form solution for
Amax (0% (A,,,.) = 0), we have for j € [n — 1],
Cov;0" ) — b

[Cov;0°(\) — b;| < A |10
>\max
+/\‘ Coij*()\) - bj . Cova*(AmaX) — b]' | (11)
A Amax
b, 1 1
N —L—| + M|A;||2|ATD|2| = — ——]. (12)
< ‘Amax‘ A2 ||2\A 2Hb||oo|
. b. _73
Thus if A|52=| + A[| A2 A~7b]l2|5 — 2”5”00| <3e

b 10| Al A~Th |t — —L
‘HbHoo‘ < H ]”2” ||2‘)\ 2[5 0o

6*(\) ; = 0 and category c; is independent (meaning not
involved in the neural dependencies) with c;.

, we know that

Theorem 3 When 0 < \ < Apax and j # i, if
B pau Lf (®)i f (2);]
maxXsti [Eppan. [f(@)if(x)s]]

P 1
<1 —2[|A;l2]|A Tb||2\X - W

13)
B

then 0" (\); = 0 and category c; is independent with c;.

High dimensional vectors are known to tend to be orthog-
onal to each other [5], thus if we assume A; is nearly
orthogonal to A~Tb, then ||Aj\|2||A’TlA)H2 R~ |l;]\ and we
can further simplify the above sparsity criterion as

Conjecture 1 When 0 < A < A\pax and j # i, if

Bapn ()i @] < 5 (equivaient 0

|]Ew~pdam [f(m)zf(w)j] A
ez Eomnen T @) F @]~ P

(14)

AIIlaX
then 0*(\); = 0 and category c; is independent with c;.

In practice we find that this conjecture is seldom wrong.
Combining with Theorem 3, they together tell us that the co-
variance of terminal representations has an important role in
assigning neural dependencies: more correlated categories
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Figure 3. Relation between correlations and dependency coeffi-
cients.

tend to have neural dependencies, while weakly correlated
categories will not have neural dependencies. They also
describe the role of the hyper-parameter A in Eq. (2): it
screens out less correlated categories when searching neural
dependencies, and larger A corresponds to higher sparsity of
dependencies. In conclusion, let |Egnp,... [f (2): f(x) ;]| be
the metric for correlations between category c; and c;, we
can say that

Low covariance between categories in the terminal
representations brings sparsity of dependencies.

Numerical Validation. We validate the above principle,
i.e., Conject. 1 in Fig. 3. Each subfigure picks up one
target category c¢; and solves Eq. (2) to calculate the
corresponding coefficients 67, j # 4 for all the remain-
ing 999 categories of the ImageNet. 67 = 0 implies
no neural dependency between category c¢; and c;, and
vice versa. We plot the relation between the covariance
of ¢;,¢jy |Egpmpyaia lf(@)if(x);]|, and the corresponding
dependency coefficient §7. We can clearly find out that
a small correlation corresponds to no neural dependency.
Specifically, when the correlation between c;, ¢; is smaller
than %, ¢; and c; admit no neural dependency. In most
cases, the bar % does exclude a considerable amount of zero
dependency categories, which makes it a good indicator
for the existence of neural dependency. This validates our
principle for the source of sparsity.

Controlling Neural Dependencies. Conject. [ also
points out that we can disentangle neural dependencies
by regularizing the covariance term, as tiny covariance
indicates no neural dependency. We will discuss this later
in Sec. 3.3.



2.4. Between Network Neural Dependencies

The general math property of the between network
neural dependencies shows no essential difference from
the within network ones. Let f,g be two different
classification neural networks trained on pgat, indepen-
dently. We want to use the logits of f to predict
the logits of the ¢; category of g. Let f(z) =
(f;(w)lv e 7f(w)2*1ﬂg~(w)i7 f(w)i+1, T 7f(w)n)T’ and

Cov = Egrpy,.. Lf () f(2)T], then we know that

. dEt[CO["n ]]\i = det[c‘[):]]\i is small, then category
det[Cov][n]\i det[Cov[n]\i]

¢; of network g have neural dependencies with some
other categories of network f;

o if |Epmpya f (®)j9(2):]] (j # 9) is small, then the ¢,
category of f is independent with the ¢; category of g.

3. Potentials of Neural Dependencies

In this section, we discuss some interesting potentials
and inspirations of neural dependencies in general scenarios
of modern machine learning.

3.1. Visualization Neural Dependencies

We are curious about the intrinsic data relations revealed
by neural dependencies. Specifically, if we have some base
classes in the coordinate space, can we plot the relative
position of the target classes that can be linearly decided
by those classes through neural dependencies? Fig. 4
gives such an example for ResNet-50 in ImageNet. In
the surroundings are 88 base categories and in the center
are 10 target categories that can be linearly predicted by
them using neural dependencies. The length of the arc
between two categories gives their dependency coefficient.
This result illustrates the relative relationship of different
categories acknowledged by the neural network. It may be
of potential interests to multiple domains like data relation
mining, visualization, and interpretability of deep networks.

3.2. Generalizability

Now that the logits of one category can be well predicted
by the logits of some others, we are curious about whether
we can learn a cluster of base categories, and then predict
new classes purely using linear combinations of the logits
of those base categories. Especially, can the overall
performance of this setting be comparable to training the
baseline model on the whole dataset? This problem is of
general interest to many machine learning scenarios. 1)
Incremental Learning. In incremental learning [6,17,29] we
need to learn to predict novel categories using a pretrained
network on old categories. Typical methods will finetune
the pretrained network in the new categories to achieve

priné
bikin&’mu
switch barrel

Figure 4. The graph visualization of neural dependencies in a
pretrained ResNet-50. Please refer to Sec. 3.1 for detail.

this goal, which then arouses concerns of damaging the
knowledge of the old categories. Using our setting we
can explore the potential of keeping the pretrained network
unchanged and learning merely a small weight matrix to
handle novel categories, which is cheap and efficient to train
and deploy in various devices and realistic scenarios. 2)
Transfer Learning. A similar but different occasion is trans-
fer learning [18, 26, 27], where we seek to take advantage
of knowledge of old domains to improve performance in
new data domains. While categories are also instances of
domains, our setting also explores a new way of knowledge
transfer among domains. 3) Representation Learning. Our
setting can partially reveal how representations [2] of base
knowledge help classifications in out-of-distribution data
(new categories). Future studies of this setting may reveal
the source of the generalizability of neural networks from
the perspective of neural dependencies.

To implement our setting, we may first train a deep
classification network fpase : R™ — R™ on the n; base
categories. Then we learn a coefficient matrix ® € R™ %"z
by fixing the parameters of fi,se and minimizing the train-
ing 10ss of fhew = fbase® on the training set of the new
categories. We then concatenate fa = [fhases foase®]” to
form a new classifier for all the categories. We sample 500
samples per category from the training set of ImageNet-1K
as our training data; the remains are used for constructing
a balanced binary testing set we will use later. We evaluate
the following three settings: 1) from 900 base classes to
100 new classes (900 — 100), 2) from 950 base classes to
50 new classes (950 — 50), and 3) from 999 base classes
to 1 new class (999 — 1) within a dataset. To approach
a binary classification scenario, for 999 — 1 case we
additionally test on 500 positive and negative sample pairs
from the remained training set of ImageNet as the 999 —
1(pos&neg) setting. The baselines fhascline are backbone
models trained on the whole 1,000 category training data.



Table 2. Classification accuracy of baselines and learning new categories through neural dependencies (ours). While much simpler, learning
new categories through neural dependencies barely loses accuracy. All figures are the mean of five independent runs.

900 — 100 950 — 50

Backbone

999 — 1 999 — 1(pos&neg)

Baseline Ours Impro | Baseline Ours

Impro | Baseline Ours  Impro| Baseline Ours  Impro

ResNet50 |[68.474+0.25 68.03+0.89 -0.44 |68.47+0.25 68.45+0.67

-0.02 [68.47+0.25 68.46+0.41 -0.01 |60.70+0.16 61.50+0.38 +0.80

Swin-T 71.49+0.14 71.486+0.17 -0.004

71.4940.21 71.578+0.34 +0.088

71.4940.09 71.56+0.13 +0.07 |76.20+0.27 78.00+0.24 +1.80

Table 3. Metrics of using (ours) and not using (baselines) the dependency regularization. All figures are mean of five independent runs.

Backbone ImageNet Acc. (1) Dependency Coefficients (/) ImageNet-O AUPR (1)
Baseline Ours Impro Baseline Ours Impro Baseline Ours Impro
ResNet18 69.83+0.033 70.1240.084 +0.29 0.70 0.02 +0.68 15.15+0.04 15.48+0.09 +0.33
ResNet50 76.37+0.25 76.6640.13 +0.29 1.10 4.5e74 +1.10 13.98+0.05 14.07+0.02 +0.09
Vit-S 80.67+0.305 81.52+0.212 +0.85 0.1 3.1e ? +0.1 28.54+0.11 31.14+0.10 +2.60
Swin-T 82.16+0.046 82.18+0.062 +0.02 0.39 0.01 +0.38 27.66+0.08 28.13+0.06 +0.47

Table 4. Classification accuracy in base (900) and new (100)
categories separately. While much simpler, learning new cate-
gories through neural dependencies outperform baselines if only
considering the performance in the new categories. All figures are
the mean of five independent runs.

ResNet-50 Swin-T
Method | —5; 100 900 100
Baseline || 67.43+0.16 68.87+0.84|71.28+0.29 70.73+1.03
Ours 68.65+0.13 71.06+1.15|71.50+040 72.47+0.41

Other details can be found in Appendix.

Experimental Results. We report the performance of fu)
and fhaseline in Tab. 2, where we can find both settings (ours
v.s. baselines) achieve comparable performance. While our
setting requires training on only a small coefficient matrix,
it consumes much less computation and time resources (less
than 60% time consumption of the baseline in each epoch,
see Appendix for detail) compared with the baselines. We
further investigate how our setting performs in the new
categories. Tab. 4 reports classification accuracy in the old
900 and new 100 categories of our setting and baselines
(here we choose the class with maximum logits in the
900/100 categories as the prediction results). We can find
that our setting significantly outperforms the baselines in
the new classes. Both results reveal the power of neural
dependencies in the generalizability of deep networks.

3.3. Robustness

As we have mentioned before, some neural dependencies
are not that sensible for humans. We are therefore curious
about whether cutting off them can help the network and
improve robustness. Here we compare two cases, the
baselines, and baselines finetuned by adding the regulariza-
tion term |Eqp,...[f ()i f(x);]| where ¢;, ¢; are the two
categories that emerge irrational neural dependencies to cut
off. We use two benchmarks, ImageNet-1K and ImageNet-
O [13]. ImageNet-O consists of images from 200 classes
that are unseen in ImageNet-1K, and is used to test the
robustness on out-of-distribution samples. This ability is

usually measured by the AUPR (i.e., the area under the
precision-recall curve) metric [3]. This metric requires
anomaly scores, which is the negative of the maximum
softmax probabilities from a model that can classify the
200 classes. We train the baseline models for 90 epochs
and our settings for 60 epochs of regular training followed
by 30 epochs of finetuning using the regularization term
|Ezmpaaia Lf ()i f(2);]]. We manually choose one depen-
dency to cut off for each case. Details are in Appendix.
Experimental Results. Tab. 3 reports the results. The
regularization term does cut off the neural dependencies
as the dependency coefficients are approaching zero after
regularization. This then results in some improvements
of performance in both ImageNet and ImageNet-O for all
the backbones. While here we only cut-off one depen-
dency for each case, we believe a thorough consideration
of reasonable dependencies to maintain may benefit the
network more. This reveals the connection between neural
dependencies and the robustness of networks.

4. Conclusion

This paper reveals an astonishing neural dependency
phenomenon emerging from learning massive categories.
Given a well-trained model, the logits predicted for some
category can be directly obtained by linearly combining the
predictions of a few others. Theoretical investments demon-
strate how to find those neural dependencies precisely, when
they happen, and why the dependency is usually sparse, i.e.
only a few instead of numerous of other categories related
to one target category. Further empirical studies reveal
multiple attractive potentials of neural dependencies from
the aspects of visualization, generalization, and robustness
of deep classification networks.

This work was supported by the National Key R&D Program of China
under Grant 2020AAA0105702, National Natural Science Foundation of
China (NSFC) under Grants 62225207 and U19B2038, and the University
Synergy Innovation Program of Anhui Province under Grants GXXT-
2019-025.
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A. Related Work

Before this work, many previous works believe some curious dependencies are hiding in the network and propose to
leverage them to improve the performance. While unknowing why and how to find those dependencies, they enhance the
empirical study of intrinsic connections inside a network. The representation of Exemplar SVMs (E-SVMs) has demonstrated
good migration capacity in various tasks like object detection and Content-Based Image Retrieval (CBIR). Constructing
them from existing classifier parts, cropped from previously learned classifiers, can further enhance their generalization
ability [1]. Previous work also demonstrates that image similarity captured by networks can improve performance on image
matching, retrieval, and classification than using conventional visual features [25]. Hierarchical Learning is also believed to
benefit from the rich dependencies of neural representations and their ability to naturally transfer into other related tasks [7].
Learning more general function dependencies also gives important applications in areas such as computational biology,
natural language processing, information retrieval/extraction, and optical character recognition [23].

B. Proof
B.1. Proof to Theorem 1

This is the natural results of Eq. (3).

B.2. Property of Function err;(6*()\))

The continuity of the solution path and the existence of Ayax = 2||C0an]\i||oo are natural results of the property of
general Lasso regressions [21,22]. Here we prove that

det
err; (07 (0) = L‘ﬁ]\ (A15)
det[Cov[Z]\;]
err;(0* (Amax)) = Cov'. (A16)
In fact, the second equality Eq. (A16) is easy to verify directly, so we only need to prove the first one, Eq. (A15). Let
Cov =UTU7?, (A17)
vut =1, (A18)
T = diag{~{,--- 72}, (A19)
0=> o;U, (A20)
j=1
j=1
and U',--- ,U" be the eigenvectors of Cov. The original problem Eq. (2) (when A = 0) now becomes
. 2,2
min Z_:l ajv;,
= (A22)

subject to ZajUij =—1
j=1

Using Lagrange multiplier, the following problem will attain extreme value together with the above problem

min H(a,n) = Za?ﬁ» + n(z a;Ul +1). (A23)
j=1 j=1

a,n



Thus we have

OH : nU?
— =20V U =0 a;j=——1,j=1,--- A24
aaj ;7 +nU; Qi 27]2 yJ , y 1, ( )
oa= _gr—luf - —gI‘_lUTei (A25)
8H n ; n UUZ] ; n n (UZ])2
a—n:ZajUi+1:O<:>Z—272Ui:—1<:)§Z =1 (A26)
j=1 j=1 J j=r
sn=2UTr'UN " =2(efUT'UTe;) = 2/(Cov ). (A27)
Combining the above derivation, we have
0°(0) = Ua* = —gUI‘_lUTei - —gCov_lei, (A28)
Uk Uk
(0*(0)T Cove*(0)) = ZeiTCov_TCovCov_lei = Ze?Cov_lei (A29)
2 : ; det[C
= T (Cov1)i = 1/(Cov )i = Lﬂ\ (A30)
4 det[Cov"1\]
[n]\i
B.3. Case of Small Cov’
Here we may want the ratio
det 1
R(Cov,i) = — [COV}[ = = _ (A31)
2 T\ n o n
Cov; det[Cov[n]\i] > 7]5 > alo?
to be as small as possible, where o7 > --- > o2 are the eigenvalues of Cov and q1,--- , g, are the corresponding

eigenvectors, a; = (e;,q;), j € [n] (refer to deduction in Appendix). This is also the minimum relative prediction error, i.e.,

B [0(@) = 3,0 0° N, S (@), )
o Earnans 1 (@)1

Geometrically, this means that the ¢-th coordinate axis admits valid components in the eigenvectors of both non-tiny and tiny
eigenvalues.

= R(Cov, ), YA € [0, Amax]- (A32)

B.4. Property of the Lower Bound err;(6*(0))

Here we prove that

N det|[Cov "ol
err;(6%(0)) = [7[@]\ =) =] . (A33)
det[Cov[n] 1 =19

This is the natural result of Egs. (A26) and (A27), as

3
—
<
~—
[\v]

~.

1/(Cov=1)i = det[Cov]

det [Covm sz]

= 1/(Cov )i = g = . (A34)

N
ST

Let U7 = g; and 03 = ~7. Then we obtain the result.

B.5. Sparsity Condition of the Solution
By KKT conditions, the optimal value of Eq. (6) is attained only if

0 € CovO*(\) — b+ ganéul (A35)



where 9)|0]|; = {v : |v]oc < 1,070 = ||8]|1} is the subgradient of || - ||. By Cauchy inequality,
1611 = "6 < [[v]locllO]l1 = 11611 (A36)

The equality holds if and only if
lv;| <1=6; =0. (A37)

Thus we have the sparsity condition of the solution.

B.6. Proof to Eq. (9)

To start, we deduce the dual problem of Eq. (2). For standard Lasso problem
1 2
min 5|y — X B3 + A8, (A38)

where y are labels and X are observations, its dual problem is [22]

1 A2 Y
m?X§||y||§ - EHS - XH%

(A39)
subject to |(X)T¢| <1,5=1,--- ,n.
Let
Cov = QxQ", (A40)
A =Qx'2qQ", (A41)
b= Coviyy, (A42)
y=v24"Th, (A43)
and X = v2A. (Ad4)
We then get the dual problem of Egs. (2) and (6) as
g A2 V2A~Th
max | 4”163 - 5 llg - 513
V3 (A45)
2
subject to || A€o0 < -
By the KKT condition, we further have
V2ATTb = V2A6" (\) + A& (N, (A46)
when A > Amax = [|[V2AV2A77b| o = 2||b|s0, 6% = 0. (A47)
The dual problem Eq. (A45) can be further transferred into
, V2A~Th
mé.m 1€ — fllé,
Y (A48)
2
subject to || A]|oo < -

This problem solves the projection of point ﬁAfJ’A’ onto the convex set {£ : ||A&||oc < %} Denote its solution as £*(\)



for parameter A. It is then easy to verify

RATE VRATR ey - g () - g+ Y2ATE ey o V24 TR,
e ) - eI+ € Ov) — Y2A B ey - Y2A TRy,
2 () - e 00, AL ) sae o) - e g - AT
2(ZATE e, () - VAR
o) - e B + () - VAR ey 2AT,
rate V) - e 00, AT e o) a0 - e e ) - VAT

> [|€*(A") — €*(\)II5.

The last inequality uses the fact that

V2A~Th
N

267 (V) — €7 (X), & (N)

27 (V) — £ (X), —&(\) =0,

V2A~Th
- T> 20,
for convex set {€ : || A&||oo < @} and the projections £*(\'), €*(\") on it. Thus we have

V2A-Th  2A°Th
A\ - \ ||2

17 (A7) =& (N)[l2 < |
Combining Eq. (A46), we then get the result of this theorem.
B.7. Finer Estimation of the Value of err;(6*()\))
We have
|0* (NI CovO* (N") — 6*(\)T Cove* (\)]
= 16*(X")TCovh*(\") — 6*(X)TCovh*(\') — 267 (6*(\") — ()]
= [|A6"(\") — A7"B]5 — || A6 (') — A7TB|3]

)\//2 . )\/2 y
==l W)II5 — - € W)II3I-

Setting \' = Apax, A = A, we can have

7 * * _T3 )\2 %
0 < Cov; —0"(N)" Cov"(\) = [|A™"b5 — (1€ (VI3

_T3 A2 \/5 —-T7 * *
<A Tbll%—;(ll —— A7 Tb|2 + [|€°(A) — £ (Amax)[|2)?
2/[b] e
sy AV . .
<[A Tbll%—;(llzui)|| ATl + (1€ (A) — € (Amax)[12)*.

Taking Eq. (A58) into the above result yields finer estimation to the value of err;(6*(\)) = 6*(\)T Cov@* ().

B.8. Proof to Theorem 3
This is the natural result of Eq. (10).
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(a) Results of MEAL on ImageNet

N 2
IG;;;Z:::::E, is: ‘Savannah
" _ Sparrow’
6;,=0.726 8t = 0159
ip: ‘Baltimore |
Oriole’ I
0 =-0.601 ig: ‘Gray Crowned
iy: ‘bittern’ L . : Rosy Finch’
01{2= 0.678 i3: ‘Brewer 13 Ch= kS
. . S, ’ 7
iy: ‘ostrich’ o aoss IS o
i: ‘born’ 0 =0.857 B {2 i : ‘Baird Sparrow’ i;: ‘Clay Colored
Acc. = 42.0% S Acc. =81.1% -2 7 Sparrow"’
cC. V7 i,: ‘Prairie 7275 6; =0.145
i3: ‘crane’ St / CARY, ;=0.
0;,=0.223 Original Acc. on ‘barn’=42.2 % ) 6;, =-0.169 2 Original Acc. on ‘Baird Sparrow’= 81.7 %
\.

(b) Results of VGG16 on CUB

Figure AS. Neural dependencies in some other scenarios.

C. Experiment Setting

Experiment Setup in Sec. 2. We use the official pretrained models for all the experiments in this section. For ResNets, we
use the official Pytorch pretrained models'. For VIT, we use the official checkpoints provided by Google Research’. For
Swin-T, we use the official pretrained model provided by Microsoft®. For each pair of baseline-ours comparisons in Tabs. 2
to 4, we pick a random list of classes and then fix it in the five independent runs to calculate a mean performance value. Code
and settings to exactly reproduce the results in this paper can be fond in https://github.com/RuiLiFeng/Neural-Dependencies.
Lasso Solver. We use the sklearn.linear_model.Lasso of sklearn [19] package to solve the CovLasso regression in this paper.
max_iter is set to 50,000, alpha is set to 0.25 for Swin-T and 2.5 for the remaining algorithms. All the other hyper-parameters
are set as default.

Training settings of Sec. 3.2. For both ResNet-50 and Swin-T, following the conventional setting, we first perform
intermediate pre-training of a ResNet fhase : R™ — R™! on the n; base categories of ImageNet1K for 90 epochs with
image resolution 224 x224. Then we learn a coefficient matrix ®@ € R™ *"2 by fixing the parameters of fiase and training on
the training set of the new categories for 60 epochs. For ResNet-50, we use SGD with mini-batch size 256 on 8 Nvidia-A100
GPUs. The learning rate starts from 0.1 and is divided by 10 on the 30-th and 60-th epoch, and we use a weight decay of
0.0001 and a momentum of 0.9. For Swin-T, we use AdamW with a mini-batch size of 256 on 8 A100 GPUs. The learning
rate starts from 0.002 and is divided by 10 on the 60-th and 80-th epochs, and we use a weight decay of 0.05.

Training settings of Sec. 3.3. During the fine-tuning process of all backbones, we use an SGD optimizer, in which the
initial learning rate is set to 0.01 for 30 epochs. We use a weight decay of 0.0005 and a momentum of 0.9. The batch size
is set to 256. The loss weight for the regularization term is set to 0.2, and eight NVIDIA Tesla A100 GPUs are used for all
experiments. All datasets adopted in this paper are open to the public.

D. More Results

We provide more examples of neural dependencies, which show that the logits predicted for some categories can be
directly obtained by linearly combining the predictions of a few other categories. The results obtained by a single network
(i.e., ResNet-18, ResNet-50, ViT-S, and Swin-T) are reported in Fig. A6 - Fig. A9, respectively. The results obtained
between two independently-learned networks (i.e., ResNet-18—ResNet-50, ResNet-50—ResNet-18, ResNet-18—Swin-T,
Swin-T—ResNet-18, ResNet-18—ViT-S, ViT-S—ResNet-18, ResNet-50—Swin-T, Swin-T—ResNet-50, ResNet-50— ViT-
S, ViT-S—ResNet-50, ViT-S—Swin-T and ViT-S—Swin-T) are reported in Fig. A10 - Fig. A21, respectively. All the results
are obtained by solving the Lasso problem. In each figure, we report the classification accuracy for category “2’: the accuracy
by calculating logits is reported as ‘acc.’; the original model accuracy is reported as ‘ori. acc.”. Both metrics are measured
in the whole ImageNet validation set. We further report the classification accuracy on positive samples only for both metrics
as ‘pos’ following ‘acc.” and ‘ori. acc.” correspondingly. The results show a neural independence phenomenon for broad
categories in all those deep networks.

Ihttps://github.com/pytorch/examples/tree/main/imagenet
Zhttps://github.com/google-research/vision_transformer
3https://github.com/microsoft/Swin-Transformer
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Ai,=0.438 A,=0.257 Ai;=0.182 A;=0.165 A;;=0.135 A;,=0.060

iz "bucket, pail"
acc.=35.7% (pos: 58.0%)
ori acc.=35.8% (pos: 58.0%)

|
<
L
i: "toilet seat" i1: "toilet tissue" ip: "tray" i3: "plunger” is: " lavabo" is: "shield" is: "puffer” i7: "buckle"
acc.=10.4% (pos: 66.0%) Ai,=0.695 A;,=0.291 A,=0.246 A;,=0.245 A;=0.221 A;;=-0.097 A;,=0.035

ori acc.=10.4% (pos: 66.0%)

"Old English sheepdog, bobtail" i1: "Tibetan terrier" ip: "otterhound" i3: "komondor" i4: "standard poodle" is: "malamute” is: "Border collie" i7z: " Sealyham”
acc.=52.1% (pos: 86.0%) Ai,=0.525 Ai,=0.332 A,=0.326 A, =0.276 Ai;=0.148 A;;=0.086 A;,=0.058

ori acc.=52.1% (pos: 86.0%)

LIl #
,

inscher, monkey pinscher, monkay "®rgbancon griffon"

" i3: "toy poodle" is: "Bouvier des Flandres" is: "Tibetan terrier" ig: "stinkhorn" i7: "bolete"
acc.=50.7% (pos: 80.0%) Ai,=0.726 Ai,=0.539 A,=0.111 A;,=0.022 A;=0.016 Ai;=-0.000 A;,;=-0.000
ori acc.=50.7% (pos: 80.0%)
[ 2 — e ——
o Pirw i yoer favorite towel colrs
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==
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i: "balance beam, beam" i2: " high bar" i3: "maillot" is: "pole” is: "stinkhorn" ie: "toilet tissue" i7: "bolete"
acc.=38.7% (pos: 84.0%) Ai,=0.354 A,=0.223 A;,=0.002 Ai;=-0.000 A;;=0.000 A;;=-0.000

ori acc.=38.8% (pos: 84.0%)

i "lens cap, lens cover" i1z "bottlecap” ip: "reflex camera" i3: "mouse" i4: "CD player" is: " remote" is: "loupe”
acc.=25.5% (pos: 38.0%) Ai,=0.679 Ai,=0.487 A,=0.202 A;,=0.193 A;=0.100 A;;=0.068 A;,=0.067
ori acc.=25.5% (pos: 38.0%)

i: "altar" i ip: "vestment" i3: "throne" is: "brass" is: "organ" is: "monastery” i7: "earthstar"
acc.=39.4% (pos: 64.0%) Ai,=0.579 Ai,=0.334 A,=0.270 A;,=0.163 A;=0.093 A;;=0.020 A;,=0.000
ori acc.=39.4% (pos: 64.0%)

Figure A6. Results from ResNet-18, where ‘acc.” and ‘ori acc.’” denote the classification accuracies on the ImageNet validation set, while

‘pos: xx%’ is the accuracy on positive samples only.



B

i: "dugong, Dugong dugon”
acc.=63.3% (pos: 90.0%)
ori acc.=63.4% (pos: 90.0%)

i2: " hippo" i3: "loggerhead" is: "ice bear" is: " torpedo is: "tiger shark” i7: "piggy bank"
;,=0.342 £,=0.259 \i,=0.242 ;=0.202 \;=0.077 X;,=0.054

8 iy oA | o otk &, e
3, prairie wolf, brush wolf, Canis latrains™ grey wolf" ip: "red fox" is: "hare" is: "wood rabbit" i7: "bighorn”
acc.=54.0% (pos: 68.0%) A,=0.581 A;,=0.298 Ai;=0.134 A;=0.105 A;;=0.084 A;,=0.074

ori acc.=54.0%

(i

pos: 68.0%)

] N/ g [
ibetan terrier, chrysanthemum dog" is: "Lhasa" i2: "briard" is: "giant schnauzer"  is: "miniature schnauzer" ig: "stinkhorn" i7: "bolete"
acc.=59.5% (pos: 72.0%) Ai,=0.684 Ai,=0.401 A, =0.112 A;=0.093 Ai;=-0.000 A;,;=-0.000

ori acc.=59.5% (|

pos: 72.0%)

Ly

B Lok )
is: "king penguin” is: "hyena" ig: "stinkhorn" i7: "bolete"
Ai,=0.084 \,=-0.073 \ig=-0.000 ,=-0.000

i "guenon, guenon monkey" i1: "patas" ip: "titi"
acc.=46.1% (pos: 90.0%) \,=0.646 X,=0.550
ori acc.=46.3% (pos: 90.0%)

# ISy .

¥ 2
| panda, panda, bear cat, cat bear, Ailurus'fliigehs" i2: "red fox"
acc.=45.0% (pos: 94.0%) N,=0.753 X,=0.596
ori acc.=45.0% (pos: 94.0%)

ig: " panda" is: "black stork" is: "toucan” i7: "sorrel"
Ai,=0.262 \,=-0.170 ;=0.056 £,=0.025

orikeet" i4: "toucan" is: " Kakatoe galerita" is: " nautilus"
\i,=0.173 \,=0.159 \;=0.137 £,=0.134

i: "macaw" i1z "African grey" i2: "bee eater"
acc.=68.6% (pos: 92.0%) N,=0.937 X,=0.307
ori acc.=68.6% (pos: 92.0%)

v s

i: "comic book" i1: "book jacket" ip: "slot" i3: "toyshop" is: "jigsaw puzzle" is: "bookshop” ig: "earthstar" i7: "bolete"
acc.=7.3% (pos: 68.0%) Ai,=0.904 A;,=0.321 A,=0.263 A;,=0.202 Ai;=0.049 Ai;=-0.000 A;,;=-0.000
ori acc.=7.3% (pos: 68.0%)

—

—t

: "oystercatcher, oyster catcher"is: "proboscis monkey" i2: "redshank" i3: "albatross" is: "black stork" is: "European gallinule"  ig: "English springer" i7: "stinkhorn"
acc.=63.9% (pos: 94.0%) Ai,=-0.882 Ai,=0.481 A,=0.409 A;,=0.398 A;=0.312 A;;=0.209 A;,=0.000
ori acc.=63.9% (pos: 94.0%)

Figure A7. Results from ResNet-50, where ‘acc.” and ‘ori acc.’” denote the classification accuracies on the ImageNet validation set, while

‘pos: xx%’ is the accuracy on positive samples only.



L
ch butterfly, milkweed butterfly, Danatis: (Seekipipai$" i2: i3: "sulphur butterfly" ig: "swimming trunks" is: "leaf beetle"
acc.=54.7% (pos: 94.0%) N,=0.614 i,=-0. \,=0.360 ,=-0.284 \,=0.245
ori acc.=54.7% (pos: 94.0%)

i7: "ringlet"
\,=0.159

is: "soup bowl" i6: "hornbill" i7: "tabby"
,=0.050

ia: " fitch”
Ai;=0.113 X,=0.086 \i,=-0.083

i: "tiger, Panthera tigris" i1: "tiger cat" ip: "titi"
acc.=57.3% (pos: 96.0%)
ori acc.=57.4% (pos: 96.0%)

i "lorikeet"
acc.=73.8% (pos: 100.0%)
ori acc.=73.8% (pos: 100.0%)

io: " Kakatoe galerita” i3: "macaw" i4: "langur" is: "hummingbird" ig: " linnet" iz "European gallinule"
;,=0.436 £,=0.433 i=-0.288 ;=0.280 N=0.223 £,=0.201

‘ l
i "racket, racquet" i1: "tennis ball" i2: " horn" i3: "spatula” is: "acorn" is: "koala" is: "soap dispenser” i7: "maillot"
acc.=20.5% (pos: 90.0%) Ai=1.101 Ai,=0.307 A,=0.226 A,=-0.183 A;=0.156 Ai;=-0.142 A;,=0.094

ori acc.=20.6% (pos: 90.0%)
A Sl T

is: "rotisseri
\i;=-0.309 \;=0.275 £,=0.225

i "rapeseed" i1: "broccoli"
acc.=2.4% (pos: 98.0%) A,=0.734
ori acc.=2.4% (pos: 98.0%)

1K

i7: "flat-coated retriever"

i "freight car" i: " coach" i3: " roach" is: " Nile crocodile"
acc.=35.3% (pos: 98.0%) Ai,=0.709 Ai,=0.600 A,=0.596 A, =-0.173 A,;=-0.137
4% (pos: 98.0%)

ori ac 5.

log, hyena dog, Cape hunting dog i{-ycastapicapsle" iz: "hyena” i3: "dhole" is: "Brabancon griffon” is: "Loafer" is: "red wolf" i7: "kelpie”
acc.=58.6% (pos: 100.0%) Ai,=0.497 A;,=0.422 A,=0.417 A, =-0.167 A;=-0.153 A;;=0.129 A;,;=0.122
ori acc.=58.6% (pos: 100.0%)

/' A
=

i1: "wing" i2: "space shuttle" i3: "minibus" is: "warplane" is: "Ibizan hound" ig: "nail" i7: "toaster"

iz "airliner"
acc.=48.0% (pos: 98.0%) Ai,=0.662 Ai,=0.248 A,=0.203 A;,=0.193 A;=-0.185 A;;=-0.165 A, =-0.163
ori acc.=48.0% (pos: 98.0%)

Figure A8. Results from ViT-S, where ‘acc.” and ‘ori acc.” denote the classification accuracies on the ImageNet validation set, while ‘pos:
xx%’ is the accuracy on positive samples only.



i: "trilobite" i1: "earthstar" i2: " nautilus" ig: "chiton" is: "mask" ig: " leatherback" i7: "isopod"
acc.=75.4% (pos: 98.0%) i,=-1.596 =1. i,=-1. Ai,=0.617 Ai;=0.579 A;;=0.503 A;,=0.470
ori acc.=75.6% (pos: 98.0%)

. A " LS :
"dogsled, dog sled, dog sleigh” i1: " husky" i2: "English foxhound" i3: " bob" is "Irish wolfhound” is: "kuvasz" ig: "stinkhorn" i7: "bolete”
acc.=37.3% (pos: 92.0%) Ai,=1.199 A,=1.107 Ai;=1.061 A, =0.049 A;=0.000 A;,;=0.000

ori acc.=37.3% (pos: 92.0%)

box turtle, box tortoise" i1: "lacewing” i2: "mud turtle” i3: "coral fungus" is: " leatherback" is: "terrapin” ig: "snail" i7: "bolete"
acc.=78.1% (pos: 90.0%) Ai,;=-1.543 A,=1.003 A;;=0.912 A, =-0.773 \;;=0.257 A;=0.209 A;,=-0.000
ori acc.=78.1% (pos: 90.0%)

i: "hartebeest" i1: "llama" i2: "red fox" i3: "impala" ia: " red setter" is: "whippet" ig: "ltalian greyhound" i7: "gorilla"
acc.=51.7% (pos: 96.0%) Ai,=-1.336 A,=-1.003 Ai,=0.834 A, =-0.542 Ai;=-0.501 \;=-0.476 A,=-0.283

i

ori acc.=51.7% (pos: 96.0%)

i: "slot, one-armed bandit" i1: "joystick" iz: "hard disc" i3: "mosque” is: "caldron" i5: "carton" is: "vending machine” i7: "scoreboard"
acc.=16.6% (pos: 96.0%) A,=1.373 =-1.227 Ai,;=-1.133 A, =-0.824 \;;=-0.698 A;=0.657 A;,=0.501
ori acc.=16.6% (pos: 96.0%)

3, prairie wolf, brush wolf, Canis latrans” puff adder" io: "Great Pyrenees" i3: " grey wolf" i4: "wood rabbit" is: "grey fox" is: "red wolf" i7: "tabby"
acc.=58.4% (pos: 70.0%) Ni,;=-1.437 Ai,=-0.949 A;;=0.384 A, =0.352 A;;=0.348 A;=0.212 A,=-0.167
ori acc.=58.4% (pos: 70.0%)

—

i: "macaw" i1: "junco" i2: "goose" i3: "African grey" ig: "jay" is: "flamingo" is: "bee eater"
acc.=74.0% (pos: 100.0%) Ai,;=-1.820 A, =-1.624 Ai;=1.532 A, =0.745 A;;=0.673 Ai;=0.490
ori acc.=74.0% (pos: 100.0%)

i: "gyromitra" i1: "hen-of-the-woods" i2: " hippo" i3: "Dutch oven" i "safety pin" is: "loupe” ig: "daisy” i7: "curly-coated retriever"
acc.=1.4% (pos: 100.0%) A, =1.799 A,=1.614 A;,;=-0.916 A;,=0.809 A;;=0.736 A;=-0.444 A;,=0.240
ori acc.=1.5% (pos: 100.0%)

Figure A9. Results from Swin-T, where ‘acc.” and ‘ori acc.” denote the classification accuracies on the ImageNet validation set, while ‘pos:
xx%’ is the accuracy on positive samples only.



i: "admiral" is: "monarch”

,=0.105

i2: " bell toad" i3: "lycaenid" is: "proboscis monkey"
£,=0.263 £,=0.246 Ni,=-0.148

acc.=54.3% (pos: 100.0%)
ori acc.=54.3% (pos: 100.0%)

i3: "lakeside" is: "plastic bag" is: "hen-of-the-woods" ig: "porcupine” iz " partridge”
A,=0.246 Ai;=0.183 A;=0.179 A;=0.174 A;,=0.107

echidna, spiny anteater, anteater"
acc.=72.6% (pos: 100.0%)
ori acc.=72.7% (pos: 100.0%)

- ME

traffic light, traffic signal, stoplight" is: " hyena dog" i2: "umbrella” i3: " speaker" is "pole” is: "digital clock" ig: "cab" i7: "nematode’
acc.=7.4% (pos: 88.0%) Ai,=-0.299 A;,=0.277 A,=0.275 A;,=0.271 A;=0.204 Ai;=0.204 A;,;=-0.197
ori acc.=7.4% (pos: 88.0%)

W

log, hyena dog, Cape hunting dogij-ypattersoirstel" i2: "barrow” i3: "hyena" is: "dhole" is: "Gila monster" ig: " alsatian” i7: "kelpie”
acc.=58.1% (pos: 100.0%) Ai,=-0.362 A;,=0.311 A,=0.173 A;,=0.163 Ai;=0.150 A;;=0.145 A;,;=0.144
ori acc.=58.1% (pos: 100.0%)

is: "spider web" is: "zebra"
A,=0.154 A;=0.152

i: "lionfish" i1: "goblet" ip: "coral reef"
acc.=48.1% (pos: 96.0%) N,=0.217 X,=0.203
8.1% (pos: 96.0%)

eybus, trolley coach, trackless trolley"i1: "minibus" ip: " coach" i3: "swab" is: "hartebeest"
acc.=10.9% (pos: 98.0%) \,=0.405 X,=0.206 £,=0.129 N,=-0.129
.9% (pos: 100.0%)

ig: "Polaroid camera" i7: "dome"
Ng=-0.110 ,=0.086

ch butterfly, milkweed butterfly, Danaiys "sledépmus™ i2: "cliff dwelling” i3: "bighorn” " prairie fowl" is: "ear" is: "pot" i7: "ringlet"
acc.=54.1% (pos: 94.0%) Ai,=-0.304 Ai,;=-0.260 A,=-0.258 A;,=0.254 A;=0.254 A;;=0.187 A,;=0.172

ori acc.=54.2% (pos: 96.0%)
- ‘ -

i: "black grouse” i1: "mountain tent" i2: "coucal" i3: " Salamandra salamandra" is: "bassinet" is: "vulture"
acc.=74.7% (pos: 88.0%) Ai,=0.440 A;,=0.223 A,=0.213 A,=-0.169 A;=0.147
ori acc.=74.7% (pos: 90.0%)

Figure A10. Results from ResNet-50—Swin-T, where ‘acc.” and ‘ori acc.” denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i6: " mini"
N,=-0.541

i3 "moped" is: "suit"
=0.602

iz "groom, bridegroom"”
acc.=2.5% (pos: 70.0%)
ori acc.=2.5% (pos: 70.0%)

N,=-0.812 N

i: "freight car" i1: "trolleybus" i2: "padlock” i3: ia: "theater curtain” i7: "electric locomotive"
acc.=31.9% (pos: 98.0%) Ai,=-4.933 \i,=2.452 A,=-2.072 A, =1.918 Ai;=1.782 A;=1.702 A, =1.418
ori acc.=32.2% (pos: 98.0%)

H As
pe, scope, cathode-ray oscilloscope, GRQ@pright" ip: "screen” i3: "crash helmet" is: "maze" is: "lab coat" ig: "desktop computer" i7: "mixing bow!"
acc.=23.3% (pos: 96.0%) Ai,=-4.350 \i,=2.544 A,=-2.452 A, =2.129 A=1.719 Ai;=-1.416 A,;=1.273

ori acc.=23.5% (pos: 96.0%)

i: "zebra" i1: "power drill" i2: "jaguar” i3: "sea urchin" ia: "hartebeest" is: "rhinoceros beetle" i7: " lavabo"
acc.=48.4% (pos: 94.0%) Ai=-3.788 A;,=3.170 Ai,=-2.911 A,=2.305 Ai;=-1.165 Aig=-1.111 A;,=0.809
ori acc.=48.6% (pos: 94.0%)

"lorikeet" i1: " Kakatoe galerita" ip: "koala" i3: "spotted salamander” ig: "quail" is: "fig" is: "magpie"

"damselfly"
8.2% (pos: 100.0%) Ai,=6.604 Ai,=3.038 A,=1.829 A, =-1.417 N=1.227 Ai;=-0.792 A,;=-0.772
4% (pos: 100.0%)

i

i "shoji" i1: "sliding door" iz "football helmet" i3: "consomme" is: " orang" is: "teapot” i7: "viaduct"
acc.=16.2% (pos: 86.0%) Ai=2.021 Ai,;=-1.908 A,=1.660 Ai,=1.638 Ai;=1.586 \i;=-0.965 Ai,;=-0.801
ori acc.=16.3% (pos: 88.0%)
W

" LS iy

i: "overskirt" : "hoopskirt" i2: "pencil box" i3: "wing" is: "swing" is: "stretcher" is: "gown" i7: "carousel"
acc.=23.5% (pos: 24.0%) Ai=1.494 Ai,=-0.816 A,=0.719 A, =-0.627 A;=0.618 A;;=0.605 A;,;=-0.442

ori ac 3.5% (pos: 26.0%)
)
i "black swan, Cygnus atratus” i i>: "great grey owl" i3: "goose"” i4: "junco” is: "Border terrier" ig: "bighorn” i7: "ruddy turnstone"

acc.=67.5% (pos: 94.0%) Ai,=-5.251 Ai,=2.261 A,=2.108 A, =1.917 Ni=-1.474 Ai;=1.434 A, =1.352
ori acc.=67.5% (pos: 98.0%)

LLLLLLL]

Figure A11. Results from Swin-T—ResNet-50, where ‘acc.’ and ‘ori acc.” denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



‘ter opener, paper knife, paperknife”
acc.=25.5% (pos: 0.0%)
ori acc.=25.5% (pos: 16.0%)

i4: "shoe shop" is: "can opener” ig: "hair slide" iz: " Lemur catta”
=0.213 \,=0.193 X;=0.190 N,=-0.178

"bakery, bakeshop, bakehouse" i1 "park bench" i2: "barbell” i3: " market"
acc.=38.8% (pos: 18.0%) A;,=-0.634 Ai,=-0.394 Ai;=0.391
ori acc.=38.9% (pos: 34.0%)

"barn spider, Araneus cavaticus" is: "garden spider" i2: "trilobite” i3: "mantis" is: "pencil box" is: " horn" is: "Brabancon griffon” i7: "muzzle”
acc.=63.7% (pos: 18.0%) A,=0.942 Ai,=0.566 A,=-0.464 A;,=-0.430 A;=0.392 A;;=0.362 A;,=0.328
ori acc.=63.8% (pos: 38.0%)

5: " candy store” is: "orange" i7: "tobacco shop"
A;=0.227 A;;=0.224 A,;=0.215

i "purse” i1: "scale" i2: "washer" 3: "jack-o'-lantern” ig: " nursery" : "pencil box" is: "mailbag” iz: "cannon”
acc.=17.5% (pos: 8.0%) Ai,=0.535 Ai,;=-0.399 A,=0.373 A,=-0.359 )\‘5=0.358 A;;=0.324 A;,;=0.279

ori acc.=17.5% (pos: 30.0%)

i: "poncho” i1: "cloak" i2: "red wolf" i3: "dishrag" is: " press" is: "paper towel"
acc.=18.3% (pos: 40.0%) Ai,=0.474 A;,;=-0.472 A,=0.446 A, =-0.437 A;=0.393

E

ori acc.=18.3% (pos: 62.0%)

i "totem pole” i1 " i2: i3: "kelpie" ia: "forklift" is: "toy poodle" is: "pickelhaube" iz " remote"

acc.=10.2% (pos: 66.0%) Ai,=-0.862 Ai,=0.642 A,=0.642 A;,=0.567 Ai;=-0.563 A;;=-0.507 A,=0.473
ori acc.=10.2% (pos: 88.0%)

i: "doormat, welcome mat" shovel" ip: "prayer rug” 3: "cradle” i4: "upright" is: "bath towel" ig: "tusker" i7: "laptop"
acc.=31.0% (pos: 36.0%) )\., =0.500 Ai,=0.453 )\‘3=-0.436 A;,=0.368 Ai;=0.362 \;;=-0.327 A;,=0.304
ori acc.=31.1% (pos: 60.0%)

: "meerkat, mierkat" : "butternut squash” i2: "mongoose” i3: "Granny Smith" is: "barn" is: "bustard" ig: "racket" i7: "can opener”
acc.=47.3% (pos: 56.0%) Ai,=-0.890 Ai,=0.676 A;,=-0.665 A,=-0.571 Ai;=0.406 \;;=-0.347 A, =0.317
ori acc.=47.3% (pos: 82.0%)

Figure A12. Results from ResNet-50—ResNet-18, where ‘acc.’ and ‘ori acc.” denote the classification accuracies on the ImageNet
validation set, while ‘pos: xx%’ is the accuracy on positive samples only.



i7: "ear"
\,=-0.283

i: "maillot, tank suit" i1: "maillot" i2: "soccer ball" i3: "groom" is: "panpipe” is: "coral fungus"
acc.=27.0% (pos: 26.0%) \,=0.766 ,=0.485 \,=0.388 \,=-0.297
ori acc.=27.0% (pos: 38.0%)
ot

i "gyromitra" i1: "earthstar" i2: "hourglass" i3: " carrier"
acc.=1.6% (pos: 78.0%) N,=0.715 \,=-0.708 N,=-0.494
ori acc.=1.6% (pos: 94.0%)

is: "pickelhaube”
Ng=-0.311 i;=0.306

i "freight car"
acc.=32.1% (pos: 78.0%)
ori acc.=32.2% (pos: 98.0%)

i2: "moped" i3: " sawmill" is: "brass" is: "hard disc" is: "barrow" i7z: " hanky"
Ai,=0.446 A,=0.443 A;,=0.357 A;=0.338 A;;=0.330 A;,=0.303

%\ (
. Do SO k -t 7 Y &
i: "ostrich, Struthio camelus" i1: "poncho" i2: "pickelhaube” i3: "bustard" ia: "hook" is: " dromedary" is: "plunger” iz: "quill"
acc.=74.6% (pos: 78.0%) Ai,=0.968 Ai,=-0.832 A,=0.570 A,=0.516 A;=0.429 Ai;=0.364 A;,=0.359

ori acc.=74.8% (pos: 100.0%)

- - : [ i
= - ¢ s

i "garbage truck, dustcart" i1: "mailbox" i2: "black stork" i3: "potpie" is: " wagon" i7: "pencil sharpener”
acc.=31.7% (pos: 66.0%) Ai,=0.842 Ai,=0.821 A,=-0.639 A;;=0.476 A;,=0.460
ori acc.=31.9% (pos: 96.0%)

i: "slot, one-armed bandit" i1: "white stork" ig: "rifle" i3: "golfcart" is: "armadillo” is: "digital clock" ig: "lemon" i7: "vending machine"
acc.=15.4% (pos: 62.0%) Ai,=-0.853 A;,=0.719 A,=0.669 A,=-0.520 A;=0.513 A;;=0.498 A;,=0.448
ori acc.=15.5% (pos: 94.0%)

i "loupe, jeweler's loupe" iz: "lemon" i3: "ptarmigan” is: "puck” is: " crossword" is: "swimming trunks" i7: "binoculars"
acc.=27.3% (pos: 6.0%) Ai,=-0.558 A;,=0.531 A,=-0.523 A;,=0.420 A;=0.401 A;=-0.314 A;,=0.280
ori acc.=27.3% (pos: 38.0%)

i "mushroom"

i1: "croquet ball" i2: iz " " is: "trolleybus" is: "agaric" i7: "zucchini”
acc.=5.1% (pos: 0.0%) N,=0.493 . Ni;=-0.321 \i;=0.250 \,=0.201
ori acc.=5.1% (pos: 38.0%)

Figure A13. Results from ResNet-18—ResNet-50, where ‘acc.’ and ‘ori acc.” denote the classification accuracies on the ImageNet
validation set, while ‘pos: xx%’ is the accuracy on positive samples only.



ia: "forklift" ia: "wreck” i6: "chest"
Ni,=0.258 X,=0.231 N=0.215 5;=0.198

i7: "wallet"
A;,=0.187

i "freight car" i1: "electric locomotive"
acc.=35.4% (pos: 96.0%) A, =0.467
ori acc.=35.4% (pos: 98.0%)

i "rapeseed"
acc.=2.4% (pos: 94.0%)
ori acc.=2.4% (pos: 98.0%)

i2: "Christmas stocking” i3: "lionfish" i4: "worm fence" is: "coral fungus"” ig: "daisy" i7: "entertainment center"
A;,;=-0.512 A,=-0.510 Ai;=0.420 A;=0.386 A;;=0.271 A;,;=-0.205

pe, scope, cathode-ray oscilloscope, GR®treen" ip: " stoplight” i3: "tape player" is: "tusker” is: "toilet seat" ig: "radio" iz: "binder"
acc.=25.6% (pos: 90.0%) Ai,=0.451 A;,=0.350 A,=0.308 A, =-0.274 Ai;=0.266 Ai;=0.246 A;,;=0.218
ori acc.=25.7% (pos: 98.0%)

4
—1
£ am———
i: "armadillo” i1: "hard disc" ip: " torpedo” i3: " ananas" is: "peacock” is: "snowmobile" is: "mongoose” i7: "albatross"
acc.=51.3% (pos: 82.0%) Ai=-0.784 Ai,=0.496 A,=0.452 A;,=0.363 Ai;=-0.336 A;;=0.314 A,;=-0.278

ori acc.=51.3% (pos: 94.0%)

i "guillotine" i1z "gong” ip: "tub" i3: "hook" is: "sliding door" is: "custard apple” is: "bubble" i7z: " wagon"
acc.=33.8% (pos: 80.0%) Ai,=0.509 A,=0.460 A;,=0.349 A;=0.316 A;;=0.304 A;,;=-0.280
ori acc.=33.9% (pos: 94.0%)

)
/ . 9
i: "maypole” i1: "pole” iz: "Crock Pot" i3: " paling" i4: "colobus" i5: "solar dish" is: " Afghan" i7: "loupe"
acc.=29.0% (pos: 86.0%) Ai,=0.482 A;,=-0.374 A,=0.363 A, =-0.311 A;=0.304 A;;=0.302 A;,=0.196
ori acc.=29.0% (pos: 100.0%)

8 = L ' ;
i: "black grouse” i1: "manhole cover" i2: "magpie” i3: "bagel" i4: "mountain tent" is: "coucal"
acc.=74.7% (pos: 74.0%) Ai,=-0.502 Ai,=0.458 A;,=-0.420 A, =0.375 A;=0.331

4.7% (pos: 88.0%)

i: "tiger cat" i1: "tabby" io: "tiger" i3: is: "umbrella" is: "comic book" ig: " bruin" i7: "beaver"
acc.=58.2% (pos: 0.0%) Ai,=0.476 Ai,=0.369 . A;,=0.250 A;=-0.226 A;;=0.170 A, =0.164
ori acc.=58.2% (pos: 22.0%)

Figure Al14. Results from ResNet-50—ViT-S, where ‘acc.” and ‘ori acc.” denote the classification accuracies on the ImageNet validation

set, while ‘pos: xx%’ is the accuracy on positive samples only.
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= u A T y

lady-slipper, Cypripedium calceolus, Cyptipgaliich parviflosuttypewriter keyboard" i3: " ewer" is: "African elephant” is: "lemon" ig: " off-roader” i7: "rock beauty"
ace.=2.0% (pos: 100.0%) \,=1.663 \,=1.066 £,=0.945 N,=-0.560 X,=0.517 =-0.467 £,=0.439

ori acc.=2.2% (pos: 100.0%)

i: "balloon" i1: "Loafer"
acc.=42.7% (pos: 94.0%) A;,=-0.979
ori acc.=42.8% (pos: 94.0%)

is: "potter's wheel" ig: "koala" i7: "Lakeland terrier"
A;=-0.624 Ai;=-0.561 A;,;=-0.496

£;=0.668

i "zebra"
acc.=48.5% (pos: 90.0%)
ori acc.=48.6% (pos: 94.0%)

i2: "clog” i3: "Welsh springer spaniel” ig: "sarong" is: "soap dispenser" is: "king snake" i7: "puffer"
;,=0.654 Ni,=-0.632 \,;=-0.610 \i=-0.514 4;=0.501 £,=0.455

i "freight car" i1: "hammerhead" io: "potter's wheel" i3: "hyena" is: "theater curtain” is: "sliding door" is: " roach" i7: "rhinoceros beetle"
acc.=32.0% (pos: 94.0%) Ai=-1.251 Ai,;=-1.009 A,=-0.731 A;,=0.698 Ai;=0.663 Ai;=0.652 A;,=0.638

2.2% (pos: 98.0%)
u i
og, ilytzeokpirtusse” ip: "cricket" i3: " Afghan" is: "hyena" ig: "snorkel" i7: "wall clock"
Ai=1.145 Ai,;=-0.749 A,=-0.612 A, =0.577 \i;=-0.474 A;,=0.469

; Mg hs )
echidna, spiny anteater, anteater” i1: "necklace" ip: "porcupine” i3: "panpipe"” is: "sea cucumber" is: "acorn squash” ig: "stole"
acc.=67.3% (pos: 92.0%) Ai,=-1.453 A;,=0.724 A,=-0.644 A;,=0.553 A;=0.510 \i;=-0.468 A;,=0.399

ori acc.=67.4% (pos: 100.0%)

is: "disk brake" is: "European gallinule" is: "jay" 'giant schnauzer"

1g, indigo finch, indigo bird, Passerina oydmeatar" ip: "ashcan" .
A;,=-0.552 Ai;=0.362 \i;=0.353 N,=-0.338

acc.=74.3% (pos: 84.0%) N,=-0.934 X,=0.738
ori acc.=74.3% (pos: 94.0%)

= E—p

1, wagon, estate car, beach waggon, statibca@sgigon, waggon" iz: "minivan” i3: " coach" is: "Saluki" is: "car wheel" is: "hotdog"
acc.=41.3% (pos: 56.0%) Ai,=-0.644 A;,=0.507 A,=0.408 A,=-0.367 A;=0.357 A;;=0.350
ori acc.=41.4% (pos: 70.0%)

Figure A15. Results from ViT-S—ResNet-50, where ‘acc.” and ‘ori acc.’” denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i1: "trolleybus" ip: "coral reef" i3: "fountain"
=-0.295 A;,=0.263 A;,;=0.243

is: "night snake" ig: "miniature schnauzer" i7: "mask"

acc.=48.0% (pos: 96.0%) A;=0.157 Ai;=-0.151 A;,=0.140

8.1% (pos: 96.0%)
=

i7: "fire engine"
,=0.109

eybus, trolley coach, trackless trolley"i: "ashcan” i2: "minibus" i3: "bell cote" ig: " coach"
acc.=10.9% (pos: 100.0%) \,=0.368 £,=0.226 \,=0.168 \,=0.139
ori acc.=10.9% (pos: 100.0%)

!
A 4 L A
ch butterfly, milkweed butterfly, Danausipléxgwpus" i3: "ear" i4: "home theater" is: "trolleybus" ig: "plane” iz: "admiral"
acc.=54.1% (pos: 94.0%) A,=0.334 A,=0.230 A,=-0.212 Ai;=-0.196 Ai;=-0.183 A;,=0.148

ori acc.=54.2% (pos: 96.0%)

‘
i "garbage truck, dustcart" i1: "crane" ip: "consomme" i3: "soccer ball" is: " Salamandra salamandra” is: "puffer" ig: " cask" i7: "tractor"
acc.=34.5% (pos: 94.0%) Ai,=0.318 Ai,=-0.298 A,=0.293 A, =-0.267 A;=-0.223 A;;=0.191 A;,=0.159

ori acc.=34.7% (pos: 96.0%)

i: "zebra" i1: "odometer" i2: "jacamar” i3: "trifle" is: "cheeseburger”
acc.=52.6% (pos: 94.0%) N,=-0.546 \,=-0.180 N,=-0.178 N,=-0.172
ori acc.=52.6% (pos: 98.0%)

is: "hot pot"
Nig=-0.143

i: "bustard" i1: "peacock” ip: " partridge” i3: "crane" is: "water tower" is: "siamang"
acc.=69.5% (pos: 90.0%) Ai,=0.235 Ai,=0.188 A,=0.173 A,=-0.138 Ai;=-0.129 A;;=0.119
ori acc.=69.5% (pos: 96.0%)

i: "lorikeet" i1: "wool" i2: "European gallinule" i3: "espresso"” is: "cabbage butterfly" is: "thresher" ig: " linnet" i7: "robin"
acc.=73.8% (pos: 94.0%) Ai,=0.292 A;,=0.178 A,=-0.173 A,=-0.153 Ai;=-0.148 A;;=0.136 A;,;=0.128
ori acc.=73.8% (pos: 100.0%)

i "flamingo” i1: "trolleybus" i2: " Argiope aurantia" 3: "snowmobile" is: "drake" is: "stove" ig: "vacuum" i
acc.=70.2% (pos: 94.0%) Ai,=-0.378 A;,=-0.357 A,=-0.221 A;,=0.199 A;=-0.174 Ai;=-0.160 A, =-0.149

ori acc.=70.2% (pos: 100.0%)

Figure A16. Results from ResNet-18—Swin-T, where ‘acc.” and ‘ori acc.” denote the classification accuracies on the ImageNet validation

set, while ‘pos: xx%’ is the accuracy on positive samples only.



is: "goldfinch" is: "weevil" is: "mushroom" i7: "axolotl"
A,=2.243 Ai;=2.156 A;=1.973

lady-slipper, Cypripedium calceolus, Gyptipectoiif parviflorum" i:

acc.=2.1% (pos: 100.0%) Ai,=-4.356

ori acc.=2.2% (pos: 100.0%)
T o R

=-1.951 A,;=1.301

|
-

i3: "quail” i4: "baboon" is: "axolotl" is: "green lizard" i7: "cauliflower"
N,=1.524 N=1.195 Ng=1.082 Ni;=-0.822 X;,=0.646

i: "hamster" i1: "broccoli"
acc.=44.5% (pos: 100.0%) A, =3.481
ori acc.=44.7% (pos: 100.0%)

W
= ‘
| B A
pe, scope, cathode-ray oscilloscope, GR®bnnet" i2: "screen” i3: "upright" i4: "crash helmet" is: " site" i: "ski mask" i7: "laptop”
acc.=21.2% (pos: 92.0%) Ai=-3.292 Ai,=3.184 A,=-2.183 A, =-2.107 Ai;=-1.310 Ai;=-1.271 Ai,;=-1.239

ori acc.=21.3% (pos: 92.0%)

ch butterfly, milkweed butterfly, Danaiys ilekigpos" i2: "paddlewheel” i3: "ringlet" is: "barn spider” is: "mobile home" ig: " ring snake" iz: "sulphur butterfly"
acc.=45.4% (pos: 94.0%) Ai,=3.789 Ai,=-2.883 \,=2.495 Ai,=-2.484 Ai;=-1.786 Ai;=-1.559 Ai,=1.485
ori acc.=45.5% (pos: 94.0%)
g

| panda, panda, bear cat, cat bear, Ailirushovgen’s" i2: "capuchin” i4: "car mirror" is: "balloon" is: " yellow lady-slipper" i7z: " panda"
acc.=40.6% (pos: 92.0%) Ai=4.761 Ai,;=-3.230 A,=3.134 A,=2.563 \i;=-2.459 Ai;=-1.289 A,;=1.219
ori acc.=40.8% (pos: 94.0%)

k o LA s
fire salamander, Salamandra salairahsaér snake" iz: "common newt" ‘whiptail" is: " yellow lady-slipper" ig: "spotted salamander” i7: " worm snake"
acc.=66.7% (pos: 98.0%) Ai=-2.323 Ai,;=2.161 Ai,=-1.943 A, =1.417 =1. A;;=0.980 A;,;=-0.892
6.8% (pos: 96.0%)
'-.' =

: "rapeseed" i2: "Appenzeller” i3: "broccoli" is: "bell pepper" is: "pier" is: "green mamba"
acc.=2.3% (pos: 94.0%) Ai,=-5.102 Ai,=4.253 A;,=3.952 \i,=-2.466 Ai;=-2.308 Ai;=1.872
ori acc.=2.4% (pos: 96.0%)

t L3
iz: " ai" is: "dhole" is: "hyena" ig: " fitch" i7: "spider monkey"

A,=2.552 A;,=2.079 AN=1.714 A;;=0.948 A;,=0.868

log, hyena dog, Cape hunting dog, Lytadgepisars"
acc.=48.6% (pos: 98.0%) A, =3.394
ori acc.=49.0% (pos: 100.0%)

Figure A17. Results from Swin-T—ResNet-18, where ‘acc.’ and ‘ori acc.” denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i "dhole, Cuon alpinus" i1 io: "cabbage butterfly" i3: "sorrel" i7: "tape player"
acc.=58.7% (pos: 80.0%) =0.l \,=-0.488 A;,=0.362 . A;,;=0.337 \;;=0.288 Ai,=0.242
ori acc.=58.7% (pos: 94.0%)

is: "space shuttle" i7: "kit fox"
Nig=-0.289 \,=-0.253

1g, indigo finch, indigo bird, Passerina aydheafer"
acc.=79.8% (pos: 80.0%) A, =-0.736
ori acc.=80.0% (pos: 98.0%)

i3: "hartebeest" is: "cheeseburger”
\,=-0.563 \,=-0.373

e

L

T WL
i: "Brabancon griffon" ip: "Dandie Dinmont" i3: "slide rule" is: "water jug" led lizard" is: "Border terrier"
acc.=59.6% (pos: 72.0%) A;,=0.378 A,=-0.371 Ai;=0.355 Ai;=-0.306 Ai;=0.294
ori acc.=59.6% (pos: 92.0%)
r T :
F r
. ‘ |
i "rapeseed" itz " paling" i2: "espresso maker" i3: "tripod" ig: "altar" is: "pot" is: "cheeseburger” i7: "barrow"
acc.=2.4% (pos: 76.0%) Ai,=0.500 Ai,=-0.403 A,=0.270 A,=-0.268 Ai;=0.264 Ai;=-0.259 A;;=0.253

ori acc.=2.4% (pos: 98.0%)

i: "water tower" i1: "king penguin” i2: "boathouse" i3: "mushroom" ig: " chute" is: " bell toad" ig: "yurt" i7: "viaduct"
acc.=9.0% (pos: 70.0%) Ai,;=-0.496 Ai,=0.388 A,=0.324 A,=0.318 Ai;=-0.300 A;;=0.250 A;,=0.205

ori acc.=9.0% (pos: 94.0%)

e ® . : )
i: "piggy bank, penny bank" ip: "vase" i3: "umbrella" is: "triceratops” is: "jacamar" is: "gibbon"
acc.=23.1% (pos: 70.0%) Ai,=0.388 A,=0.370 A;,=0.303 Ai;=-0.241 A;;=-0.232

ori acc.=23.2% (pos: 96.0%)

R —

‘rousel, merry-go-round, roundabout Wodigiggauty" i2: "ringlet" i3: "crutch" ig: " nursery" is: "hartebeest" is: "honeycomb" i7: "book jacket"
acc.=42.1% (pos: 72.0%) Ai,=-0.509 Ai,;=-0.440 A,=0.411 A;,=0.365 Ai;=-0.354 A;;=0.295 A;,;=0.241

ori acc.=42.3% (pos: 100.0%)

i7: "stingray"
\,=0.190

i: "maillot"
acc.=29.6% (pos: 0.0%)
ori acc.=29.5% (pos: 28.0%)

i4: "tank suit" i5: "airliner"
A, =0.277 A;=-0.235

i2: "pickelhaube”
N,=-0.299

Figure A18. Results from ResNet-50—ViT-S, where ‘acc.” and ‘ori acc.’” denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



[

is: " man-eater"
N=-0.777

lady-slipper, Cypripedium calceolus, Gypgigiédiime"parviflorign"sulphur butterfly" i3: "stopwatch" i "ice cream"
acc.=2.1% (pos: 100.0%) N=-1.241 N,=1.217 N,=1.058
ori acc.=2.2% (pos: 100.0%)

i "lotion" i1: "wolf spider" ip: "otterhound" i3: "sunscreen"
acc.=24.8% (pos: 58.0%) N,=1.181 N,=-1.138 N,=0.718
ori acc.=24.9% (pos: 52.0%)

is: "hair spray" is: "whiskey jug" i7: "ice cream"
;=0.397 \i;=0.324 £,=0.312

||||||[1" |

i: "cradle" i1: "bassinet" i2: "langur" i3: "radiator" is: "golf ball" is: "African grey" is: " paling" i7: "cowboy hat"
acc.=32.5% (pos: 36.0%) Ai,=0.756 Ai,=-0.693 A,=0.650 Ai,=-0.545 Ai;=-0.488 A;;=0.450 A;,;=-0.439

ori acc.=32.6% (pos: 26.0%)
m B |
s W

=1
i: "ladle” i1: "wooden spoon" ip: "strainer" i3: "honeycomb" is: " horn" is: "stethoscope” ig: "skunk" i7: "football helmet"
acc.=25.7% (pos: 6.0%) Ai,=0.629 Ai,=0.401 A,=0.321 A;,=0.309 Ai;=-0.292 A;;=-0.279 A;,;=-0.250

ori acc.=25.7% (pos: 20.0%)

i: "CD player" i1: "cassette player" i2: "toilet seat" i3: "radio” ia: is: "library" ig: "pay-phone" i7z: " punch bag"
acc.=34.3% (pos: 56.0%) Ai,=0.784 Ai,=0.636 A,=0.531 A;,=0.369 Ai;=-0.343 A;;=0.338 A,;=-0.312
ori acc.=34.4% (pos: 40.0%)

L3 e

i: "fig" i1: "Ibizan hound" i2: "nail" i3: "schipperke" i "plastic bag" is: "red fox" ig: "zucchini" i7: " bell toad"
acc.=4.4% (pos: 64.0%) Ai=-1.253 Ai,=-0.999 Ai,=-0.946 A;,=0.607 A;=-0.523 \;;=0.487 A;,=0.399
ori acc.=4.4% (pos: 82.0%)

=
s =
i N 5 g & i s
ch butterfly, milk d butterfly, Danausiplékipgus” i2: " man-eater" i3: " snoek" is: " off-roader" i5: "minivan" is: "typewriter keyboard" i7: "iron"
acc.=45.5% (pos: 76.0%) Ai,=0.988 Ai,;=-0.728 Ai,=-0.721 A, =-0.711 A;=-0.672 A;;=0.492 A;,;=-0.429

ori acc.=45.5% (pos: 94.0%)

i "chime, bell, gong" i1z " horn" i2: "tile roof" i3: "gong” is: "photocopier”
acc.=33.9% (pos: 36.0%) Ai,=0.539 A;,;=-0.492 A,=0.480 Ai,=-0.465
ori acc.=33.9% (pos: 54.0%)

is: "shopping basket" i7: "bell cote"
Ai;=-0.426 A, =0.420

Figure A19. Results from ViT-S—ResNet-18, where ‘acc.” and ‘ori acc.’” denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i "rapeseed" i1: "lemon"” i3: "sorrel" ia: is: "Appenzeller” is: "white stork" i7: "pot"
acc.=2.4% (pos: 98.0%) N,=4.271 ,=-3. W=l N,=1.097 X;=0.611 \,=-0.560
ori acc.=2.4% (pos: 98.0%)

o Sount Taat R

g n
pe, scope, cathode-ray oscilloscope, GRBtreen" i2: "upright" i3: "beaker" is: "maze" is: "mixing bow!" iz "home theater"
acc.=25.6% (pos: 98.0%) A, =2.562 Ai,=-1.631 A,=0.875 A,;=0.778 Ai;=0.669 A;;=0.585 Ai,;=-0.584

ori acc.=25.7% (pos: 98.0%)
s =™

W - e . -
almatian, coach dog, carriage dogf: "wooden spoon" iz "Bernese mountain dog" i3: "kuvasz" is: "tiger" is: "Great Dane" is: "banana” i7: "sombrero”
acc.=60.6% (pos: 96.0%) \i=1.475 Ai,=1.356 Ai,=1.191 A, =-0.777 Ai;=0.665 A;;=0.557 A;,=0.492

ori acc.=60.6% (pos: 96.0%)

i "ox"
acc.=52.7% (pos: 66.0%)
ori acc.=52.8% (pos: 66.0%)

1 g

ip: "oxcart" ig: "titi" is: "Indian elephant" is: " water ox"
N,=1.352 N,=-0.934 \,=0.878 Ni,=-0.588 \i;=0.426

echidna, spiny anteater, anteater"  is: "platypus” i2: "banded gecko"
acc.=72.5% (pos: 100.0%) N,=3.610 N,=-2.133
ori acc.=72.7% (pos: 100.0%)

is: "porcupine” is: "box turtle"
Ai,=1.563 Ai;=0.920

i1: "amphibian" i: " snoek" i3: "African elephant” is: "weasel" i5: "skunk" is: "toy poodle” i7: "Persian cat"
Ai=-4.976 Ai,;=-1.895 A,=-1.728 A,=1.303 A;=0.919 A;;=0.871 A;,;=-0.812

oreasted merganser, Mergus serratorf;: "crayfish' ip: "ostrich" i3: "little blue heron" is: "peacock” is: " mud hen" is: "oystercatcher" i7: "magpie”
acc.=72.2% (pos: 96.0%) Ai,=5.389 N,=2.791 A,=-2.044 Ai=-1.414 A;=1.225 A;;=0.604 A, =-0.474
ori acc.=73.0% (pos: 96.0%)

i "freight car" i1: "trolleybus" i2: "sliding door" i3: " dial phone" is: "padlock” i ig: "crash helmet" i7: "electric locomotive'
acc.=35.3% (pos: 98.0%) Ai,=-2.660 Ai,=1.583 Ai,=-1.136 A;,=0.947 A;=-0.718 Ai;=-0.619 A, =0.495
ori acc.=35.4% (pos: 98.0%)

Figure A20. Results from Swin-T— ViT-S, where ‘acc.’” and ‘ori acc.” denote the classification accuracies on the ImageNet validation set,
while ‘pos: xx%’ is the accuracy on positive samples only.



iz "trilobite" i1: "mask" ip: "chiton" i3: "Gila monster" is: "radiator" is: "buckle" ig: " cerastes" i7: " rubber"

acc.=75.6% (pos: 98.0%) A,=0.371 A;,=0.327 A,=0.260 Ai;=0.142 A;;=0.109 A;,=0.084
ori acc.=75.6% (pos: 98.0%)
iger beetle” i1: "throne" io: "leaf beetle" i3: "ground beetle" is "moving van" is: "bathing cap" i7: "whiptail"
acc.=56.1% (pos: 94.0%) A,=-0.321 Ai,=0.269 A,=0.261 Ai;=-0.238 A;=-0.185 A;,=0.077

ori acc.=56.1% (pos: 94.0%)

i: "hartebeest" i i2: "espresso maker" i3 "ox" is: "black grouse"  is: "Bernese mountain dog" is: "bathing cap" i7: "bannister"
acc.=51.7% (pos: 96.0%) i,=0. Ai,;=-0.310 A,=0.175 A, =0.167 A;=-0.157 A;;=-0.153 A,;=0.111
ori acc.=51.7% (pos: 96.0%)

-

L g ; 4 .. :
i: "macaw" i1: " Kakatoe galerita" i2: "African grey" i3: "lorikeet" is: "hornbill" is: "ear" ig: "tractor" iz: "pill bottle"
acc.=73.9% (pos: 100.0%) Ai,=0.404 Ai,=0.267 A,=0.210 A;,=0.190 A;=0.153 A;;=-0.073 A;,=0.039

ori acc.=74.0% (pos: 100.0%)

i "gyromitra" i1: "hen-of-the-woods" i3: "mushroom" i4: "bloodhound" is: "stinkhorn'’ is: "weasel" i7: "groenendael”
acc.=1.4% (pos: 100.0%) Ai=0.427 Ai,;=-0.284 A,=0.179 A, =0.126 A;=0.119 A;;=0.092 A;,;=-0.087
ori acc.=1.5% (pos: 100.0%)

i3: "patas” is: "tabby" is: "hornbill" ig: "clumber’ i7: "wooden spoon”

N=0.147 3,=0.116 N;=-0.094 £,=0.063 N,=-0.054

i: "tiger, Panthera tigris" i1: "tiger cat"
acc.=56.8% (pos: 96.0%) A, =0.594
ori acc.=56.8% (pos: 96.0%)

i

i: "balance beam, beam" i1: "hook" i2: "unicycle” i3: "stretcher"
acc.=46.5% (pos: 92.0%) N,=0.281 X,=0.265 \,=0.254
ori acc.=46.5% (pos: 94.0%)

i6: "maillot" i7: "dumbbell”
4,=0.178 A,=0.101

i "clumber, clumber spaniel" i1z "Sussex spaniel" iz "English setter" i3: "crash helmet" is: "miniature pinscher"  is: "Great Pyrenees" ig: "bikini" i7: "Ibizan hound"
acc.=62.9% (pos: 92.0%) Ai,=0.356 A;,=0.291 A,=0.288 Ai,=-0.194 A;=0.142 A;;=-0.133 A, =0.071
ori acc.=62.9% (pos: 94.0%)

Figure A21. Results from ViT-S—Swin-T, where ‘acc.” and ‘ori acc.” denote the classification accuracies on the ImageNet validation set,
while ‘pos: xx%’ is the accuracy on positive samples only.



