
6. Appendix
6.1. Volumetric rendering

We use the same volume rendering formula as NeRF
[24], originally from [21], where the color of a pixel is rep-
resented as a sum over samples taken along the correspond-
ing ray through the volume:
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where the first exp represents ray transmission to sample i,
1�exp(��i�i) is the absorption by sample i, �i is the (post-
activation) density of sample i, and ci is the color of sample
i, with distance �i to the next sample.

6.2. Per-scene results
Fig. 11 provides a qualitative comparison of methods for

the Phototourism dataset, on the Trevi fountain scene. We
also provide quantitative metrics for each of the three tasks
we study, for each scene individually. Tab. 7 reports met-
rics on the static synthetic scenes, Tab. 8 reports metrics on
the static real forward-facing scenes, Tab. 9 reports metrics
on the dynamic synthetic monocular “teleporting camera”
scenes, Tab. 10 reports metrics on the dynamic real forward-
facing multiview scenes, and Tab. 11 reports metrics on the
Phototourism scenes.

6.3. Ablation studies
Multiscale. In Tab. 4, we ablate our model on the static
Lego scene [24] with respect to our multiscale planes, to
assess the value of including copies of our model at different
scales.
Feature length. In Tab. 5, we ablate our model on the
static Lego scene with respect to the feature dimension M
learned at each scale.
Time smoothness regularizer. Sec. 3.2 describes our
temporal smoothness regularizer based on penalizing the
norm of the second derivative over the time dimension,
to encourage smooth motion and discourage acceleration.
Tab. 6 illustrates an ablation study of this regularizer on the
Jumping Jacks scene from D-NeRF [30].

7. Model hyperparameters
Our full hyperparameter settings are available in the

config files in our released code, at github.com/
sarafridov/K-Planes.

Scales Explicit Hybrid
(32 Feat. Each) PSNR " PSNR " # params #

64, 128, 256, 512 35.26 35.79 34M
128, 256, 512 35.29 35.75 33M

256, 512 34.52 35.37 32M
512 32.93 33.60 25M

64, 128, 256 34.26 35.07 8M

Scales Explicit Hybrid
(96 Feat. Total) PSNR " PSNR " # params #

64, 128, 256, 512 35.16 35.67 25M
128, 256, 512 35.29 35.75 33M

256, 512 34.50 35.16 47M
512 33.12 34.09 76M

64, 128, 256 34.26 35.07 8M

Table 4. Ablation study over scales. Including even a single lower
scale improves performance, for both our explicit and hybrid mod-
els, even when holding the total feature dimension constant. Us-
ing lower scales only (excluding resolution 5123) substantially re-
duces model size and yields quality much better than using high
resolution alone, though slightly worse than including both low
and high resolutions. This experiment uses the static Lego scene;
in the top table each scale is allocated 32 features and in the bottom
table a total of 96 features are allocated evenly among all scales.

Feature Length Explicit Hybrid
(M ) PSNR " PSNR " # params #

2 30.66 32.05 2M
4 32.27 34.18 4M
8 33.80 35.12 8M

16 34.80 35.44 17M
32 35.29 35.75 33M
64 35.38 35.88 66M

128 35.45 35.99 132M

Table 5. Ablation study over feature length M . Increasing the
feature length M learned at each scale consistently improves qual-
ity for both our models, with a corresponding linear increase in
model size and optimization time. Our experiments in the main
text use a mixture of M = 16 and M = 32; for specific applica-
tions it may be beneficial to vary M along this tradeoff between
quality and model size. This experiment uses the static Lego scene
with 3 scales: 128, 256, and 512.

github.com/sarafridov/K-Planes
github.com/sarafridov/K-Planes
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Figure 11. Qualitative results from Phototourism dataset. We compare our model with strong baselines. Our method captures the
geometry and appearance of the scene, but produces slightly lower resolution results than NeRF-W. Note that our model optimizes in just
35 minutes on a single GPU compared to NeRF-W, which takes 2 days on 8 GPUs.

Time Smoothness Explicit Hybrid
Weight (�) PSNR " PSNR "

0.000 30.45 30.86
0.001 31.61 32.23
0.010 32.00 32.64
0.100 31.96 32.58
1.000 31.36 32.22

10.000 30.45 31.63

Table 6. Ablation study over temporal smoothness regulariza-
tion. For both models, a temporal smoothness weight of 0.01
is best, with PSNR degrading gradually with over- or under-
regularization. This experiment uses the Jumping Jacks scene with
4 scales: 64, 128, 256, and 512, and 32 features per scale.



PSNR "
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-explicit 34.82 25.72 31.2 36.65 35.29 29.49 34.00 30.51 32.21
Ours-hybrid 34.99 25.66 31.41 36.78 35.75 29.48 34.05 30.74 32.36
INGP [25] 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.18
TensoRF [6] 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77 33.14
Plenoxels [10] 33.98 25.35 31.83 36.43 34.10 29.14 33.26 29.62 31.71
JAXNeRF [7, 24] 34.20 25.27 31.15 36.81 34.02 30.30 33.72 29.33 31.85

SSIM "
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-explicit 0.981 0.937 0.975 0.982 0.978 0.949 0.988 0.892 0.960
Ours-hybrid 0.983 0.938 0.975 0.982 0.982 0.950 0.988 0.897 0.962
INGP - - - - - - - - -
TensoRF 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895 0.963
Plenoxels 0.977 0.933 0.976 0.980 0.975 0.949 0.985 0.890 0.958
JAXNeRF 0.975 0.929 0.970 0.978 0.970 0.955 0.983 0.868 0.954

Table 7. Full results on static synthetic scenes [24]. Dashes denote values that were not reported in prior work.

PSNR "
Room Fern Leaves Fortress Orchids Flower T-Rex Horns Mean

Ours-explicit 32.72 24.87 21.07 31.34 19.89 28.37 27.54 28.40 26.78
Ours-hybrid 32.64 25.38 21.30 30.44 20.26 28.67 28.01 28.64 26.92
NeRF [24] 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45 26.50
Plenoxels [10] 30.22 25.46 21.41 31.09 20.24 27.83 26.48 27.58 26.29
TensoRF (L) [6] 32.35 25.27 21.30 31.36 19.87 28.60 26.97 28.14 26.73
DVGOv2 [33] - - - - - - - - 26.34

SSIM "
Room Fern Leaves Fortress Orchids Flower T-Rex Horns Mean

Ours-explicit 0.955 0.809 0.738 0.898 0.665 0.867 0.909 0.884 0.841
Ours-hybrid 0.957 0.828 0.746 0.890 0.676 0.872 0.915 0.892 0.847
NeRF [24] 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828 0.811
Plenoxels [10] 0.937 0.832 0.760 0.885 0.687 0.862 0.890 0.857 0.839
TensoRF (L) [6] 0.952 0.814 0.752 0.897 0.649 0.871 0.900 0.877 0.839
DVGOv2 [33] - - - - - - - - 0.838

Table 8. Full results on static forward-facing scenes [23]. Dashes denote values that were not reported in prior work.



PSNR "
Hell Warrior Mutant Hook Balls Lego T-Rex Stand Up Jumping Jacks Mean

Ours-explicit 25.60 33.56 28.21 38.99 25.46 31.28 33.27 32.00 31.05
Ours-hybrid 25.70 33.79 28.50 41.22 25.48 31.79 33.72 32.64 31.61
D-NeRF [30] 25.02 31.29 29.25 32.80 21.64 31.75 32.79 32.80 29.67
T-NeRF [30] 23.19 30.56 27.21 32.01 23.82 30.19 31.24 32.01 28.78
Tensor4D [31] - - - - 26.71 - 36.32 34.43 -
TiNeuVox [9] 28.17 33.61 31.45 40.73 25.02 32.70 35.43 34.23 32.67
V4D [11] 27.03 36.27 31.04 42.67 25.62 34.53 37.20 35.36 33.72

SSIM "
Hell Warrior Mutant Hook Balls Lego T-Rex Stand Up Jumping Jacks Mean

Ours-explicit 0.951 0.982 0.951 0.989 0.947 0.980 0.980 0.974 0.969
Ours-hybrid 0.952 0.983 0.954 0.992 0.948 0.981 0.983 0.977 0.971
D-NeRF [30] 0.95 0.97 0.96 0.98 0.83 0.97 0.98 0.98 0.95
T-NeRF [30] 0.93 0.96 0.94 0.97 0.90 0.96 0.97 0.97 0.95
Tensor4D [31] - - - - 0.953 - 0.983 0.982 -
TiNeuVox [9] 0.97 0.98 0.97 0.99 0.92 0.98 0.99 0.98 0.97
V4D [11] 0.96 0.99 0.97 0.99 0.95 0.99 0.99 0.99 0.98

Table 9. Full results on monocular “teleporting-camera” dynamic scenes. We use the synthetic scenes from D-NeRF [30], which we
refer to as monocular “teleporting-camera” because although there is a single training view per timestep, the camera can move arbitrarily
between adjacent timesteps. Dashes denote unreported values. TiNeuVox trains in 30 minutes, V4D in 4.9 hours, D-NeRF in 2 days, and
Tensor4D for an unspecified duration (Tensor4D reports iterations rather than time). Our reported results were obtained after roughly 1
hour of optimization on a single GPU. Like D-NeRF and TiNeuVox, we train and evaluate using half-resolution images (400 by 400 pixels).

PSNR "
Coffee Martini Spinach Cut Beef Flame Salmon1 Flame Steak Sear Steak Mean

Ours-explicit 28.74 32.19 31.93 28.71 31.80 31.89 30.88
Ours-hybrid 29.99 32.60 31.82 30.44 32.38 32.52 31.63
LLFF [23] - - - 23.24 - - -
DyNeRF [16] - - - 29.58 - - -
MixVoxels-L† [37] 29.36 31.61 31.30 29.92 31.21 31.43 30.80

SSIM "
Coffee Martini Cook Spinach Cut Beef Flame Salmon1 Flame Steak Sear Steak Mean

Ours-explicit 0.943 0.968 0.965 0.942 0.970 0.971 0.960
Ours-hybrid 0.953 0.966 0.966 0.953 0.970 0.974 0.964
LLFF - - - 0.848 - - -
DyNeRF - - - 0.961 - - -
MixVoxels-L 0.946 0.965 0.965 0.945 0.970 0.971 0.960

† Very recent/concurrent work. MixVoxels was released in December 2022. 1Using the first 10 seconds of the 30 second long video.

Table 10. Full results on multiview dynamic scenes [16]. Dashes denote unreported values. Note that our method optimizes in less than
4 GPU hours, whereas DyNeRF trains on 8 GPUs for a week, approximately 1344 GPU hours.



PSNR "
Brandenburg Gate Sacre Coeur Trevi Fountain Mean

Ours-explicit 24.85 19.90 22.00 22.25
Ours-hybrid 25.49 20.61 22.67 22.92
NeRF-W [20] 29.08 25.34 26.58 27.00
NeRF-W (public)† 21.32 19.17 18.61 19.70
LearnIt [35] 19.11 19.33 19.35 19.26

MS-SSIM "
Brandenburg Gate Sacre Coeur Trevi Fountain Mean

Ours-explicit 0.912 0.821 0.845 0.859
Ours-hybrid 0.924 0.852 0.856 0.877
NeRF-W 0.962 0.939 0.934 0.945
Nerf-W (public)† 0.845 0.752 0.694 0.764
LearnIt - - - -

† Open-source version https://github.com/kwea123/nerf_pl/tree/nerfw where we implement the test-time optimization ourselves
exactly as for k-planes. NeRF-W code is not public.

Table 11. Full results on phototourism scenes. Note that our results were obtained after about 35 GPU minutes, whereas NeRF-W trains
with 8 GPUs for two days, approximately 384 GPU hours.

https://github.com/kwea123/nerf_pl/tree/nerfw
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