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Figure 1. Illustration of neural dependencies that emerge (a) within a single network and (b) between two independently learned
networks. Taking the intra-network dependency as an instance, the logits predicted for the category “macaw” can be safely replaced by a
linear combination of the logits predicted for a few other categories, barely scarifying the accuracy.

Abstract

This work presents two astonishing findings on neural
networks learned for large-scale image classification. 1)
Given a well-trained model, the logits predicted for some
category can be directly obtained by linearly combining
the predictions of a few other categories, which we call
neural dependency. 2) Neural dependencies exist not only
within a single model, but even between two independently
learned models, regardless of their architectures. Towards
a theoretical analysis of such phenomena, we demon-
strate that identifying neural dependencies is equivalent
to solving the Covariance Lasso (CovLasso) regression
problem proposed in this paper. Through investigating
the properties of the problem solution, we confirm that
neural dependency is guaranteed by a redundant logit
covariance matrix, which condition is easily met given
massive categories, and that neural dependency is highly
sparse, implying that one category correlates to only a few
others. We further empirically show the potential of neural
dependencies in understanding internal data correlations,
generalizing models to unseen categories, and improving

model robustness with a dependency-derived regularizer.
Code to reproduce the results in this paper is available at
https://github.com/RuiLiFeng/Neural-Dependencies.

1. Introduction
Despite the tremendous success of deep neural networks

in recognizing massive categories of objects [8–10, 12, 14–
16, 24, 28, 30], how they manage to organize and relate dif-
ferent categories remains less explored. A proper analysis
of such a problem is beneficial to understanding the network
behavior, which further facilitates better utilization of this
powerful tool.

In this work, we reveal that a deep model tends to
make its own way of data exploration, which sometimes
contrasts sharply with human consciousness. We reveal
some underlying connections between the predictions from
a well-learned image classification model, which appears
as one category highly depending on a few others. In
the example given in Fig. 1a, we can directly replace the
logits predicted for “macaw” with a linear combination
of the logits for “ostrich”, “bittern”, etc. (without tuning



the network parameters) and achieve similar performance.
We call this phenomenon as neural dependency, which
automatically emerges from learning massive categories.
A more surprising finding is that neural dependencies
exist not only within a single model, but also between
two independently learned models, as shown in Fig. 1b.
It is noteworthy that these two models can even have
different architectures (e.g., one with convolutional neural
network [12] and the other with transformer [10, 16]) and
different training strategies.

Towards figuring out what brings neural dependencies
and whether they happen accidentally, we make a the-
oretical investigation and confirm that identifying neural
dependencies is equivalent to solving a carefully designed
convex optimization—the Covariance Lasso (CovLasso)
regression problem proposed in this paper. Such a problem
owns a smooth solution path when varying its hyper-
parameters [22], which has two appealing properties. First,
the solution is guaranteed by a redundant covariance matrix
of the category-wise logits. This condition is easily met
when the model is trained on a sufficiently large number
of categories [11]. Second, the solution admits elegant
sparsity. It implies that a category involved in neural
dependencies only relates to several instead of numerous
other categories.

We further study the potential utilities of neural depen-
dencies, as a support to our theoretical contributions. One
straightforward application is to help interpret the internal
data correlations, such as what categories are more likely
to link to each other (Sec. 3.1). Another application is to
investigate how we can generalize a well-learned model
to unseen categories with the help of neural dependencies
(Sec. 3.2). We also propose a regularizer to test whether dis-
couraging the neural dependencies could assist the model in
learning a more robust representation (Sec. 3.3). We believe
the findings in this paper would deepen our understanding
of the working mechanism of deep neural networks, and
also shed light on some common rules in knowledge learn-
ing with visual intelligence systems.

2. Neural Dependencies
We consider the n-category classification neural network

f : Rm → Rn, which takes an input image x ∈ Rm and
outputs the logits vector of x being any of the n-categories
of the task. We assume the network is well-trained and
produce meaningful outputs for each category. Naively,
each element of the logits vector reports the confidence of
the network predicting x belonging to the corresponding
category. We are curious about whether those confidences
can be used to predict each other. Before we start, we
formally introduce the key concept of neural dependency
in this work.

Definition 1 We say the target category ci and categories
{cij}kj=1 have neural dependency, if and only if for almost
every x ∼ pdata, there are 0 < ϵ, δ ≪ 1 and a few constant
non-zero coefficients {θij}kj=1, i ̸= ij ∈ [n], k ≪ n, such
that

Pr(|f(x)i −
k∑

j=1

θijf(x)ij | < ϵ) > 1− δ. (1)

Remark 1 We do not normalize nor centralize the logits
output f(x) so that no information is added or removed
for logits of each category. Different from usual linear
dependency system (where y = Ax + b), we omit bias
in the neural dependency, i.e., we require b = 0 if
f(x)i ≈

∑k
j=1 θijf(x)ij + b. Thus the existence of neural

dependencies suggests that the network believes category ci
is nearly purely decided by categories ci1 , · · · , cik without
its own unique information.

What Does It Means? The neural dependency means that
a linear combination of a few categories is in fact another
category. It is natural to believe that those categories should
admit certain intrinsic correlations. However, for an idea
classifier, each category should hold a unique piece of
information thus they should not be purely decided by other
categories. What’s more, we will find that some neural
dependencies are also not that understandable for humans.
Overall, the neural dependencies reveal a rather strong
intrinsic connection of hidden units of neural networks, and
are potentially interesting for understanding the generality
and robustness of networks.

Between Network Dependencies. We can also solve and
analyze the between network neural dependencies through
the above methodology for two different neural networks
f, g trained on the same dataset independently. Here we
want to find a few constant non-zero coefficients {θij}kj=1

such that Pr(|g(x)i −
∑k

j=1 θijf(x)ij | < ϵ) > 1 − δ. To
find those coefficients, we only need to use the i-th row of
g(x) to replace f(x)i in Eq. (2). The concepts of within and
between network dependencies are also illustrated in Fig. 1.

Notations. We use bold characters to denote vectors and
matrix, under-subscript to denote their rows and upper-
subscript to denote their columns. For example, for a matrix
µ, µB

A denote the sub-matrix of µ consists of the elements
with row indexes in set A and column indexes in set B;
for a vector θ, we use θi to denote its i-th row which is a
scalar. For a function f : Rm → Rn, f(x)i denote the i-
th row of vector f(x), while fi(x) is some other function
that connected with sub-script i. For an integer n ∈ N, we
use [n] to denote the set {1, · · · , n}. We always assume
that matrices have full rank unless specifically mentioned;
low-rank matrices are represented as full rank matrices with
many tiny singular values (or eigenvalues for symmetry
low-rank matrices).



Experiments Setup in This Section. In this section
we reveal the neural dependencies empirically among
some most popular neural networks, i.e., ResNet-18,
ResNet-50 [12], Swin-Transformer [16], and Vision-
Transformer [10]. As a benchmark for massive category
classification, we use ImageNet-1k [9], which includes
examples ranging from 1,000 diverse categories, as the
default dataset. Training details of those networks, and
other necessary hyper-parameters to reproduce the results
in this paper can be found in the Appendix.

2.1. Identifying Neural Dependencies through Co-
variance Lasso

We propose the Covariance Lasso (CovLasso) problem
which will help us identify the neural dependencies in the
network and play an essential role in this paper:

min
θ∈Rn,θi=−1

Ex∼pdata
[∥θT f(x)∥22] + λ∥θ∥1. (2)

Let θ∗(λ) be the solution of Eq. (2) given hyper-parameter
λ > 0, we can have the following observations

1. θ∗(λ) will be a sparse n-dimensional vector, meaning
many of its elements will be zero, due to the property
of ℓ1 penalty [21];

2. the prediction error |fi(x)−
∑s

k=1 θ
∗(λ)ikfik(x)| =

∥θ∗T (λ)f(x)∥22 will be very small for most x ∼ pdata,
due to the property of minimization of expectation.

Combining these two observations, it is easy to find out
the solution of Eq. (2) naturally induces the linear neural
dependencies in Definition 1. Rigorously, by Markov
inequality, if Ex∼pdata

[∥θT f(x)∥22] ≤ ϵδ, we have

Pr(|f(x)i −
∑
j ̸=i

θjf(x)j | < ϵ)

=1− Pr(|f(x)i −
∑
j ̸=i

θjf(x)j | ≥ ϵ)

≥1− Ex∼pdata
[∥θT f(x)∥22]
ϵ

≥ 1− δ,

(3)

so we can have the following theorem.

Theorem 1 The solution to Eq. (2) satisfies Definition 1 for
some small ϵ and δ and appropriate λ.

The CovLasso problem is a convex problem; we can effi-
ciently solve it by various methods like coordinate descent
or subgradient descent [4]. Finding the neural dependencies
for some category ci is now transferring into solving the
CovLasso problem under the constraint θi = −1.

Results. Fig. 2 reports some results of both within and
between network neural dependencies acquired by solving
Eq. (2). In the center we report the target category and
in the surroundings we enumerate those categories that

emerge neural dependencies with it. We show more
results in the Appendix. For the cases in Fig. 2, Tab. 1
further reports the absolute and relative errors of predicting
the logits of target categories using formula f(x)i ≈∑s

k=1 θikf(x)ik , and the corresponding classification
accuracy on this category (using the replaced logits
(f(x)1, · · · , f(x)i−1,

∑
j ̸=i θjf(x)j , f(x)i+1, · · · , f(x)n)T

instead of f(x)), tested both on positive samples only and
the full validation set of ImageNet. We can find that, as
claimed by Definition 1, a small number of other categories
(3 or 4 in the illustrated cases) are enough to accurately
predict the network output for the target category.
Moreover, the predictions are all linear combinations:
for example, Fig. 2f tells that for almost every image
x ∼ pdata, we have

R50(x)hamster ≈ 3.395× S(x)broccoli

+ 3.395× S(x)guineapig + 3.395× S(x)corn,
(4)

where R50 denotes the ResNet-50 and S denotes the Swin-
Transformer. We can achieve comparable classification
performance if using the above linear combination to re-
place the logits output for category ‘hamster’ of ResNet-
50. For both single models and two independently trained
models with different architectures, we can observe clear
neural dependencies. Future work may further investigate
connections and differences in neural dependencies from
different networks.

Peculiar Neural Dependencies. As we have mentioned
before, the solved neural dependencies are not all that
understandable for humans. Fig. 2 actually picks up a few
peculiar neural dependencies for both within and between
network dependencies. For example, the dependencies
between ‘jellyfish’ and ‘spot’ in Fig. 2a, ‘egretta albus’ and
‘ostrich’ in Fig. 2b, ‘basketball’ and ‘unicycle’ in Fig. 2c,
‘komondor’ and ‘swab’ in Fig. 2d, ‘bustard’ and ‘bittern’
in Fig. 2e, and ‘hamster’ and ‘brocoli’ in Fig. 2f. This
reveals the unique way of understanding image data of
neural networks compared with human intelligence that has
been unclear in the past [20, 31]. Further investigating
those cases can be of general interests to future works in AI
interpretability and learning theory, and potentially provide
a new way to dig intrinsic information in image data.

2.2. What Brings Dependencies

After identifying the neural dependencies in deep net-
works, we are curious about why this intriguing phe-
nomenon can broadly exist in different architectures. So we
need a further understanding of the sources of it, which can
be discovered through a careful analysis on Eq. (2). This
section will reveal how a redundant covariance matrix for
the terminal representations induces neural dependencies.
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Figure 2. Neural dependencies in popular multi-class classification networks. (a;b;c) Within-network neural dependencies in
ResNet18, ResNet50, Swin-Transformer and VIT-Transformer; (e;f) Between-network neural dependencies between ResNet50 and Swin-
Transformer. Much more results can be found in Appendix.

Table 1. Prediction error and classification accuracy of neural dependencies in cases in Fig. 2. Both the error of logits prediction and the
loss in classification accuracy are tiny. Much more results can be found in Appendix.

Metrics ResNet-18 ResNet-50 Swin-T VIT-S R-50 → Swin-T Swin-T → R-50

Abs Err 2.568 1.063 0.926 4.276 1.776 3.939

Rel Err (%) 18.7 6.8 10.4 29.7 20.7 21.1

Acc (Ori. Acc) 60.9 (61.0) 64.9 (64.9) 40.1 (40.1) 45.9 (45.9) 69.5 (69.5) 49.0 (49.2)

Pos Acc (Ori. Pos Acc) 72.0 (84.0) 92.0 (92.0) 94.0 (92.0) 96.0 (100.0) 94.0 (96.0) 94.0 (100.0)



Observe that Ex∼pdata
[∥θT f(x)∥22] = θTCovθ, where

Cov = Ex∼pdata
[f(x)f(x)T ] is the (uncerntralized and

unnormalized) covariance matrix of the terminal repre-
sentations. Let erri(θ) = θTCovθ be the predicting
error of using coefficient θ for category ci, the property
of Lasso regression indicates that (see proof in Appendix)
erri(θ

∗(λ)) is continuous about λ and
det[Cov]

det[Cov
[n]\i
[n]\i]

= erri(θ
∗(0)

≤ erri(θ
∗(λ)) ≤ erri(θ

∗(λ′))

≤ erri(θ
∗(λmax)) = Covii,

(5)

where λ ≤ λ′, and λmax = 2∥Covi[n]\i∥∞ is the
supremum of valid hyper-parameter λ, i.e., θ∗(λ) =
−ei = (0, · · · , 0︸ ︷︷ ︸

i−1

,−1, 0, · · · , 0),∀λ ≥ λmax, and θ∗(λ) ̸=

−ei,∀0 ≤ λ < λmax.
Regardless of the sparsity, to yield neural dependency for

the target category ci, we expect a very small erri(θ∗(λ)).
So if the lower bound erri(θ

∗(0)) is already far larger
than ϵδ, the predicting error can be too large to yield
neural dependencies. Reversely, using the continuity of
erri(θ

∗(λ)) about λ, we can know that if the lower bound
erri(θ

∗(0)) is very small, then there should be a small
λ such that erri(θ∗(λ)) is also very small. Eq. (2) can
then bring neural dependencies to category ci. (This need
to exclude a trivial case where the predicting error upper
bound Covii = Ex∼pdata

[f(x)2i ] is already very small as
it does not reveal any meaningful dependencies but that
the network may be very unconfident about category ci.
While this is rare for well-trained networks, we leave the
discussion of this case in Appendix.)

So to have neural dependencies, we require the term
erri(θ

∗(0)) to be as small as possible. For term
erri(θ

∗(0)) we can have the following observations from
two different perspectives (see Appendix for deduction):

1. Information Volume: erri(θ
∗(0)) = det[Cov]

det[Cov
[n]\i
[n]\i]

=

Vol(Cov)

Vol(Cov
[n]\i
[n]\i)

measures the ratio between the n-

dimensional volumes of the parallelotope Cov and the
n − 1 dimensional volumes of Cov removing the i-th
row and i-th column; if assume Gaussian distributions
of random variable f(x),x ∼ pdata, they are also
the normalizing constants of the probability density
of the terminal representations with and without the
i-th category; this term measures the information loss
while removing the i-th category and is small if the i-
th row and i-th column of Cov carry little information
and are redundant;

2. Geometry: erri(θ
∗(0)) = det[Cov]

det[Cov
[n]\i
[n]\i]

=

(
∑n

j=1

α2
j

σ2
j
)−1 which will be small if some

αj corresponding to tiny σ2
j is large, where

σ2
1 ≥ · · · ≥ σ2

n are the eigenvalues of Cov and
q1, · · · , qn are the corresponding eigenvectors,
αj = ⟨ei, qj⟩, j ∈ [n]; this further means that the
i-th coordinate axis is close to the null space (linear
subspace spanned by eigenvectors corresponding to
tiny eigenvalues) of the covariance matrix Cov, which
suggests the i-th category is redundant geometrically.

Let det[Cov]

det[Cov
[n]\i
[n]\i]

be the metric for redundancy of category

ci, both perspectives lead to the same conclusion that:

Redundancy of the target category ci in the terminal
representations brings it neural dependencies.

Remark 2 Unfortunately, though it can help us understand
the intrinsic mechanism that brings neural dependencies,
this principle is only intuitive in practice—we cannot accu-
rately calculate the value det[Cov]

det[Cov
[n]\i
[n]\i]

in most cases due to

numerical instability. det[Cov[n]\i[n]\i] tends to have some tiny
singular values (smaller than 1e− 3), making the quotient
operation extremely sensitive to minor numerical errors in
computation, and thus often induces NaN results.

2.3. What Brings Sparsity

The last section omits the discussion of sparsity, which
we want to study carefully in this section. We want to find a
value that estimates whether two categories have neural de-
pendencies, which we will show later is the (uncerntralized)
covariance between the logits for two different categories.

The sparsity property, i.e., whether category cj is in-
volved in the neural dependencies with ci, can be identified
by the KKT condition of Eq. (2). Let ˆCov = Cov

[n]\i
[n]\i,

θ̂ = θ[n]\i, b̂ = Covi[n]\i, and ĵ = j + 1(j>i) such that
θ̂j = θĵ , then Eq. (2) can be transferred into

min
θ̂∈Rn−1

θ̂T ˆCovθ̂ − 2b̂T θ̂ + λ∥θ̂∥1. (6)

By KKT conditions, the optimal value is attained only if

0 ∈ ˆCovθ̂∗(λ)− b̂+
λ

2
∂∥θ̂∥1. (7)

and the sparsity can be estimated by the following proposi-
tion (see detailed deduction in Appendix)

| ˆCovj θ̂
∗(λ)− b̂j | <

λ

2
⇒ θ̂∗(λ)j = 0, j ∈ [n− 1]. (8)

This means that we can know whether two categories admit
neural dependencies by estimating | ˆCovj θ̂

∗(λ) − b̂j |. A
surprising fact is that the term | ˆCovj θ̂

∗(λ)−b̂j | can actually
be estimated without solving Eq. (2), but using the slope of
the solution path of the Lasso problem. By convexity of
Eq. (2), the slope of Eq. (2) admits the following bound.



Theorem 2 Let ˆCov = QΣQT be the eigenvalue decom-
position of ˆCov, and A = QΣ1/2QT , then we have for
λ′, λ′′ ∈ [0, λmax],

|
ˆCovj θ̂

∗(λ′)− b̂j
λ′ −

ˆCovj θ̂
∗(λ′′)− b̂j
λ′′ |

≤∥Aj∥2∥A−T b̂∥2|
1

λ′ −
1

λ′′ |, j ∈ [n− 1].

(9)

Remark 3 Using this theorem we can also get a finer
estimation of the value of erri(θ̂∗(λ)) than Eq. (5), see
Appendix for detail.

Using triangular inequality and the closed-form solution for
λmax (θ̂∗(λmax) = 0), we have for j ∈ [n− 1],

| ˆCovj θ̂
∗(λ)− b̂j | ≤ λ|

ˆCovj θ̂
∗(λmax)− b̂j
λmax

| (10)

+λ|
ˆCovj θ̂

∗(λ)− b̂j
λ

−
ˆCovj θ̂

∗(λmax)− b̂j
λmax

| (11)

≤λ| b̂j
λmax

|+ λ∥Aj∥2∥A−T b̂∥2|
1

λ
− 1

2∥b̂∥∞
|. (12)

Thus if λ| b̂j

λmax
| + λ∥Aj∥2∥A−T b̂∥2| 1λ − 1

2∥b̂∥∞
| < λ

2 ⇔

| b̂j

∥b̂∥∞
| < 1−2∥Aj∥2∥A−T b̂∥2| 1λ − 1

2∥b̂∥∞
|, we know that

θ̂∗(λ)j = 0 and category cĵ is independent (meaning not
involved in the neural dependencies) with ci.

Theorem 3 When 0 < λ < λmax and ĵ ̸= i, if

|Ex∼pdata
[f(x)if(x)ĵ ]|

maxs ̸=i |Ex∼pdata
[f(x)if(x)s]|

<1− 2∥Aj∥2∥A−T b̂∥2|
1

λ
− 1

2∥b̂∥∞
|,

(13)

then θ∗(λ)ĵ = 0 and category cĵ is independent with ci.

High dimensional vectors are known to tend to be orthog-
onal to each other [5], thus if we assume Aj is nearly
orthogonal to A−T b̂, then ∥Aj∥2∥A−T b̂∥2 ≈ |b̂j | and we
can further simplify the above sparsity criterion as

Conjecture 1 When 0 < λ < λmax and j ̸= i, if

|Ex∼pdata
[f(x)if(x)j ]| <

λ

2
(equivalent to

|Ex∼pdata
[f(x)if(x)j ]

maxs ̸=i |Ex∼pdata
[f(x)if(x)s]|

| < λ

λmax
),

(14)

then θ∗(λ)j = 0 and category cj is independent with ci.

In practice we find that this conjecture is seldom wrong.
Combining with Theorem 3, they together tell us that the co-
variance of terminal representations has an important role in
assigning neural dependencies: more correlated categories
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Figure 3. Relation between correlations and dependency coeffi-
cients.

tend to have neural dependencies, while weakly correlated
categories will not have neural dependencies. They also
describe the role of the hyper-parameter λ in Eq. (2): it
screens out less correlated categories when searching neural
dependencies, and larger λ corresponds to higher sparsity of
dependencies. In conclusion, let |Ex∼pdata

[f(x)if(x)j ]| be
the metric for correlations between category ci and cj , we
can say that

Low covariance between categories in the terminal
representations brings sparsity of dependencies.

Numerical Validation. We validate the above principle,
i.e., Conject. 1 in Fig. 3. Each subfigure picks up one
target category ci and solves Eq. (2) to calculate the
corresponding coefficients θ∗

j , j ̸= i for all the remain-
ing 999 categories of the ImageNet. θ∗

j = 0 implies
no neural dependency between category ci and cj , and
vice versa. We plot the relation between the covariance
of ci, cj , |Ex∼pdata

[f(x)if(x)j ]|, and the corresponding
dependency coefficient θ∗

j . We can clearly find out that
a small correlation corresponds to no neural dependency.
Specifically, when the correlation between ci, cj is smaller
than λ

2 , ci and cj admit no neural dependency. In most
cases, the bar λ

2 does exclude a considerable amount of zero
dependency categories, which makes it a good indicator
for the existence of neural dependency. This validates our
principle for the source of sparsity.

Controlling Neural Dependencies. Conject. 1 also
points out that we can disentangle neural dependencies
by regularizing the covariance term, as tiny covariance
indicates no neural dependency. We will discuss this later
in Sec. 3.3.



2.4. Between Network Neural Dependencies

The general math property of the between network
neural dependencies shows no essential difference from
the within network ones. Let f, g be two different
classification neural networks trained on pdata indepen-
dently. We want to use the logits of f to predict
the logits of the ci category of g. Let f̃(x) =
(f(x)1, · · · , f(x)i−1, g(x)i, f(x)i+1, · · · , f(x)n)T , and
˜Cov = Ex∼pdata

[f̃(x)f̃(x)T ], then we know that

• if det[ ˜Cov]

det[ ˜Cov]
[n]\i
[n]\i

= det[ ˜Cov]

det[Cov
[n]\i
[n]\i]

is small, then category

ci of network g have neural dependencies with some
other categories of network f ;

• if |Ex∼pdata
[f(x)jg(x)i]| (j ̸= i) is small, then the cj

category of f is independent with the ci category of g.

3. Potentials of Neural Dependencies
In this section, we discuss some interesting potentials

and inspirations of neural dependencies in general scenarios
of modern machine learning.

3.1. Visualization Neural Dependencies

We are curious about the intrinsic data relations revealed
by neural dependencies. Specifically, if we have some base
classes in the coordinate space, can we plot the relative
position of the target classes that can be linearly decided
by those classes through neural dependencies? Fig. 4
gives such an example for ResNet-50 in ImageNet. In
the surroundings are 88 base categories and in the center
are 10 target categories that can be linearly predicted by
them using neural dependencies. The length of the arc
between two categories gives their dependency coefficient.
This result illustrates the relative relationship of different
categories acknowledged by the neural network. It may be
of potential interests to multiple domains like data relation
mining, visualization, and interpretability of deep networks.

3.2. Generalizability

Now that the logits of one category can be well predicted
by the logits of some others, we are curious about whether
we can learn a cluster of base categories, and then predict
new classes purely using linear combinations of the logits
of those base categories. Especially, can the overall
performance of this setting be comparable to training the
baseline model on the whole dataset? This problem is of
general interest to many machine learning scenarios. 1)
Incremental Learning. In incremental learning [6,17,29] we
need to learn to predict novel categories using a pretrained
network on old categories. Typical methods will finetune
the pretrained network in the new categories to achieve

Figure 4. The graph visualization of neural dependencies in a
pretrained ResNet-50. Please refer to Sec. 3.1 for detail.

this goal, which then arouses concerns of damaging the
knowledge of the old categories. Using our setting we
can explore the potential of keeping the pretrained network
unchanged and learning merely a small weight matrix to
handle novel categories, which is cheap and efficient to train
and deploy in various devices and realistic scenarios. 2)
Transfer Learning. A similar but different occasion is trans-
fer learning [18, 26, 27], where we seek to take advantage
of knowledge of old domains to improve performance in
new data domains. While categories are also instances of
domains, our setting also explores a new way of knowledge
transfer among domains. 3) Representation Learning. Our
setting can partially reveal how representations [2] of base
knowledge help classifications in out-of-distribution data
(new categories). Future studies of this setting may reveal
the source of the generalizability of neural networks from
the perspective of neural dependencies.

To implement our setting, we may first train a deep
classification network fbase : Rm → Rn1 on the n1 base
categories. Then we learn a coefficient matrix Θ ∈ Rn1×n2

by fixing the parameters of fbase and minimizing the train-
ing loss of fnew = fbaseΘ on the training set of the new
categories. We then concatenate fall = [fbase, fbaseΘ]T to
form a new classifier for all the categories. We sample 500
samples per category from the training set of ImageNet-1K
as our training data; the remains are used for constructing
a balanced binary testing set we will use later. We evaluate
the following three settings: 1) from 900 base classes to
100 new classes (900 → 100), 2) from 950 base classes to
50 new classes (950 → 50), and 3) from 999 base classes
to 1 new class (999 → 1) within a dataset. To approach
a binary classification scenario, for 999 → 1 case we
additionally test on 500 positive and negative sample pairs
from the remained training set of ImageNet as the 999 →
1(pos&neg) setting. The baselines fbaseline are backbone
models trained on the whole 1,000 category training data.



Table 2. Classification accuracy of baselines and learning new categories through neural dependencies (ours). While much simpler, learning
new categories through neural dependencies barely loses accuracy. All figures are the mean of five independent runs.

900 → 100 950 → 50 999 → 1 999 → 1(pos&neg)Backbone
Baseline Ours Impro Baseline Ours Impro Baseline Ours Impro Baseline Ours Impro

ResNet50 68.47±0.25 68.03±0.89 -0.44 68.47±0.25 68.45±0.67 -0.02 68.47±0.25 68.46±0.41 -0.01 60.70±0.16 61.50±0.38 +0.80
Swin-T 71.49±0.14 71.486±0.17 -0.004 71.49±0.21 71.578±0.34 +0.088 71.49±0.09 71.56±0.13 +0.07 76.20±0.27 78.00±0.24 +1.80

Table 3. Metrics of using (ours) and not using (baselines) the dependency regularization. All figures are mean of five independent runs.

ImageNet Acc. (↑) Dependency Coefficients (↓) ImageNet-O AUPR (↑)Backbone
Baseline Ours Impro Baseline Ours Impro Baseline Ours Impro

ResNet18 69.83±0.033 70.12±0.084 +0.29 0.70 0.02 +0.68 15.15±0.04 15.48±0.09 +0.33
ResNet50 76.37±0.25 76.66±0.13 +0.29 1.10 4.5e−4 +1.10 13.98±0.05 14.07±0.02 +0.09
Vit-S 80.67±0.305 81.52±0.212 +0.85 0.1 3.1e−3 +0.1 28.54±0.11 31.14±0.10 +2.60
Swin-T 82.16±0.046 82.18±0.062 +0.02 0.39 0.01 +0.38 27.66±0.08 28.13±0.06 +0.47

Table 4. Classification accuracy in base (900) and new (100)
categories separately. While much simpler, learning new cate-
gories through neural dependencies outperform baselines if only
considering the performance in the new categories. All figures are
the mean of five independent runs.

ResNet-50 Swin-TMethod
900 100 900 100

Baseline 67.43±0.16 68.87±0.84 71.28±0.29 70.73±1.03

Ours 68.65±0.13 71.06±1.15 71.50±0.40 72.47±0.41

Other details can be found in Appendix.
Experimental Results. We report the performance of fall
and fbaseline in Tab. 2, where we can find both settings (ours
v.s. baselines) achieve comparable performance. While our
setting requires training on only a small coefficient matrix,
it consumes much less computation and time resources (less
than 60% time consumption of the baseline in each epoch,
see Appendix for detail) compared with the baselines. We
further investigate how our setting performs in the new
categories. Tab. 4 reports classification accuracy in the old
900 and new 100 categories of our setting and baselines
(here we choose the class with maximum logits in the
900/100 categories as the prediction results). We can find
that our setting significantly outperforms the baselines in
the new classes. Both results reveal the power of neural
dependencies in the generalizability of deep networks.

3.3. Robustness

As we have mentioned before, some neural dependencies
are not that sensible for humans. We are therefore curious
about whether cutting off them can help the network and
improve robustness. Here we compare two cases, the
baselines, and baselines finetuned by adding the regulariza-
tion term |Ex∼pdata

[f(x)if(x)j ]| where ci, cj are the two
categories that emerge irrational neural dependencies to cut
off. We use two benchmarks, ImageNet-1K and ImageNet-
O [13]. ImageNet-O consists of images from 200 classes
that are unseen in ImageNet-1K, and is used to test the
robustness on out-of-distribution samples. This ability is

usually measured by the AUPR (i.e., the area under the
precision-recall curve) metric [3]. This metric requires
anomaly scores, which is the negative of the maximum
softmax probabilities from a model that can classify the
200 classes. We train the baseline models for 90 epochs
and our settings for 60 epochs of regular training followed
by 30 epochs of finetuning using the regularization term
|Ex∼pdata

[f(x)if(x)j ]|. We manually choose one depen-
dency to cut off for each case. Details are in Appendix.
Experimental Results. Tab. 3 reports the results. The
regularization term does cut off the neural dependencies
as the dependency coefficients are approaching zero after
regularization. This then results in some improvements
of performance in both ImageNet and ImageNet-O for all
the backbones. While here we only cut-off one depen-
dency for each case, we believe a thorough consideration
of reasonable dependencies to maintain may benefit the
network more. This reveals the connection between neural
dependencies and the robustness of networks.

4. Conclusion

This paper reveals an astonishing neural dependency
phenomenon emerging from learning massive categories.
Given a well-trained model, the logits predicted for some
category can be directly obtained by linearly combining the
predictions of a few others. Theoretical investments demon-
strate how to find those neural dependencies precisely, when
they happen, and why the dependency is usually sparse, i.e.
only a few instead of numerous of other categories related
to one target category. Further empirical studies reveal
multiple attractive potentials of neural dependencies from
the aspects of visualization, generalization, and robustness
of deep classification networks.
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under Grant 2020AAA0105702, National Natural Science Foundation of
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2019-025.



References
[1] Yusuf Aytar and Andrew Zisserman. Enhancing exemplar

svms using part level transfer regularization. In British
Machine Vision Conference (BMVC), pages 1–11, 2012. 8,
11

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Rep-
resentation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 35(8):1798–1828, 2013. 7

[3] Kendrick Boyd, Kevin H Eng, and C David Page. Area under
the precision-recall curve: point estimates and confidence
intervals. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 451–466,
2013. 8

[4] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe.
Convex optimization. Cambridge university press, 2004. 3
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A. Related Work

Before this work, many previous works believe some curious dependencies are hiding in the network and propose to
leverage them to improve the performance. While unknowing why and how to find those dependencies, they enhance the
empirical study of intrinsic connections inside a network. The representation of Exemplar SVMs (E-SVMs) has demonstrated
good migration capacity in various tasks like object detection and Content-Based Image Retrieval (CBIR). Constructing
them from existing classifier parts, cropped from previously learned classifiers, can further enhance their generalization
ability [1]. Previous work also demonstrates that image similarity captured by networks can improve performance on image
matching, retrieval, and classification than using conventional visual features [25]. Hierarchical Learning is also believed to
benefit from the rich dependencies of neural representations and their ability to naturally transfer into other related tasks [7].
Learning more general function dependencies also gives important applications in areas such as computational biology,
natural language processing, information retrieval/extraction, and optical character recognition [23].

B. Proof

B.1. Proof to Theorem 1

This is the natural results of Eq. (3).

B.2. Property of Function erri(θ
∗(λ))

The continuity of the solution path and the existence of λmax = 2∥Covi[n]\i∥∞ are natural results of the property of
general Lasso regressions [21, 22]. Here we prove that

erri(θ
∗(0) =

det[Cov]

det[Cov
[n]\i
[n]\i]

, (A15)

erri(θ
∗(λmax)) = Covii. (A16)

In fact, the second equality Eq. (A16) is easy to verify directly, so we only need to prove the first one, Eq. (A15). Let

Cov = UΓUT , (A17)

UUT = I, (A18)

Γ = diag{γ2
1 , · · · , γ2

n}, (A19)

θ =

n∑
j=1

αjU
j , (A20)

θi =

n∑
j=1

αjU
j
i = Uiα = −1, (A21)

and U1, · · · ,Un be the eigenvectors of Cov. The original problem Eq. (2) (when λ = 0) now becomes

min
α

n∑
j=1

α2
jγ

2
j ,

subject to
n∑

j=1

αjU
j
i = −1.

(A22)

Using Lagrange multiplier, the following problem will attain extreme value together with the above problem

min
α,η

H(α, η) =

n∑
j=1

α2
jγ

2
j + η(

n∑
j=1

αjU
j
i + 1). (A23)



Thus we have

∂H

∂αj
= 2αjγ

2
j + ηU j

i = 0 ⇔ αj = −ηU j
i

2γ2
j

, j = 1, · · · , n, (A24)

⇔ α = −η

2
Γ−1UT

i = −η

2
Γ−1UTei (A25)

∂H

∂η
=

n∑
j=1

αjU
j
i + 1 = 0 ⇔

n∑
j=1

−ηU j
i

2γ2
j

U j
i = −1 ⇔ η

2

n∑
j=1

(U j
i )

2

γ2
j

= 1 (A26)

⇔ η = 2(UiΓ
−1UT

i )−1 = 2(eTi UΓ−1UTei)
−1 = 2/(Cov−1)ii. (A27)

Combining the above derivation, we have

θ∗(0) = Uα∗ = −η

2
UΓ−1UTei = −η

2
Cov−1ei, (A28)

(θ∗(0)TCovθ∗(0)) =
η2

4
eTi Cov

−TCovCov−1ei =
η2

4
eTi Cov

−1ei (A29)

=
η2

4
(Cov−1)ii = 1/(Cov−1)ii =

det[Cov]

det[Cov
[n]\i
[n]\i]

. (A30)

B.3. Case of Small Covii
Here we may want the ratio

R(Cov, i) =
det[Cov]

Covii det[Cov
[n]\i
[n]\i]

=
1∑n

j=1

α2
j

σ2
j

∑n
j=1 α

2
jσ

2
j

(A31)

to be as small as possible, where σ2
1 ≥ · · · ≥ σ2

n are the eigenvalues of Cov and q1, · · · , qn are the corresponding
eigenvectors, αj = ⟨ei, qj⟩, j ∈ [n] (refer to deduction in Appendix). This is also the minimum relative prediction error, i.e.,

inf
λ≥0

Ex∼pdata
[|f(x)i −

∑
j ̸=i θ

∗(λ)jf(x)j |2]
Ex∼pdata

[|f(x)i|2]
= R(Cov, i),∀λ ∈ [0, λmax]. (A32)

Geometrically, this means that the i-th coordinate axis admits valid components in the eigenvectors of both non-tiny and tiny
eigenvalues.

B.4. Property of the Lower Bound erri(θ
∗(0))

Here we prove that

erri(θ
∗(0)) =

det[Cov]

det[Cov
[n]\i
[n]\i]

=

 n∑
j=1

α2
j

σ2
j

−1

. (A33)

This is the natural result of Eqs. (A26) and (A27), as

1/(Cov−1)ii =
det[Cov]

det[Cov
[n]\i
[n]\i]

= 1/(Cov−1)ii =
η

2
=

 n∑
j=1

(U j
i )

2

γ2
j

−1

. (A34)

Let U j = qj and σ2
j = γ2

j . Then we obtain the result.

B.5. Sparsity Condition of the Solution

By KKT conditions, the optimal value of Eq. (6) is attained only if

0 ∈ ˆCovθ̂∗(λ)− b̂+
λ

2
∂∥θ̂∥1 (A35)



where ∂∥θ̂∥1 = {v : ∥v∥∞ ≤ 1,vT θ̂ = ∥θ̂∥1} is the subgradient of ∥ · ∥1. By Cauchy inequality,

∥θ̂∥1 = vT θ̂ ≤ ∥v∥∞∥θ̂∥1 = ∥θ̂∥1. (A36)

The equality holds if and only if

|vi| < 1 ⇒ θ̂i = 0. (A37)

Thus we have the sparsity condition of the solution.

B.6. Proof to Eq. (9)

To start, we deduce the dual problem of Eq. (2). For standard Lasso problem

min
β

1

2
∥y −Xβ∥22 + λ∥β∥1, (A38)

where y are labels and X are observations, its dual problem is [22]

max
ξ

1

2
∥y∥22 −

λ2

2
∥ξ − y

λ
∥2,

subject to |(Xj)T ξ| ≤ 1, j = 1, · · · , n.
(A39)

Let

ˆCov = QΣQT , (A40)

A = QΣ1/2QT , (A41)

b̂ = Covi[n]\i, (A42)

y =
√
2A−T b̂, (A43)

and X =
√
2A. (A44)

We then get the dual problem of Eqs. (2) and (6) as

max
ξ

∥A−1b̂∥22 −
λ2

2
∥ξ −

√
2A−T b̂

λ
∥22,

subject to ∥Aξ∥∞ ≤
√
2

2
.

(A45)

By the KKT condition, we further have

√
2A−T b̂ =

√
2Aθ̂∗(λ) + λξ∗(λ), (A46)

when λ ≥ λmax = ∥
√
2A

√
2A−T b̂∥∞ = 2∥b̂∥∞, θ̂∗ = 0. (A47)

The dual problem Eq. (A45) can be further transferred into

min
ξ

∥ξ −
√
2A−T b̂

λ
∥22,

subject to ∥Aξ∥∞ ≤
√
2

2
.

(A48)

This problem solves the projection of point
√
2A−T b̂

λ onto the convex set {ξ : ∥Aξ∥∞ ≤
√
2
2 }. Denote its solution as ξ∗(λ)



for parameter λ. It is then easy to verify

∥
√
2A−T b̂

λ′′ −
√
2A−T b̂

λ′ ∥22 = ∥ξ∗(λ′′)− ξ∗(λ′)− ξ∗(λ′′) +

√
2A−T b̂

λ′′ + ξ∗(λ′)−
√
2A−T b̂

λ′ ∥22 (A49)

= ∥ξ∗(λ′′)− ξ∗(λ′)∥22 + ∥ξ∗(λ′′)−
√
2A−T b̂

λ′′ ∥22 + ∥ξ∗(λ′)−
√
2A−T b̂

λ′ ∥22 (A50)

+2⟨ξ∗(λ′′)− ξ∗(λ′),

√
2A−T b̂

λ′′ − ξ∗(λ′′)⟩+ 2⟨ξ∗(λ′′)− ξ∗(λ′), ξ∗(λ′)−
√
2A−T b̂

λ′ ⟩ (A51)

+2⟨
√
2A−T b̂

λ′′ − ξ∗(λ′′), ξ∗(λ′)−
√
2A−T b̂

λ′ ⟩ (A52)

= ∥ξ∗(λ′′)− ξ∗(λ′)∥22 + ∥ξ∗(λ′′)−
√
2A−T b̂

λ′′ − ξ∗(λ′)−
√
2A−T b̂

λ′ ∥22 (A53)

+2⟨ξ∗(λ′′)− ξ∗(λ′),

√
2A−T b̂

λ′′ − ξ∗(λ′′)⟩+ 2⟨ξ∗(λ′′)− ξ∗(λ′), ξ∗(λ′)−
√
2A−T b̂

λ′ ⟩ (A54)

≥ ∥ξ∗(λ′′)− ξ∗(λ′)∥22. (A55)

The last inequality uses the fact that

2⟨ξ∗(λ′′)− ξ∗(λ′),

√
2A−T b̂

λ′′ − ξ∗(λ′′)⟩ ≥ 0, (A56)

2⟨ξ∗(λ′′)− ξ∗(λ′), ξ∗(λ′)−
√
2A−T b̂

λ′ ⟩ ≥ 0, (A57)

for convex set {ξ : ∥Aξ∥∞ ≤
√
2
2 } and the projections ξ∗(λ′), ξ∗(λ′′) on it. Thus we have

∥ξ∗(λ′′)− ξ∗(λ′)∥2 ≤ ∥
√
2A−T b̂

λ′′ −
√
2A−T b̂

λ′ ∥2. (A58)

Combining Eq. (A46), we then get the result of this theorem.

B.7. Finer Estimation of the Value of erri(θ∗(λ))

We have

|θ∗(λ′′)TCovθ∗(λ′′)− θ∗(λ′)TCovθ∗(λ′)| (A59)

= |θ̂∗(λ′′)T ˆCovθ̂∗(λ′′)− θ̂∗(λ′)T ˆCovθ̂∗(λ′)− 2b̂T (θ̂∗(λ′′)− θ̂∗(λ′))| (A60)

= |∥Aθ̂∗(λ′′)−A−T b̂∥22 − ∥Aθ̂∗(λ′)−A−T b̂∥22| (A61)

= |λ
′′2

2
∥ξ∗(λ′′)∥22 −

λ′2

2
∥ξ∗(λ′)∥22|. (A62)

Setting λ′ = λmax, λ
′′ = λ, we can have

0 ≤ Covii − θ∗(λ)TCovθ∗(λ) = ∥A−T b̂∥22 −
λ2

2
∥ξ∗(λ)∥22 (A63)

≤ ∥A−T b̂∥22 −
λ2

2
(∥

√
2

2∥b̂∥∞
A−T b̂∥2 + ∥ξ∗(λ)− ξ∗(λmax)∥2)2 (A64)

≤ ∥A−T b̂∥22 −
λ2

2
(∥

√
2

2∥b̂∥∞
A−T b̂∥2 + ∥ξ∗(λ)− ξ∗(λmax)∥2)2. (A65)

Taking Eq. (A58) into the above result yields finer estimation to the value of erri(θ∗(λ)) = θ∗(λ)TCovθ∗(λ).

B.8. Proof to Theorem 3

This is the natural result of Eq. (10).
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(a) Results of MEAL on ImageNet (b) Results of VGG16 on CUB
Figure A5. Neural dependencies in some other scenarios.

C. Experiment Setting
Experiment Setup in Sec. 2. We use the official pretrained models for all the experiments in this section. For ResNets, we
use the official Pytorch pretrained models1. For VIT, we use the official checkpoints provided by Google Research2. For
Swin-T, we use the official pretrained model provided by Microsoft3. For each pair of baseline-ours comparisons in Tabs. 2
to 4, we pick a random list of classes and then fix it in the five independent runs to calculate a mean performance value. Code
and settings to exactly reproduce the results in this paper can be fond in https://github.com/RuiLiFeng/Neural-Dependencies.
Lasso Solver. We use the sklearn.linear model.Lasso of sklearn [19] package to solve the CovLasso regression in this paper.
max iter is set to 50,000, alpha is set to 0.25 for Swin-T and 2.5 for the remaining algorithms. All the other hyper-parameters
are set as default.
Training settings of Sec. 3.2. For both ResNet-50 and Swin-T, following the conventional setting, we first perform
intermediate pre-training of a ResNet fbase : Rm → Rn1 on the n1 base categories of ImageNet1K for 90 epochs with
image resolution 224×224. Then we learn a coefficient matrix Θ ∈ Rn1×n2 by fixing the parameters of fbase and training on
the training set of the new categories for 60 epochs. For ResNet-50, we use SGD with mini-batch size 256 on 8 Nvidia-A100
GPUs. The learning rate starts from 0.1 and is divided by 10 on the 30-th and 60-th epoch, and we use a weight decay of
0.0001 and a momentum of 0.9. For Swin-T, we use AdamW with a mini-batch size of 256 on 8 A100 GPUs. The learning
rate starts from 0.002 and is divided by 10 on the 60-th and 80-th epochs, and we use a weight decay of 0.05.
Training settings of Sec. 3.3. During the fine-tuning process of all backbones, we use an SGD optimizer, in which the
initial learning rate is set to 0.01 for 30 epochs. We use a weight decay of 0.0005 and a momentum of 0.9. The batch size
is set to 256. The loss weight for the regularization term is set to 0.2, and eight NVIDIA Tesla A100 GPUs are used for all
experiments. All datasets adopted in this paper are open to the public.

D. More Results
We provide more examples of neural dependencies, which show that the logits predicted for some categories can be

directly obtained by linearly combining the predictions of a few other categories. The results obtained by a single network
(i.e., ResNet-18, ResNet-50, ViT-S, and Swin-T) are reported in Fig. A6 - Fig. A9, respectively. The results obtained
between two independently-learned networks (i.e., ResNet-18→ResNet-50, ResNet-50→ResNet-18, ResNet-18→Swin-T,
Swin-T→ResNet-18, ResNet-18→ViT-S, ViT-S→ResNet-18, ResNet-50→Swin-T, Swin-T→ResNet-50, ResNet-50→ViT-
S, ViT-S→ResNet-50, ViT-S→Swin-T and ViT-S→Swin-T) are reported in Fig. A10 - Fig. A21, respectively. All the results
are obtained by solving the Lasso problem. In each figure, we report the classification accuracy for category ‘i’: the accuracy
by calculating logits is reported as ‘acc.’; the original model accuracy is reported as ‘ori. acc.’. Both metrics are measured
in the whole ImageNet validation set. We further report the classification accuracy on positive samples only for both metrics
as ‘pos’ following ‘acc.’ and ‘ori. acc.’ correspondingly. The results show a neural independence phenomenon for broad
categories in all those deep networks.

1https://github.com/pytorch/examples/tree/main/imagenet
2https://github.com/google-research/vision_transformer
3https://github.com/microsoft/Swin-Transformer



i: "altar"
acc.=39.4% (pos: 64.0%)

ori acc.=39.4% (pos: 64.0%)

i1: "church"
λi1=0.579

i2: "vestment"
λi2=0.334

i3: "throne"
λi3=0.270

i4: "brass"
λi4=0.163

i5: "organ"
λi5=0.093

i6: "monastery"
λi6=0.020

i7: "earthstar"
λi7=0.000

i: "lens cap, lens cover"
acc.=25.5% (pos: 38.0%)

ori acc.=25.5% (pos: 38.0%)

i1: "bottlecap"
λi1=0.679

i2: "reflex camera"
λi2=0.487

i3: "mouse"
λi3=0.202

i4: "CD player"
λi4=0.193

i5: " remote"
λi5=0.100

i6: "loupe"
λi6=0.068

i7: "rugby ball"
λi7=0.067

i: "balance beam, beam"
acc.=38.7% (pos: 84.0%)

ori acc.=38.8% (pos: 84.0%)

i1: " bars"
λi1=0.702

i2: " high bar"
λi2=0.354

i3: "maillot"
λi3=0.223

i4: "pole"
λi4=0.002

i5: "stinkhorn"
λi5=-0.000

i6: "toilet tissue"
λi6=0.000

i7: "bolete"
λi7=-0.000

i: "affenpinscher, monkey pinscher, monkey dog"
acc.=50.7% (pos: 80.0%)

ori acc.=50.7% (pos: 80.0%)

i1: "Brabancon griffon"
λi1=0.726

i2: "cairn"
λi2=0.539

i3: "toy poodle"
λi3=0.111

i4: "Bouvier des Flandres"
λi4=0.022

i5: "Tibetan terrier"
λi5=0.016

i6: "stinkhorn"
λi6=-0.000

i7: "bolete"
λi7=-0.000

i: "Old English sheepdog, bobtail"
acc.=52.1% (pos: 86.0%)

ori acc.=52.1% (pos: 86.0%)

i1: "Tibetan terrier"
λi1=0.525

i2: "otterhound"
λi2=0.332

i3: "komondor"
λi3=0.326

i4: "standard poodle"
λi4=0.276

i5: "malamute"
λi5=0.148

i6: "Border collie"
λi6=0.086

i7: " Sealyham"
λi7=0.058

i: "toilet seat"
acc.=10.4% (pos: 66.0%)

ori acc.=10.4% (pos: 66.0%)

i1: "toilet tissue"
λi1=0.695

i2: "tray"
λi2=0.291

i3: "plunger"
λi3=0.246

i4: " lavabo"
λi4=0.245

i5: "shield"
λi5=0.221

i6: "puffer"
λi6=-0.097

i7: "buckle"
λi7=0.035

i: "bucket, pail"
acc.=35.7% (pos: 58.0%)

ori acc.=35.8% (pos: 58.0%)

i1: "ashcan"
λi1=0.589

i2: "measuring cup"
λi2=0.438

i3: "shopping basket"
λi3=0.257

i4: "tub"
λi4=0.182

i5: "barrow"
λi5=0.165

i6: "water jug"
λi6=0.135

i7: "caldron"
λi7=0.060

i: "sloth bear, Melursus ursinus, Ursus ursinus"
acc.=47.4% (pos: 74.0%)

ori acc.=47.4% (pos: 74.0%)

i1: " black bear"
λi1=0.559

i2: "porcupine"
λi2=0.485

i3: "Bernese mountain dog"
λi3=0.323

i4: "siamang"
λi4=0.301

i5: "collie"
λi5=0.162

i6: "stove"
λi6=0.065

i7: "redbone"
λi7=-0.042

Figure A6. Results from ResNet-18, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation set, while
‘pos: xx%’ is the accuracy on positive samples only.



i: "oystercatcher, oyster catcher"
acc.=63.9% (pos: 94.0%)

ori acc.=63.9% (pos: 94.0%)

i1: "proboscis monkey"
λi1=-0.882

i2: "redshank"
λi2=0.481

i3: "albatross"
λi3=0.409

i4: "black stork"
λi4=0.398

i5: "European gallinule"
λi5=0.312

i6: "English springer"
λi6=0.209

i7: "stinkhorn"
λi7=0.000

i: "comic book"
acc.=7.3% (pos: 68.0%)

ori acc.=7.3% (pos: 68.0%)

i1: "book jacket"
λi1=0.904

i2: "slot"
λi2=0.321

i3: "toyshop"
λi3=0.263

i4: "jigsaw puzzle"
λi4=0.202

i5: "bookshop"
λi5=0.049

i6: "earthstar"
λi6=-0.000

i7: "bolete"
λi7=-0.000

i: "macaw"
acc.=68.6% (pos: 92.0%)

ori acc.=68.6% (pos: 92.0%)

i1: "African grey"
λi1=0.937

i2: "bee eater"
λi2=0.307

i3: "lorikeet"
λi3=0.290

i4: "toucan"
λi4=0.173

i5: " Kakatoe galerita"
λi5=0.159

i6: " nautilus"
λi6=0.137

i7: "jay"
λi7=0.134

i: "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens"
acc.=45.0% (pos: 94.0%)

ori acc.=45.0% (pos: 94.0%)

i1: " fitch"
λi1=0.753

i2: "red fox"
λi2=0.596

i3: "titi"
λi3=0.414

i4: " panda"
λi4=0.262

i5: "black stork"
λi5=-0.170

i6: "toucan"
λi6=0.056

i7: "sorrel"
λi7=0.025

i: "guenon, guenon monkey"
acc.=46.1% (pos: 90.0%)

ori acc.=46.3% (pos: 90.0%)

i1: "patas"
λi1=0.646

i2: "titi"
λi2=0.550

i3: "colobus"
λi3=0.234

i4: "king penguin"
λi4=0.084

i5: "hyena"
λi5=-0.073

i6: "stinkhorn"
λi6=-0.000

i7: "bolete"
λi7=-0.000

i: "Tibetan terrier, chrysanthemum dog"
acc.=59.5% (pos: 72.0%)

ori acc.=59.5% (pos: 72.0%)

i1: "Lhasa"
λi1=0.684

i2: "briard"
λi2=0.401

i3: " bobtail"
λi3=0.183

i4: "giant schnauzer"
λi4=0.112

i5: "miniature schnauzer"
λi5=0.093

i6: "stinkhorn"
λi6=-0.000

i7: "bolete"
λi7=-0.000

i: "coyote, prairie wolf, brush wolf, Canis latrans"
acc.=54.0% (pos: 68.0%)

ori acc.=54.0% (pos: 68.0%)

i1: " grey wolf"
λi1=0.581

i2: "red fox"
λi2=0.298

i3: "lynx"
λi3=0.244

i4: "red wolf"
λi4=0.134

i5: "hare"
λi5=0.105

i6: "wood rabbit"
λi6=0.084

i7: "bighorn"
λi7=0.074

i: "dugong, Dugong dugon"
acc.=63.3% (pos: 90.0%)

ori acc.=63.4% (pos: 90.0%)

i1: "eel"
λi1=0.795

i2: " hippo"
λi2=0.342

i3: "loggerhead"
λi3=0.259

i4: "ice bear"
λi4=0.242

i5: " torpedo"
λi5=0.202

i6: "tiger shark"
λi6=0.077

i7: "piggy bank"
λi7=0.054

Figure A7. Results from ResNet-50, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation set, while
‘pos: xx%’ is the accuracy on positive samples only.



i: "airliner"
acc.=48.0% (pos: 98.0%)

ori acc.=48.0% (pos: 98.0%)

i1: "wing"
λi1=0.662

i2: "space shuttle"
λi2=0.248

i3: "minibus"
λi3=0.203

i4: "warplane"
λi4=0.193

i5: "Ibizan hound"
λi5=-0.185

i6: "nail"
λi6=-0.165

i7: "toaster"
λi7=-0.163

i: "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus"
acc.=58.6% (pos: 100.0%)

ori acc.=58.6% (pos: 100.0%)

i1: "custard apple"
λi1=0.497

i2: "hyena"
λi2=0.422

i3: "dhole"
λi3=0.417

i4: "Brabancon griffon"
λi4=-0.167

i5: "Loafer"
λi5=-0.153

i6: "red wolf"
λi6=0.129

i7: "kelpie"
λi7=0.122

i: "freight car"
acc.=35.3% (pos: 98.0%)

ori acc.=35.4% (pos: 98.0%)

i1: "sliding door"
λi1=0.709

i2: " coach"
λi2=0.600

i3: " roach"
λi3=0.596

i4: " Nile crocodile"
λi4=-0.173

i5: " rig"
λi5=0.168

i6: "electric locomotive"
λi6=0.165

i7: "flat-coated retriever"
λi7=-0.137

i: "rapeseed"
acc.=2.4% (pos: 98.0%)

ori acc.=2.4% (pos: 98.0%)

i1: "broccoli"
λi1=0.734

i2: " site"
λi2=0.522

i3: "apiary"
λi3=0.439

i4: "pole"
λi4=0.378

i5: "rotisserie"
λi5=-0.309

i6: "tractor"
λi6=0.275

i7: "lakeside"
λi7=0.225

i: "racket, racquet"
acc.=20.5% (pos: 90.0%)

ori acc.=20.6% (pos: 90.0%)

i1: "tennis ball"
λi1=1.101

i2: " horn"
λi2=0.307

i3: "spatula"
λi3=0.226

i4: "acorn"
λi4=-0.183

i5: "koala"
λi5=0.156

i6: "soap dispenser"
λi6=-0.142

i7: "maillot"
λi7=0.094

i: "lorikeet"
acc.=73.8% (pos: 100.0%)

ori acc.=73.8% (pos: 100.0%)

i1: "ox"
λi1=0.547

i2: " Kakatoe galerita"
λi2=0.436

i3: "macaw"
λi3=0.433

i4: "langur"
λi4=-0.288

i5: "hummingbird"
λi5=0.280

i6: " linnet"
λi6=0.223

i7: "European gallinule"
λi7=0.201

i: "tiger, Panthera tigris"
acc.=57.3% (pos: 96.0%)

ori acc.=57.4% (pos: 96.0%)

i1: "tiger cat"
λi1=1.027

i2: "titi"
λi2=0.113

i3: "patas"
λi3=0.102

i4: " fitch"
λi4=0.086

i5: "soup bowl"
λi5=-0.083

i6: "hornbill"
λi6=-0.055

i7: "tabby"
λi7=0.050

i: "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus"
acc.=54.7% (pos: 94.0%)

ori acc.=54.7% (pos: 94.0%)

i1: "admiral"
λi1=0.614

i2: " bullet"
λi2=-0.375

i3: "sulphur butterfly"
λi3=0.360

i4: "swimming trunks"
λi4=-0.284

i5: "leaf beetle"
λi5=0.245

i6: "snorkel"
λi6=-0.217

i7: "ringlet"
λi7=0.159

Figure A8. Results from ViT-S, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation set, while ‘pos:
xx%’ is the accuracy on positive samples only.



n

i: "gyromitra"
acc.=1.4% (pos: 100.0%)

ori acc.=1.5% (pos: 100.0%)

i1: "hen-of-the-woods"
λi1=1.799

i2: " hippo"
λi2=1.614

i3: "Dutch oven"
λi3=-0.916

i4: "safety pin"
λi4=0.809

i5: "loupe"
λi5=0.736

i6: "daisy"
λi6=-0.444

i7: "curly-coated retriever"
λi7=0.240

i: "macaw"
acc.=74.0% (pos: 100.0%)

ori acc.=74.0% (pos: 100.0%)

i1: "junco"
λi1=-1.820

i2: "goose"
λi2=-1.624

i3: "African grey"
λi3=1.532

i4: "jay"
λi4=0.745

i5: "flamingo"
λi5=0.673

i6: "bee eater"
λi6=0.490

i7: "bee"
λi7=0.264

i: "coyote, prairie wolf, brush wolf, Canis latrans"
acc.=58.4% (pos: 70.0%)

ori acc.=58.4% (pos: 70.0%)

i1: " puff adder"
λi1=-1.437

i2: "Great Pyrenees"
λi2=-0.949

i3: " grey wolf"
λi3=0.384

i4: "wood rabbit"
λi4=0.352

i5: "grey fox"
λi5=0.348

i6: "red wolf"
λi6=0.212

i7: "tabby"
λi7=-0.167

i: "slot, one-armed bandit"
acc.=16.6% (pos: 96.0%)

ori acc.=16.6% (pos: 96.0%)

i1: "joystick"
λi1=1.373

i2: "hard disc"
λi2=-1.227

i3: "mosque"
λi3=-1.133

i4: "caldron"
λi4=-0.824

i5: "carton"
λi5=-0.698

i6: "vending machine"
λi6=0.657

i7: "scoreboard"
λi7=0.501

i: "hartebeest"
acc.=51.7% (pos: 96.0%)

ori acc.=51.7% (pos: 96.0%)

i1: "llama"
λi1=-1.336

i2: "red fox"
λi2=-1.003

i3: "impala"
λi3=0.834

i4: " red setter"
λi4=-0.542

i5: "whippet"
λi5=-0.501

i6: "Italian greyhound"
λi6=-0.476

i7: "gorilla"
λi7=-0.283

i: "box turtle, box tortoise"
acc.=78.1% (pos: 90.0%)

ori acc.=78.1% (pos: 90.0%)

i1: "lacewing"
λi1=-1.543

i2: "mud turtle"
λi2=1.003

i3: "coral fungus"
λi3=0.912

i4: " leatherback"
λi4=-0.773

i5: "terrapin"
λi5=0.257

i6: "snail"
λi6=0.209

i7: "bolete"
λi7=-0.000

i: "dogsled, dog sled, dog sleigh"
acc.=37.3% (pos: 92.0%)

ori acc.=37.3% (pos: 92.0%)

i1: " husky"
λi1=1.199

i2: "English foxhound"
λi2=1.107

i3: " bob"
λi3=1.061

i4: "Irish wolfhound"
λi4=0.049

i5: "kuvasz"
λi5=-0.035

i6: "stinkhorn"
λi6=0.000

i7: "bolete"
λi7=0.000

i: "trilobite"
acc.=75.4% (pos: 98.0%)

ori acc.=75.6% (pos: 98.0%)

i1: "earthstar"
λi1=-1.596

i2: " nautilus"
λi2=1.354

i3: " anole"
λi3=-1.228

i4: "chiton"
λi4=0.617

i5: "mask"
λi5=0.579

i6: " leatherback"
λi6=0.503

i7: "isopod"
λi7=0.470

Figure A9. Results from Swin-T, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation set, while ‘pos:
xx%’ is the accuracy on positive samples only.



i: "black grouse"
acc.=74.7% (pos: 88.0%)

ori acc.=74.7% (pos: 90.0%)

i1: "mountain tent"
λi1=0.440

i2: "coucal"
λi2=0.223

i3: " Salamandra salamandra"
λi3=0.213

i4: "bassinet"
λi4=-0.169

i5: "vulture"
λi5=0.147

i6: "screw"
λi6=0.140

i7: "Cardigan"
λi7=0.136

i: "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus"
acc.=54.1% (pos: 94.0%)

ori acc.=54.2% (pos: 96.0%)

i1: "slide rule"
λi1=-0.304

i2: "cliff dwelling"
λi2=-0.260

i3: "bighorn"
λi3=-0.258

i4: " prairie fowl"
λi4=0.254

i5: "ear"
λi5=0.254

i6: "pot"
λi6=0.187

i7: "ringlet"
λi7=0.172

i: "trolleybus, trolley coach, trackless trolley"
acc.=10.9% (pos: 98.0%)

ori acc.=10.9% (pos: 100.0%)

i1: "minibus"
λi1=0.405

i2: " coach"
λi2=0.206

i3: "swab"
λi3=0.129

i4: "hartebeest"
λi4=-0.129

i5: "lion"
λi5=-0.129

i6: "Polaroid camera"
λi6=-0.110

i7: "dome"
λi7=0.086

i: "lionfish"
acc.=48.1% (pos: 96.0%)

ori acc.=48.1% (pos: 96.0%)

i1: "goblet"
λi1=0.217

i2: "coral reef"
λi2=0.203

i3: " iguana"
λi3=0.166

i4: "spider web"
λi4=0.154

i5: "zebra"
λi5=0.152

i6: "yawl"
λi6=-0.141

i7: "triceratops"
λi7=0.135

i: "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus"
acc.=58.1% (pos: 100.0%)

ori acc.=58.1% (pos: 100.0%)

i1: "potter's wheel"
λi1=-0.362

i2: "barrow"
λi2=0.311

i3: "hyena"
λi3=0.173

i4: "dhole"
λi4=0.163

i5: "Gila monster"
λi5=0.150

i6: " alsatian"
λi6=0.145

i7: "kelpie"
λi7=0.144

i: "traffic light, traffic signal, stoplight"
acc.=7.4% (pos: 88.0%)

ori acc.=7.4% (pos: 88.0%)

i1: " hyena dog"
λi1=-0.299

i2: "umbrella"
λi2=0.277

i3: " speaker"
λi3=0.275

i4: "pole"
λi4=0.271

i5: "digital clock"
λi5=0.204

i6: "cab"
λi6=0.204

i7: "nematode"
λi7=-0.197

i: "echidna, spiny anteater, anteater"
acc.=72.6% (pos: 100.0%)

ori acc.=72.7% (pos: 100.0%)

i1: " fitch"
λi1=0.355

i2: "cock"
λi2=0.286

i3: "lakeside"
λi3=0.246

i4: "plastic bag"
λi4=0.183

i5: "hen-of-the-woods"
λi5=0.179

i6: "porcupine"
λi6=0.174

i7: " partridge"
λi7=0.107

i: "admiral"
acc.=54.3% (pos: 100.0%)

ori acc.=54.3% (pos: 100.0%)

i1: "airliner"
λi1=-0.345

i2: " bell toad"
λi2=0.263

i3: "lycaenid"
λi3=0.246

i4: "proboscis monkey"
λi4=-0.148

i5: "orange"
λi5=0.113

i6: "monarch"
λi6=0.105

i7: "rock crab"
λi7=0.104

Figure A10. Results from ResNet-50→Swin-T, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "black swan, Cygnus atratus"
acc.=67.5% (pos: 94.0%)

ori acc.=67.5% (pos: 98.0%)

i1: "quail"
λi1=-5.251

i2: "great grey owl"
λi2=2.261

i3: "goose"
λi3=2.108

i4: "junco"
λi4=1.917

i5: "Border terrier"
λi5=-1.474

i6: "bighorn"
λi6=1.434

i7: "ruddy turnstone"
λi7=1.352

i: "overskirt"
acc.=23.5% (pos: 24.0%)

ori acc.=23.5% (pos: 26.0%)

i1: "hoopskirt"
λi1=1.494

i2: "pencil box"
λi2=-0.816

i3: "wing"
λi3=0.719

i4: "swing"
λi4=-0.627

i5: "stretcher"
λi5=0.618

i6: "gown"
λi6=0.605

i7: "carousel"
λi7=-0.442

i: "shoji"
acc.=16.2% (pos: 86.0%)

ori acc.=16.3% (pos: 88.0%)

i1: "sliding door"
λi1=2.021

i2: "football helmet"
λi2=-1.908

i3: "consomme"
λi3=1.660

i4: "kimono"
λi4=1.638

i5: " orang"
λi5=1.586

i6: "teapot"
λi6=-0.965

i7: "viaduct"
λi7=-0.801

i: "lorikeet"
acc.=68.2% (pos: 100.0%)

ori acc.=68.4% (pos: 100.0%)

i1: " Kakatoe galerita"
λi1=6.604

i2: "koala"
λi2=3.038

i3: "spotted salamander"
λi3=1.829

i4: "quail"
λi4=-1.417

i5: "fig"
λi5=1.227

i6: "magpie"
λi6=-0.792

i7: "damselfly"
λi7=-0.772

i: "zebra"
acc.=48.4% (pos: 94.0%)

ori acc.=48.6% (pos: 94.0%)

i1: "power drill"
λi1=-3.788

i2: "jaguar"
λi2=3.170

i3: "sea urchin"
λi3=-2.911

i4: "hartebeest"
λi4=2.305

i5: "rhinoceros beetle"
λi5=-1.165

i6: "dogsled"
λi6=-1.111

i7: " lavabo"
λi7=0.809

i: "oscilloscope, scope, cathode-ray oscilloscope, CRO"
acc.=23.3% (pos: 96.0%)

ori acc.=23.5% (pos: 96.0%)

i1: "upright"
λi1=-4.350

i2: "screen"
λi2=2.544

i3: "crash helmet"
λi3=-2.452

i4: "maze"
λi4=2.129

i5: "lab coat"
λi5=1.719

i6: "desktop computer"
λi6=-1.416

i7: "mixing bowl"
λi7=1.273

i: "freight car"
acc.=31.9% (pos: 98.0%)

ori acc.=32.2% (pos: 98.0%)

i1: "trolleybus"
λi1=-4.933

i2: "padlock"
λi2=2.452

i3: "vault"
λi3=-2.072

i4: "theater curtain"
λi4=1.918

i5: "Gordon setter"
λi5=1.782

i6: "paddle"
λi6=1.702

i7: "electric locomotive"
λi7=1.418

i: "groom, bridegroom"
acc.=2.5% (pos: 70.0%)

ori acc.=2.5% (pos: 70.0%)

i1: "gown"
λi1=2.209

i2: "zucchini"
λi2=-0.899

i3: "moped"
λi3=-0.812

i4: "suit"
λi4=0.602

i5: "cliff"
λi5=0.586

i6: " mini"
λi6=-0.541

i7: " pj's"
λi7=-0.446

Figure A11. Results from Swin-T→ResNet-50, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "meerkat, mierkat"
acc.=47.3% (pos: 56.0%)

ori acc.=47.3% (pos: 82.0%)

i1: "butternut squash"
λi1=-0.890

i2: "mongoose"
λi2=0.676

i3: "Granny Smith"
λi3=-0.665

i4: "barn"
λi4=-0.571

i5: "bustard"
λi5=0.406

i6: "racket"
λi6=-0.347

i7: "can opener"
λi7=0.317

i: "doormat, welcome mat"
acc.=31.0% (pos: 36.0%)

ori acc.=31.1% (pos: 60.0%)

i1: "shovel"
λi1=0.500

i2: "prayer rug"
λi2=0.453

i3: "cradle"
λi3=-0.436

i4: "upright"
λi4=0.368

i5: "bath towel"
λi5=0.362

i6: "tusker"
λi6=-0.327

i7: "laptop"
λi7=0.304

i: "totem pole"
acc.=10.2% (pos: 66.0%)

ori acc.=10.2% (pos: 88.0%)

i1: "French bulldog"
λi1=-0.862

i2: "pole"
λi2=0.642

i3: "kelpie"
λi3=0.642

i4: "forklift"
λi4=0.567

i5: "toy poodle"
λi5=-0.563

i6: "pickelhaube"
λi6=-0.507

i7: " remote"
λi7=0.473

i: "poncho"
acc.=18.3% (pos: 40.0%)

ori acc.=18.3% (pos: 62.0%)

i1: "cloak"
λi1=0.474

i2: "red wolf"
λi2=-0.472

i3: "dishrag"
λi3=0.446

i4: " press"
λi4=-0.437

i5: "paper towel"
λi5=0.393

i6: "ice bear"
λi6=-0.291

i7: "wool"
λi7=0.284

i: "purse"
acc.=17.5% (pos: 8.0%)

ori acc.=17.5% (pos: 30.0%)

i1: "scale"
λi1=0.535

i2: "washer"
λi2=-0.399

i3: "jack-o'-lantern"
λi3=0.373

i4: " nursery"
λi4=-0.359

i5: "pencil box"
λi5=0.358

i6: "mailbag"
λi6=0.324

i7: "cannon"
λi7=0.279

i: "barn spider, Araneus cavaticus"
acc.=63.7% (pos: 18.0%)

ori acc.=63.8% (pos: 38.0%)

i1: "garden spider"
λi1=0.942

i2: "trilobite"
λi2=0.566

i3: "mantis"
λi3=-0.464

i4: "pencil box"
λi4=-0.430

i5: " horn"
λi5=0.392

i6: "Brabancon griffon"
λi6=0.362

i7: "muzzle"
λi7=0.328

i: "bakery, bakeshop, bakehouse"
acc.=38.8% (pos: 18.0%)

ori acc.=38.9% (pos: 34.0%)

i1: "park bench"
λi1=-0.634

i2: "barbell"
λi2=-0.394

i3: " market"
λi3=0.391

i4: "tray"
λi4=0.381

i5: " candy store"
λi5=0.227

i6: "orange"
λi6=0.224

i7: "tobacco shop"
λi7=0.215

i: "letter opener, paper knife, paperknife"
acc.=25.5% (pos: 0.0%)

ori acc.=25.5% (pos: 16.0%)

i1: "hog"
λi1=-0.279

i2: "backpack"
λi2=-0.260

i3: "koala"
λi3=-0.223

i4: "shoe shop"
λi4=-0.213

i5: "can opener"
λi5=0.193

i6: "hair slide"
λi6=0.190

i7: " Lemur catta"
λi7=-0.178

Figure A12. Results from ResNet-50→ResNet-18, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet
validation set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "mushroom"
acc.=5.1% (pos: 0.0%)

ori acc.=5.1% (pos: 38.0%)

i1: "croquet ball"
λi1=0.493

i2: " ewer"
λi2=0.327

i3: "patas"
λi3=0.325

i4: "trolleybus"
λi4=-0.321

i5: "acorn"
λi5=0.272

i6: "agaric"
λi6=0.250

i7: "zucchini"
λi7=0.201

i: "loupe, jeweler's loupe"
acc.=27.3% (pos: 6.0%)

ori acc.=27.3% (pos: 38.0%)

i1: "chest"
λi1=-0.558

i2: "lemon"
λi2=0.531

i3: "ptarmigan"
λi3=-0.523

i4: "puck"
λi4=0.420

i5: " crossword"
λi5=0.401

i6: "swimming trunks"
λi6=-0.314

i7: "binoculars"
λi7=0.280

i: "slot, one-armed bandit"
acc.=15.4% (pos: 62.0%)

ori acc.=15.5% (pos: 94.0%)

i1: "white stork"
λi1=-0.853

i2: "rifle"
λi2=0.719

i3: "golfcart"
λi3=0.669

i4: "armadillo"
λi4=-0.520

i5: "digital clock"
λi5=0.513

i6: "lemon"
λi6=0.498

i7: "vending machine"
λi7=0.448

i: "garbage truck, dustcart"
acc.=31.7% (pos: 66.0%)

ori acc.=31.9% (pos: 96.0%)

i1: "mailbox"
λi1=0.842

i2: "black stork"
λi2=0.821

i3: "potpie"
λi3=-0.639

i4: "crane"
λi4=0.621

i5: "lab coat"
λi5=0.564

i6: " wagon"
λi6=0.476

i7: "pencil sharpener"
λi7=0.460

i: "ostrich, Struthio camelus"
acc.=74.6% (pos: 78.0%)

ori acc.=74.8% (pos: 100.0%)

i1: "poncho"
λi1=0.968

i2: "pickelhaube"
λi2=-0.832

i3: "bustard"
λi3=0.570

i4: "hook"
λi4=0.516

i5: " dromedary"
λi5=0.429

i6: "plunger"
λi6=0.364

i7: "quill"
λi7=0.359

i: "freight car"
acc.=32.1% (pos: 78.0%)

ori acc.=32.2% (pos: 98.0%)

i1: " RV"
λi1=0.862

i2: "moped"
λi2=0.446

i3: " sawmill"
λi3=0.443

i4: "brass"
λi4=0.357

i5: "hard disc"
λi5=0.338

i6: "barrow"
λi6=0.330

i7: " hanky"
λi7=0.303

i: "gyromitra"
acc.=1.6% (pos: 78.0%)

ori acc.=1.6% (pos: 94.0%)

i1: "earthstar"
λi1=0.715

i2: "hourglass"
λi2=-0.708

i3: " carrier"
λi3=-0.494

i4: "coil"
λi4=-0.337

i5: "pickelhaube"
λi5=-0.311

i6: "Leonberg"
λi6=0.306

i7: "dome"
λi7=-0.296

i: "maillot, tank suit"
acc.=27.0% (pos: 26.0%)

ori acc.=27.0% (pos: 38.0%)

i1: "maillot"
λi1=0.766

i2: "soccer ball"
λi2=0.485

i3: "groom"
λi3=0.388

i4: "panpipe"
λi4=-0.363

i5: "coral fungus"
λi5=-0.297

i6: "broom"
λi6=-0.285

i7: "ear"
λi7=-0.283

Figure A13. Results from ResNet-18→ResNet-50, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet
validation set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "tiger cat"
acc.=58.2% (pos: 0.0%)

ori acc.=58.2% (pos: 22.0%)

i1: "tabby"
λi1=0.476

i2: "tiger"
λi2=0.369

i3: " ounce"
λi3=-0.270

i4: "umbrella"
λi4=0.250

i5: "comic book"
λi5=-0.226

i6: " bruin"
λi6=0.170

i7: "beaver"
λi7=0.164

i: "black grouse"
acc.=74.7% (pos: 74.0%)

ori acc.=74.7% (pos: 88.0%)

i1: "manhole cover"
λi1=-0.502

i2: "magpie"
λi2=0.458

i3: "bagel"
λi3=-0.420

i4: "mountain tent"
λi4=0.375

i5: "coucal"
λi5=0.331

i6: "koala"
λi6=-0.245

i7: " jak"
λi7=-0.221

i: "maypole"
acc.=29.0% (pos: 86.0%)

ori acc.=29.0% (pos: 100.0%)

i1: "pole"
λi1=0.482

i2: "Crock Pot"
λi2=-0.374

i3: " paling"
λi3=0.363

i4: "colobus"
λi4=-0.311

i5: "solar dish"
λi5=0.304

i6: " Afghan"
λi6=0.302

i7: "loupe"
λi7=0.196

i: "guillotine"
acc.=33.8% (pos: 80.0%)

ori acc.=33.9% (pos: 94.0%)

i1: "gong"
λi1=0.585

i2: "tub"
λi2=0.509

i3: "hook"
λi3=0.460

i4: "sliding door"
λi4=0.349

i5: "custard apple"
λi5=0.316

i6: "bubble"
λi6=0.304

i7: " wagon"
λi7=-0.280

i: "armadillo"
acc.=51.3% (pos: 82.0%)

ori acc.=51.3% (pos: 94.0%)

i1: "hard disc"
λi1=-0.784

i2: " torpedo"
λi2=0.496

i3: " ananas"
λi3=0.452

i4: "peacock"
λi4=0.363

i5: "snowmobile"
λi5=-0.336

i6: "mongoose"
λi6=0.314

i7: "albatross"
λi7=-0.278

i: "oscilloscope, scope, cathode-ray oscilloscope, CRO"
acc.=25.6% (pos: 90.0%)

ori acc.=25.7% (pos: 98.0%)

i1: "screen"
λi1=0.451

i2: " stoplight"
λi2=0.350

i3: "tape player"
λi3=0.308

i4: "tusker"
λi4=-0.274

i5: "toilet seat"
λi5=0.266

i6: "radio"
λi6=0.246

i7: "binder"
λi7=0.218

i: "rapeseed"
acc.=2.4% (pos: 94.0%)

ori acc.=2.4% (pos: 98.0%)

i1: "hook"
λi1=0.664

i2: "Christmas stocking"
λi2=-0.512

i3: "lionfish"
λi3=-0.510

i4: "worm fence"
λi4=0.420

i5: "coral fungus"
λi5=0.386

i6: "daisy"
λi6=0.271

i7: "entertainment center"
λi7=-0.205

i: "freight car"
acc.=35.4% (pos: 96.0%)

ori acc.=35.4% (pos: 98.0%)

i1: "electric locomotive"
λi1=0.467

i2: "pier"
λi2=0.342

i3: "forklift"
λi3=0.258

i4: "wreck"
λi4=0.231

i5: "fire engine"
λi5=0.215

i6: "chest"
λi6=0.198

i7: "wallet"
λi7=0.187

Figure A14. Results from ResNet-50→ViT-S, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon"
acc.=41.3% (pos: 56.0%)

ori acc.=41.4% (pos: 70.0%)

i1: " coast"
λi1=-0.644

i2: "minivan"
λi2=0.507

i3: " coach"
λi3=0.408

i4: "Saluki"
λi4=-0.367

i5: "car wheel"
λi5=0.357

i6: "hotdog"
λi6=0.350

i7: " mail"
λi7=0.338

i: "indigo bunting, indigo finch, indigo bird, Passerina cyanea"
acc.=74.3% (pos: 84.0%)

ori acc.=74.3% (pos: 94.0%)

i1: "mortar"
λi1=-0.934

i2: "ashcan"
λi2=0.738

i3: "jean"
λi3=0.590

i4: "disk brake"
λi4=-0.552

i5: "European gallinule"
λi5=0.362

i6: "jay"
λi6=0.353

i7: "giant schnauzer"
λi7=-0.338

i: "echidna, spiny anteater, anteater"
acc.=67.3% (pos: 92.0%)

ori acc.=67.4% (pos: 100.0%)

i1: "necklace"
λi1=-1.453

i2: "porcupine"
λi2=0.724

i3: "panpipe"
λi3=-0.644

i4: "sea cucumber"
λi4=0.553

i5: "acorn squash"
λi5=0.510

i6: "stole"
λi6=-0.468

i7: "dhole"
λi7=0.399

i: "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus"
acc.=53.7% (pos: 92.0%)

ori acc.=53.7% (pos: 100.0%)

i1: "black grouse"
λi1=1.145

i2: "cricket"
λi2=-0.749

i3: " Afghan"
λi3=-0.612

i4: "hyena"
λi4=0.577

i5: "mobile home"
λi5=-0.541

i6: "snorkel"
λi6=-0.474

i7: "wall clock"
λi7=0.469

i: "freight car"
acc.=32.0% (pos: 94.0%)

ori acc.=32.2% (pos: 98.0%)

i1: "hammerhead"
λi1=-1.251

i2: "potter's wheel"
λi2=-1.009

i3: "hyena"
λi3=-0.731

i4: "theater curtain"
λi4=0.698

i5: "sliding door"
λi5=0.663

i6: " roach"
λi6=0.652

i7: "rhinoceros beetle"
λi7=0.638

i: "zebra"
acc.=48.5% (pos: 90.0%)

ori acc.=48.6% (pos: 94.0%)

i1: "impala"
λi1=1.077

i2: "clog"
λi2=0.654

i3: "Welsh springer spaniel"
λi3=-0.632

i4: "sarong"
λi4=-0.610

i5: "soap dispenser"
λi5=-0.514

i6: "king snake"
λi6=0.501

i7: "puffer"
λi7=0.455

i: "balloon"
acc.=42.7% (pos: 94.0%)

ori acc.=42.8% (pos: 94.0%)

i1: "Loafer"
λi1=-0.979

i2: "airship"
λi2=0.932

i3: "school bus"
λi3=0.668

i4: " mini"
λi4=-0.625

i5: "potter's wheel"
λi5=-0.624

i6: "koala"
λi6=-0.561

i7: "Lakeland terrier"
λi7=-0.496

i: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum"
acc.=2.0% (pos: 100.0%)

ori acc.=2.2% (pos: 100.0%)

i1: "agaric"
λi1=1.663

i2: "typewriter keyboard"
λi2=1.066

i3: " ewer"
λi3=0.945

i4: "African elephant"
λi4=-0.560

i5: "lemon"
λi5=0.517

i6: " off-roader"
λi6=-0.467

i7: "rock beauty"
λi7=0.439

Figure A15. Results from ViT-S→ResNet-50, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "flamingo"
acc.=70.2% (pos: 94.0%)

ori acc.=70.2% (pos: 100.0%)

i1: "trolleybus"
λi1=-0.378

i2: " Argiope aurantia"
λi2=-0.357

i3: "snowmobile"
λi3=-0.221

i4: "drake"
λi4=0.199

i5: "stove"
λi5=-0.174

i6: "vacuum"
λi6=-0.160

i7: "tank"
λi7=-0.149

i: "lorikeet"
acc.=73.8% (pos: 94.0%)

ori acc.=73.8% (pos: 100.0%)

i1: "wool"
λi1=0.292

i2: "European gallinule"
λi2=0.178

i3: "espresso"
λi3=-0.173

i4: "cabbage butterfly"
λi4=-0.153

i5: "thresher"
λi5=-0.148

i6: " linnet"
λi6=0.136

i7: "robin"
λi7=0.128

i: "bustard"
acc.=69.5% (pos: 90.0%)

ori acc.=69.5% (pos: 96.0%)

i1: "peacock"
λi1=0.235

i2: " partridge"
λi2=0.188

i3: "crane"
λi3=0.173

i4: "water tower"
λi4=-0.138

i5: "siamang"
λi5=-0.129

i6: "cock"
λi6=0.119

i7: "kite"
λi7=0.111

i: "zebra"
acc.=52.6% (pos: 94.0%)

ori acc.=52.6% (pos: 98.0%)

i1: "odometer"
λi1=-0.546

i2: "jacamar"
λi2=-0.180

i3: "trifle"
λi3=-0.178

i4: "cheeseburger"
λi4=-0.172

i5: " iguana"
λi5=0.149

i6: "hot pot"
λi6=-0.143

i7: "gyromitra"
λi7=-0.093

i: "garbage truck, dustcart"
acc.=34.5% (pos: 94.0%)

ori acc.=34.7% (pos: 96.0%)

i1: "crane"
λi1=0.318

i2: "consomme"
λi2=-0.298

i3: "soccer ball"
λi3=0.293

i4: " Salamandra salamandra"
λi4=-0.267

i5: "puffer"
λi5=-0.223

i6: " cask"
λi6=0.191

i7: "tractor"
λi7=0.159

i: "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus"
acc.=54.1% (pos: 94.0%)

ori acc.=54.2% (pos: 96.0%)

i1: "bow"
λi1=0.334

i2: "pot"
λi2=0.303

i3: "ear"
λi3=0.230

i4: "home theater"
λi4=-0.212

i5: "trolleybus"
λi5=-0.196

i6: "plane"
λi6=-0.183

i7: "admiral"
λi7=0.148

i: "trolleybus, trolley coach, trackless trolley"
acc.=10.9% (pos: 100.0%)

ori acc.=10.9% (pos: 100.0%)

i1: "ashcan"
λi1=0.368

i2: "minibus"
λi2=0.226

i3: "bell cote"
λi3=0.168

i4: " coach"
λi4=0.139

i5: " tow car"
λi5=0.130

i6: " bob"
λi6=-0.129

i7: "fire engine"
λi7=0.109

i: "lionfish"
acc.=48.0% (pos: 96.0%)

ori acc.=48.1% (pos: 96.0%)

i1: "trolleybus"
λi1=-0.295

i2: "coral reef"
λi2=0.263

i3: "fountain"
λi3=0.243

i4: "buckeye"
λi4=0.187

i5: "night snake"
λi5=0.157

i6: "miniature schnauzer"
λi6=-0.151

i7: "mask"
λi7=0.140

Figure A16. Results from ResNet-18→Swin-T, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus"
acc.=48.6% (pos: 98.0%)

ori acc.=49.0% (pos: 100.0%)

i1: "geyser"
λi1=3.394

i2: " iguana"
λi2=-2.901

i3: " ai"
λi3=2.552

i4: "dhole"
λi4=2.079

i5: "hyena"
λi5=1.714

i6: " fitch"
λi6=0.948

i7: "spider monkey"
λi7=0.868

i: "rapeseed"
acc.=2.3% (pos: 94.0%)

ori acc.=2.4% (pos: 96.0%)

i1: "dragonfly"
λi1=-5.102

i2: "Appenzeller"
λi2=4.253

i3: "broccoli"
λi3=3.952

i4: "bell pepper"
λi4=-2.466

i5: "pier"
λi5=-2.308

i6: "green mamba"
λi6=1.872

i7: "bee"
λi7=1.810

i: "European fire salamander, Salamandra salamandra"
acc.=66.7% (pos: 98.0%)

ori acc.=66.8% (pos: 96.0%)

i1: "water snake"
λi1=-2.323

i2: "common newt"
λi2=2.161

i3: "whiptail"
λi3=-1.943

i4: " yellow lady-slipper"
λi4=1.417

i5: "slug"
λi5=1.149

i6: "spotted salamander"
λi6=0.980

i7: " worm snake"
λi7=-0.892

i: "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens"
acc.=40.6% (pos: 92.0%)

ori acc.=40.8% (pos: 94.0%)

i1: " howler"
λi1=4.761

i2: "capuchin"
λi2=-3.230

i3: " fitch"
λi3=3.134

i4: "car mirror"
λi4=2.563

i5: "balloon"
λi5=-2.459

i6: " yellow lady-slipper"
λi6=-1.289

i7: " panda"
λi7=1.219

i: "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus"
acc.=45.4% (pos: 94.0%)

ori acc.=45.5% (pos: 94.0%)

i1: "flatworm"
λi1=3.789

i2: "paddlewheel"
λi2=-2.883

i3: "ringlet"
λi3=2.495

i4: "barn spider"
λi4=-2.484

i5: "mobile home"
λi5=-1.786

i6: " ring snake"
λi6=-1.559

i7: "sulphur butterfly"
λi7=1.485

i: "oscilloscope, scope, cathode-ray oscilloscope, CRO"
acc.=21.2% (pos: 92.0%)

ori acc.=21.3% (pos: 92.0%)

i1: "bonnet"
λi1=-3.292

i2: "screen"
λi2=3.184

i3: "upright"
λi3=-2.183

i4: "crash helmet"
λi4=-2.107

i5: " site"
λi5=-1.310

i6: "ski mask"
λi6=-1.271

i7: "laptop"
λi7=-1.239

i: "hamster"
acc.=44.5% (pos: 100.0%)

ori acc.=44.7% (pos: 100.0%)

i1: "broccoli"
λi1=3.481

i2: "tench"
λi2=-1.616

i3: "quail"
λi3=1.524

i4: "baboon"
λi4=1.195

i5: "axolotl"
λi5=1.082

i6: "green lizard"
λi6=-0.822

i7: "cauliflower"
λi7=0.646

i: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum"
acc.=2.1% (pos: 100.0%)

ori acc.=2.2% (pos: 100.0%)

i1: "broccoli"
λi1=-4.356

i2: "admiral"
λi2=-3.383

i3: "kit fox"
λi3=2.243

i4: "goldfinch"
λi4=2.156

i5: "weevil"
λi5=1.973

i6: "mushroom"
λi6=-1.951

i7: "axolotl"
λi7=1.301

Figure A17. Results from Swin-T→ResNet-18, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "maillot"
acc.=29.6% (pos: 0.0%)

ori acc.=29.5% (pos: 28.0%)

i1: "jersey"
λi1=0.301

i2: "pickelhaube"
λi2=-0.299

i3: " pj's"
λi3=0.278

i4: "tank suit"
λi4=0.277

i5: "airliner"
λi5=-0.235

i6: "vizsla"
λi6=0.222

i7: "stingray"
λi7=0.190

i: "carousel, carrousel, merry-go-round, roundabout, whirligig"
acc.=42.1% (pos: 72.0%)

ori acc.=42.3% (pos: 100.0%)

i1: "rock beauty"
λi1=-0.509

i2: "ringlet"
λi2=-0.440

i3: "crutch"
λi3=0.411

i4: " nursery"
λi4=0.365

i5: "hartebeest"
λi5=-0.354

i6: "honeycomb"
λi6=0.295

i7: "book jacket"
λi7=0.241

i: "piggy bank, penny bank"
acc.=23.1% (pos: 70.0%)

ori acc.=23.2% (pos: 96.0%)

i1: "ibex"
λi1=-0.539

i2: "vase"
λi2=0.388

i3: "umbrella"
λi3=0.370

i4: "triceratops"
λi4=0.303

i5: "jacamar"
λi5=-0.241

i6: "gibbon"
λi6=-0.232

i7: "kit fox"
λi7=-0.179

i: "water tower"
acc.=9.0% (pos: 70.0%)

ori acc.=9.0% (pos: 94.0%)

i1: "king penguin"
λi1=-0.496

i2: "boathouse"
λi2=0.388

i3: "mushroom"
λi3=0.324

i4: " chute"
λi4=0.318

i5: " bell toad"
λi5=-0.300

i6: "yurt"
λi6=0.250

i7: "viaduct"
λi7=0.205

i: "rapeseed"
acc.=2.4% (pos: 76.0%)

ori acc.=2.4% (pos: 98.0%)

i1: " paling"
λi1=0.500

i2: "espresso maker"
λi2=-0.403

i3: "tripod"
λi3=0.270

i4: "altar"
λi4=-0.268

i5: "pot"
λi5=0.264

i6: "cheeseburger"
λi6=-0.259

i7: "barrow"
λi7=0.253

i: "Brabancon griffon"
acc.=59.6% (pos: 72.0%)

ori acc.=59.6% (pos: 92.0%)

i1: "pug"
λi1=0.399

i2: "Dandie Dinmont"
λi2=0.378

i3: "slide rule"
λi3=-0.371

i4: "water jug"
λi4=0.355

i5: "frilled lizard"
λi5=-0.306

i6: "Border terrier"
λi6=0.294

i7: " pail"
λi7=0.293

i: "indigo bunting, indigo finch, indigo bird, Passerina cyanea"
acc.=79.8% (pos: 80.0%)

ori acc.=80.0% (pos: 98.0%)

i1: "Loafer"
λi1=-0.736

i2: "hook"
λi2=0.672

i3: "hartebeest"
λi3=-0.563

i4: "cheeseburger"
λi4=-0.373

i5: "black grouse"
λi5=0.292

i6: "space shuttle"
λi6=-0.289

i7: "kit fox"
λi7=-0.253

i: "dhole, Cuon alpinus"
acc.=58.7% (pos: 80.0%)

ori acc.=58.7% (pos: 94.0%)

i1: "grey fox"
λi1=0.620

i2: "cabbage butterfly"
λi2=-0.488

i3: "sorrel"
λi3=0.362

i4: "cauliflower"
λi4=-0.361

i5: "scale"
λi5=0.337

i6: "Irish terrier"
λi6=0.288

i7: "tape player"
λi7=0.242

Figure A18. Results from ResNet-50→ViT-S, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "chime, bell, gong"
acc.=33.9% (pos: 36.0%)

ori acc.=33.9% (pos: 54.0%)

i1: " horn"
λi1=0.539

i2: "tile roof"
λi2=-0.492

i3: "gong"
λi3=0.480

i4: "photocopier"
λi4=-0.465

i5: " iguana"
λi5=-0.441

i6: "shopping basket"
λi6=-0.426

i7: "bell cote"
λi7=0.420

i: "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus"
acc.=45.5% (pos: 76.0%)

ori acc.=45.5% (pos: 94.0%)

i1: "bee"
λi1=0.988

i2: " man-eater"
λi2=-0.728

i3: " snoek"
λi3=-0.721

i4: " off-roader"
λi4=-0.711

i5: "minivan"
λi5=-0.672

i6: "typewriter keyboard"
λi6=0.492

i7: "iron"
λi7=-0.429

i: "fig"
acc.=4.4% (pos: 64.0%)

ori acc.=4.4% (pos: 82.0%)

i1: "Ibizan hound"
λi1=-1.253

i2: "nail"
λi2=-0.999

i3: "schipperke"
λi3=-0.946

i4: "plastic bag"
λi4=0.607

i5: "red fox"
λi5=-0.523

i6: "zucchini"
λi6=0.487

i7: " bell toad"
λi7=0.399

i: "CD player"
acc.=34.3% (pos: 56.0%)

ori acc.=34.4% (pos: 40.0%)

i1: "cassette player"
λi1=0.784

i2: "toilet seat"
λi2=0.636

i3: "radio"
λi3=0.531

i4: "bib"
λi4=0.369

i5: "library"
λi5=-0.343

i6: "pay-phone"
λi6=0.338

i7: " punch bag"
λi7=-0.312

i: "ladle"
acc.=25.7% (pos: 6.0%)

ori acc.=25.7% (pos: 20.0%)

i1: "wooden spoon"
λi1=0.629

i2: "strainer"
λi2=0.401

i3: "honeycomb"
λi3=0.321

i4: " horn"
λi4=0.309

i5: "stethoscope"
λi5=-0.292

i6: "skunk"
λi6=-0.279

i7: "football helmet"
λi7=-0.250

i: "cradle"
acc.=32.5% (pos: 36.0%)

ori acc.=32.6% (pos: 26.0%)

i1: "bassinet"
λi1=0.756

i2: "langur"
λi2=-0.693

i3: "radiator"
λi3=0.650

i4: "golf ball"
λi4=-0.545

i5: "African grey"
λi5=-0.488

i6: " paling"
λi6=0.450

i7: "cowboy hat"
λi7=-0.439

i: "lotion"
acc.=24.8% (pos: 58.0%)

ori acc.=24.9% (pos: 52.0%)

i1: "wolf spider"
λi1=1.181

i2: "otterhound"
λi2=-1.138

i3: "sunscreen"
λi3=0.718

i4: "kuvasz"
λi4=0.704

i5: "hair spray"
λi5=0.397

i6: "whiskey jug"
λi6=0.324

i7: "ice cream"
λi7=0.312

i: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum"
acc.=2.1% (pos: 100.0%)

ori acc.=2.2% (pos: 100.0%)

i1: "guillotine"
λi1=-1.241

i2: "sulphur butterfly"
λi2=1.217

i3: "stopwatch"
λi3=1.058

i4: "ice cream"
λi4=-0.897

i5: "jeep"
λi5=-0.833

i6: " man-eater"
λi6=-0.777

i7: "langur"
λi7=-0.560

Figure A19. Results from ViT-S→ResNet-18, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation
set, while ‘pos: xx%’ is the accuracy on positive samples only.



i: "freight car"
acc.=35.3% (pos: 98.0%)

ori acc.=35.4% (pos: 98.0%)

i1: "trolleybus"
λi1=-2.660

i2: "sliding door"
λi2=1.583

i3: " dial phone"
λi3=-1.136

i4: "padlock"
λi4=0.947

i5: " mower"
λi5=-0.718

i6: "crash helmet"
λi6=-0.619

i7: "electric locomotive"
λi7=0.495

i: "red-breasted merganser, Mergus serrator"
acc.=72.2% (pos: 96.0%)

ori acc.=73.0% (pos: 96.0%)

i1: "crayfish"
λi1=5.389

i2: "ostrich"
λi2=2.791

i3: "little blue heron"
λi3=-2.044

i4: "peacock"
λi4=-1.414

i5: " mud hen"
λi5=1.225

i6: "oystercatcher"
λi6=0.604

i7: "magpie"
λi7=-0.474

i: "badger"
acc.=51.3% (pos: 96.0%)

ori acc.=51.4% (pos: 96.0%)

i1: "amphibian"
λi1=-4.976

i2: " snoek"
λi2=-1.895

i3: "African elephant"
λi3=-1.728

i4: "weasel"
λi4=1.303

i5: "skunk"
λi5=0.919

i6: "toy poodle"
λi6=0.871

i7: "Persian cat"
λi7=-0.812

i: "echidna, spiny anteater, anteater"
acc.=72.5% (pos: 100.0%)

ori acc.=72.7% (pos: 100.0%)

i1: "platypus"
λi1=3.610

i2: "banded gecko"
λi2=-2.133

i3: "gar"
λi3=-1.872

i4: "porcupine"
λi4=1.563

i5: "box turtle"
λi5=0.920

i6: "ptarmigan"
λi6=0.847

i7: "crane"
λi7=0.750

i: "ox"
acc.=52.7% (pos: 66.0%)

ori acc.=52.8% (pos: 66.0%)

i1: "bison"
λi1=1.379

i2: "oxcart"
λi2=1.352

i3: "Chesapeake Bay retriever"
λi3=-0.934

i4: "titi"
λi4=0.878

i5: "Indian elephant"
λi5=-0.588

i6: " water ox"
λi6=0.426

i7: "clumber"
λi7=0.389

i: "dalmatian, coach dog, carriage dog"
acc.=60.6% (pos: 96.0%)

ori acc.=60.6% (pos: 96.0%)

i1: "wooden spoon"
λi1=1.475

i2: "Bernese mountain dog"
λi2=1.356

i3: "kuvasz"
λi3=1.191

i4: "tiger"
λi4=-0.777

i5: "Great Dane"
λi5=0.665

i6: "banana"
λi6=0.557

i7: "sombrero"
λi7=0.492

i: "oscilloscope, scope, cathode-ray oscilloscope, CRO"
acc.=25.6% (pos: 98.0%)

ori acc.=25.7% (pos: 98.0%)

i1: "screen"
λi1=2.562

i2: "upright"
λi2=-1.631

i3: "beaker"
λi3=0.875

i4: "maze"
λi4=0.778

i5: "mixing bowl"
λi5=0.669

i6: "radio"
λi6=0.585

i7: "home theater"
λi7=-0.584

i: "rapeseed"
acc.=2.4% (pos: 98.0%)

ori acc.=2.4% (pos: 98.0%)

i1: "lemon"
λi1=4.271

i2: "orange"
λi2=-3.234

i3: "sorrel"
λi3=2.532

i4: "hay"
λi4=1.902

i5: "Appenzeller"
λi5=1.097

i6: "white stork"
λi6=0.611

i7: "pot"
λi7=-0.560

Figure A20. Results from Swin-T→ViT-S, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation set,
while ‘pos: xx%’ is the accuracy on positive samples only.



i: "clumber, clumber spaniel"
acc.=62.9% (pos: 92.0%)

ori acc.=62.9% (pos: 94.0%)

i1: "Sussex spaniel"
λi1=0.356

i2: "English setter"
λi2=0.291

i3: "crash helmet"
λi3=0.288

i4: "miniature pinscher"
λi4=-0.194

i5: "Great Pyrenees"
λi5=0.142

i6: "bikini"
λi6=-0.133

i7: "Ibizan hound"
λi7=0.071

i: "balance beam, beam"
acc.=46.5% (pos: 92.0%)

ori acc.=46.5% (pos: 94.0%)

i1: "hook"
λi1=0.281

i2: "unicycle"
λi2=0.265

i3: "stretcher"
λi3=0.254

i4: "stage"
λi4=0.239

i5: " bars"
λi5=0.179

i6: "maillot"
λi6=0.178

i7: "dumbbell"
λi7=0.101

i: "tiger, Panthera tigris"
acc.=56.8% (pos: 96.0%)

ori acc.=56.8% (pos: 96.0%)

i1: "tiger cat"
λi1=0.594

i2: "borzoi"
λi2=0.166

i3: "patas"
λi3=0.147

i4: "tabby"
λi4=0.116

i5: "hornbill"
λi5=-0.094

i6: "clumber"
λi6=0.063

i7: "wooden spoon"
λi7=-0.054

i: "gyromitra"
acc.=1.4% (pos: 100.0%)

ori acc.=1.5% (pos: 100.0%)

i1: "hen-of-the-woods"
λi1=0.427

i2: "minibus"
λi2=-0.284

i3: "mushroom"
λi3=0.179

i4: "bloodhound"
λi4=0.126

i5: "stinkhorn"
λi5=0.119

i6: "weasel"
λi6=0.092

i7: "groenendael"
λi7=-0.087

i: "macaw"
acc.=73.9% (pos: 100.0%)

ori acc.=74.0% (pos: 100.0%)

i1: " Kakatoe galerita"
λi1=0.404

i2: "African grey"
λi2=0.267

i3: "lorikeet"
λi3=0.210

i4: "hornbill"
λi4=0.190

i5: "ear"
λi5=0.153

i6: "tractor"
λi6=-0.073

i7: "pill bottle"
λi7=0.039

i: "hartebeest"
acc.=51.7% (pos: 96.0%)

ori acc.=51.7% (pos: 96.0%)

i1: "impala"
λi1=0.347

i2: "espresso maker"
λi2=-0.310

i3: "ox"
λi3=0.175

i4: "black grouse"
λi4=0.167

i5: "Bernese mountain dog"
λi5=-0.157

i6: "bathing cap"
λi6=-0.153

i7: "bannister"
λi7=0.111

i: "tiger beetle"
acc.=56.1% (pos: 94.0%)

ori acc.=56.1% (pos: 94.0%)

i1: "throne"
λi1=-0.321

i2: "leaf beetle"
λi2=0.269

i3: "ground beetle"
λi3=0.261

i4: "moving van"
λi4=-0.238

i5: "bathing cap"
λi5=-0.185

i6: "impala"
λi6=-0.095

i7: "whiptail"
λi7=0.077

i: "trilobite"
acc.=75.6% (pos: 98.0%)

ori acc.=75.6% (pos: 98.0%)

i1: "mask"
λi1=0.371

i2: "chiton"
λi2=0.327

i3: "Gila monster"
λi3=0.260

i4: "radiator"
λi4=0.157

i5: "buckle"
λi5=0.142

i6: " cerastes"
λi6=0.109

i7: " rubber"
λi7=0.084

Figure A21. Results from ViT-S→Swin-T, where ‘acc.’ and ‘ori acc.’ denote the classification accuracies on the ImageNet validation set,
while ‘pos: xx%’ is the accuracy on positive samples only.


