
A. Additional Results
Fair Comparison to VIOLET [8]. VIOLET proposes
to augment VTM+MLM with masked visual token mod-
eling for VidL pre-training, while only showing marginal
improvements on downstream performance. In contrast,
we conduct comprehensive investigations across different
MVM targets and masking strategies to demonstrate that
effective MVM training can largely improve downstream
performance. Note that our study already encompasses the
design of MVM in [8], that is MVM with VQ target and
BM+AM as the masking strategy. To make a fair compari-
son between [8] and our best setting (MVM with SIF target
and BM+AM as the masking strategy), we reproduce [8]
under the same setting and report downstream performance
in Table 1. Results show that our setting obtains a signifi-
cant improvement, with +2.3% on TGIF-Frame and +13.3%
on AveR for DiDeMo-Retrieval, respectively. These re-
sults suggest the importance of an appropriate MVM set-
ting, which is the core belief in our study.

Method MVM TGIF-Frame DiDeMo-Retrieval
Target Acc. R1 R5 R10 AveR

VIOLET [8] VQ 70.5 32.9 63.0 74.5 56.8
VIOLETv2 SIF 72.8 47.9 76.5 84.1 69.5

Table 1. Fair comparison to VIOLET [8]. Both models are pre-trained
on WebVid [2]+CC [27].

MVM vs. Temporal self-supervised objectives. In addi-
tion to the reconstructive MVM task, other self-supervised
video modeling tasks can be explored, for example, Frame
Order Modeling (FOM) [12, 34], which reconstructs the
temporal orders of shuffled frame inputs. In Table 2, we
compare MVM (SIF) with FOM in [34], when pre-trained
on WebVid [2]. MVM (SIF) still leads to better perfor-
mance, with a gain of +0.7% on TGIF-Frame and +4.8%
on AveR for DiDeMo-Retrieval, respectively.

VTM+MLM+
TGIF-Frame DiDeMo-Retrieval

Acc. R1 R5 R10 AveR
MVM (SIF) 68.8 35.1 63.3 73.1 57.2
FOM 68.1 27.6 59.0 70.7 52.4

Table 2. MVM vs. FOM. Both models are pre-trained on WebVid [2].

Initialization and Learning of Video Backbone. We in-
vestigate the effect of different initialized video backbones
with or without MVM on VL inputs in Table 3. At first, al-
though the used video transformer (VT) is randomly initial-
ized, the MVM training still enhances the visual represen-
tation and benefits the downstream video-language (VidL)
tasks. Furthermore, MVM can also boost better initialized
VT from VidSwin-B and lead to a comprehensive increase.
Specifically, the improvement gap is more significant than
random initialization, where we can learn better from MVM
and enlarge its effectiveness during pre-training. We ad-
ditionally compare two self-supervised initializations with
MVM on video-only inputs, one with TVF as the MVM tar-

get and the other with SIF. Though VidL pre-training with
MVM from supervised VidSwin-B initialization leads to the
best downstream performance, we observe consistent per-
formance improvement from MVM on VL inputs regardless
of the initialization setting.

Weight Init.
MVM TGIF-Frame DiDeMo-Retrieval
on VL Acc. R1 R5 R10 AveR

Random ✕ 55.9 5.6 19.9 29.8 18.5
✓ 56.5 7.4 22.9 33.8 21.4

V-only MVM (TVF) ✕ 59.9 15.3 38.4 54.7 36.1
✓ 60.2 17.4 43.2 56.0 38.9

V-only MVM (SIF) ✕ 61.0 16.9 42.4 54.9 38.1
✓ 61.5 18.6 44.0 58.1 40.2

VidSwin-B ✕ 68.1 28.7 57.0 69.7 51.8
✓ 68.8 35.1 63.3 73.1 57.2

Table 3. Impact of weight initialization and learning of video back-
bone. All variants are pre-trained on video-text from WebVid [2] for 5
epochs. The MVM target is spatial-focused image features (SIF) from
Swin-B [16]), if not specified otherwise. For V-only MVM (TVF/SVF), we
first self-supervisedly pre-train the video backbone with MVM on video-
only inputs from WebVid for 5 epochs. The final pre-training setting is
highlighted in gray .

Type of MVM Loss. We compare the type of loss function
for the MVM training by using least absolute deviations (l1)
or least square errors (l2) in Table 4. It is well known that
the l1 loss can be resistant to outlier data. We show that
MVM through l1 is also more robust and leads to better
performance on both video question answering and text-to-
video retrieval than the l2 loss.

MVM Loss
TGIF-Frame DiDeMo-Retrieval

Acc. R1 R5 R10 AveR
l1 68.8 35.4 62.4 74.9 57.6
l2 68.8 33.0 60.1 71.9 55.0

Table 4. Impact of MVM loss type. All variants are pre-trained on We-
bVid [2] with VTM+MLM+MVM (SIF) for 5 epochs, using RM as the
masking strategy with ratio of 15%. The final pre-training setting is high-
lighted in gray .

MVM Prediction Head. We investigate the prediction
head for MVM in Table 5. As a result, a single linear layer
is not enough to model the complicated distilling MVM fea-
tures. (e.g., 31.3 vs. 35.4 R1 on DiDeMo-Retrieval) There-
fore, we follow VTM and MLM to use 2-layer MLP as the
prediction head for MVM.

MVM Head
TGIF-Frame DiDeMo-Retrieval

Acc. R1 R5 R10 AveR
1 Linear Layer 68.8 31.3 60.1 72.8 54.7
2-layer MLP 68.8 35.4 62.4 74.9 57.6

Table 5. Impact of MVM prediction head. All variants are pre-trained
on WebVid [2] with VTM+MLM+MVM (SIF) for 5 epochs, using RM as
the masking strategy with ratio of 15%. The final pre-training setting is
highlighted in gray .

TVF Target Extractors vs. Downstream Performance.
We compare distilling video features from VidSwin-B vs.
VidSwin-L (the default setting in the main text) in Table 6.



Here, for experiments with VidSwin-B, the same VidSwin-
B weight is used to initialize the video backbone and to ex-
tract the MVM target. Hence, the MVM objective can be
easily minimized by simply ignoring the text inputs, which
conflict with the other objectives. This variant is in princi-
ple similar to masked frame modeling in HERO [12], the
key difference lies in whether the video backbone is refined
during pre-training. In addition, we investigate whether the
sparse sampling of video frames when extracting TVF tar-
get is the key reason behind the lower performance of TVF,
compared to SVF. Hence, we compare the default sparse
sampling of 5 frames, against a dense-version of TVF tar-
get (feeding 16 frames into VidSwin-L). While the dense
input is slightly beneficial, SIF still performs better, with
absolute advantages of +0.4% on TGIF-Frame and +1.8%
on AveR for DiDeMo-Retrieval.

MVM Target
TGIF-Frame DiDeMo-Retrieval

Acc. R1 R5 R10 AveR
TVF (VidSwin-L [17]) 68.0 32.8 60.5 73.0 55.4

TVF (VidSwin-B) 67.5 25.8 55.0 68.0 49.6
TVF-dense (VidSwin-L) 68.4 34.3 60.8 72.4 55.8

Table 6. Temporal-aware video feature (TVF) target models vs. down-
stream performance. All variants are pre-trained on WebVid [2] with
VTM+MLM+MVM (TVF) for 5 epochs, using RM as the masking strat-
egy with ratio of 15%.

Additional Exploration in Combining MVM Targets.
We explore the additional combination of distilling MVM
targets in Table 7. MVM with SIF has an obvious advan-
tage over TVF only on both video question answering and
text-to-video retrieval. While, considering SIF+TVF seems
not to bring a robust improvement, especially decreasing
text-to-video retrieval. The previous study [3] shows that
current VidL benchmarks primarily focus on spatial under-
standing of the key frame from videos. Furthermore, com-
bining TVF with SIF results in excessive training overhead.
Accordingly, we choose SIF as our final pre-training setting.

MVM Targets
TGIF-Frame DiDeMo-Retrieval

Acc. R1 R5 R10 AveR
SIF 68.8 35.4 62.4 74.9 57.6
TVF 68.0 32.8 60.5 73.0 55.4
SIF + TVF 69.2 33.8 63.0 74.4 57.1

Table 7. Combining target features for MVM. All variants are pre-
trained on WebVid [2] for 5 epochs. The final pre-training setting is high-
lighted in gray .

Additional Exploration of SIF Target. We explore a more
advanced SIF target, DeiT [30], in Table 8. These results
show that Swin-B still has an advantage (a noticeable higher
34.9 R1 on retrieval), consistent with our previous observa-
tions in the main text. That is, SIF should share similar
inductive biases to the video encoder (i.e., Swin-T/B/L).
Investigation of Training Recipe with CLIP Target. We
presented initial results for varying training settings using
CLIP/Swin-B targets and compare them with the default

Image Feat. Train IN-1K TGIF-Frame DiDeMo-Retrieval
Model Data ACC@1 Acc. R1 R5 R10
ResNet-50 IN-1K 76.1 67.3 29.1 58.1 69.3
DeiT [30] IN-1K 83.4 68.4 31.4 59.4 72.2
Swin-B IN-1K 83.5 68.3 34.9 63.4 73.9

Table 8. Comparing Swin-B vs. another SIF model (DEiT) All variants
are pre-trained on WebVid with VTM+MLM+MVM (SIF) for 5 epochs,
using RM with 15% as the masking strategy.

setting in Table 1. Swin-B had a significant advantage over
CLIP. As we adjust the training recipe with CLIP target in
Table 9, a better training recipe reduces the performance gap
between the SIF target and the CLIP target. The results in
turn suggest the importance of an effective MVM strategy
(e.g., masking ratio). Though impossible to iterate over all
settings, Swin-B remains competitive under the same train-
ing recipe, especially with limited training data (IN-22K vs.
400M). Note that we use CLIP image features as the MVM
target, while other related works [15,20] use them as model
inputs. One potential enhancement is to leverage the mul-
timodal information from both image and text encoders in
CLIP (similar to the use of both in [20]), which is an inter-
esting direction to explore in future studies. However, our
setup is still valid, as we aim to train a fusion-encoder ar-
chitecture rather than a dual-encoder architecture as CLIP.

MVM
Settings

TGIF-Frame DiDeMo-Retrieval
target Acc. R1 R5 R10
CLIP

Default
67.7 29.8 57.8 68.5

Swin-B 68.8 35.1 63.3 73.1

CLIP

lr × 2 70.5 32.9 61.6 73.5
masking ratio = 0.3 68.0 31.8 59.6 71.3
loss type = l2 68.3 30.1 59.1 71.0
linear MVM head 68.2 30.5 58.3 69.2

Swin-B
lr × 2 70.6 33.3 63.7 75.2
masking ratio = 0.3 68.8 36.2 64.0 74.5

Table 9. Investigation of Training Recipe with CLIP Target. All vari-
ants are pre-trained on WebVid with VTM+MLM+MVM for 5 epochs.
The default setting follows Table 1 in the main text, that is RM with 15%
masking ratio, l1 loss and 2-layer MLP head for MVM prediction.

Extended Results for Table 1. The additional results on
MSVD-QA and MSRVTT-Retrieval in Table 10 show that
SIF is still the most effective, consistent with Table 1. How-
ever, the effects of different MVM targets seem to be bet-
ter on MSVD-QA and MSRVTT-Retrieval (on average 15s
long) than those on TGIF-Frame (on average 3s long) and
DiDeMo-Retrieval (on average 30s long). We hypothesize
that different downstream video lengths may contribute to
different performance gains/losses when evaluating the ef-
fectiveness of an MVM target, which we leave as future
directions for investigation.
Qualitative Results. Figure 1 shows good and bad exam-
ples of optical flow predictions made by RAFT-L [28] with
sparsely sampled frames. As shown in 1b, the top example
shows zoom-in shots, and the bottom shows moving shots.
All content in the current frame is moving, which is the



Pre-training Tasks MVM Target
MSVD-QA MSRVTT-Retrieval

Acc. R1 R5 R10 AveR
VTM+MLM None 49.2 26.0 56.6 69.4 50.7

+MVM

RGB Pixel Values 51.0 (+1.8) 27.4 (+1.4) 58.0 (+1.4) 69.8 (+0.4) 51.7 (+1.0)
Histogram of Oriented Gradients [6] 50.1 (+0.9) 27.4 (+1.4) 57.7 (+1.1) 70.2 (+0.8) 51.8 (+1.1)
Depth Maps (DPT-L [24]) 50.3 (+1.1) 28.0 (+2.0) 57.4 (+0.8) 70.6 (+0.8) 52.0 (+1.3)
Optical Flow (RAFT-L [28]) 49.7 (+0.5) 25.8 (-0.2) 55.8 (-0.8) 69.4 50.3 (-0.4)
Spatial-focused Image Features (Swin-B [16]) 51.1 (+1.9) 29.4 (+3.4) 59.9 (+3.6) 73.1 (+3.7) 54.1 (+3.4)
Temporal-aware Video Features (VidSwin-L [17]) 49.8 (+0.6) 29.9 (+3.9) 58.1 (+1.5) 70.2 (+0.8) 52.7 (+2.0)
Discrete Visual Tokens (DALL-E [23]) 50.7 (+1.5) 27.3 (+1.3) 58.3 (+1.7) 70.0 (+0.6) 51.9 (+1.2)
Multimodal Features (CLIP-ViT-B [22]) 50.2 (+1.0) 30.0 (+4.0) 58.8 (+2.2) 71.1 (+1.7) 53.3 (+2.6)

Table 10. Comparing target features for MVM applied to video-text data. All variants are pre-trained on WebVid [2] for 5 epochs. Masking is performed
randomly (RM) with a ratio of 15%. The final pre-training setting is highlighted in gray .

(a) (b)
Figure 1. Visualization of optical flow (Flow) predictions by RAFT-L [28] with sparsely sampled frames. We show examples of good cases in (a) and
bad cases in (b).

main reason behind the failure in optical flow estimation.
We also show the visualizations of zero-shot text-to-

video retrieval on MSRVTT (Figure 2), DiDeMo (Figure 3),
and LSMDC (Figure 4) to demonstrate that MVM can help
video understanding from different domains, such as gam-
ing, animation, human activity, or movie scene.

B. Additional Pre-training Details

Vidoe-Text Matching (VTM). VTM enhances the cross-
modal fusion via modeling the alignments between visual
and textual inputs. At each training step, we randomly re-
place the corresponding text Xpos for a given video V with
the text description Xneg from a different video in the same
batch. Both the positive pair (V,Xpos) and negative pair
(V,Xneg) are modeled by Cross-modal Transformer (CT),
and VTM is to tell them apart from the global VidL rep-
resentation hc of the [CLS] token. In particular, hc will
be processed by a fully-connected layer (FCVTM) to learn
contrastively through classification:

bpos = FCVTM(hc
pos), b

neg = FCVTM(hc
neg),

LVTM = − 1

B

B∑
i

log
bpos
i

bpos
i +

∑
bneg
i

,
(1)

where hc
pos or hc

neg is hc of positive or negative pairs.
Masked Language Modeling (MLM). In MLM, we ran-

domly mask out some word tokens with a probability of
15%.1 The goal is to recover these masked word tokens x
from the joint VidL features h modeled by CT. Specifically,
the corresponding hx for these masked tokens are fed in a
fully-connected layer (FCMLM) and projected to the discrete
token space for classification:

x′
i = FCMLM(h

x
i),

LMLM = −E [
1

|MMLM|
∑

i∈MMLM
logP (xi | x′

i)],
(2)

where MMLM denotes the index set of masked word tokens.
Implementation Details. Our VIOLETv2 is implemented
based on PyTorch [21]. As discussed in the main text and
supported by the additional experimental results above, our
final pre-training setting is (i) VTM+MLM+MVM (with
MVM target as spatial-focused image features from Swin-
B [16], applied on video-text inputs only) as the pre-training
tasks; (ii) 2-layer MLP as the MVM prediction head and
l1 regression as the MVM loss; and (iii) blockwise mask-
ing + random masking with masking ratio of 30% as the
masking strategy. We adopt AdamW [18] as the optimizer
with a warmup learning rate schedule of 5e-5 peak learn-
ing rate, betas of (0.9, 0.98), and weight decay of 1e-3 for
all pre-training experiments. We pre-train our model on 32

1Following BERT [7], We replace 80% of masked word tokens as the
[MASK] token, 10% as a random token, and 10% as its original token.



NVIDIA V100 GPUs with a batch size of 28 per GPU. Pre-
training with 10 epochs on WebVid2.5M [2] + CC3M [27]
takes about 27 hours to finish. We present the training set-
tings for all finetuning experiments in the next section.

C. Experimental Setup of Downstream Tasks
We test our pre-trained models on 3 popular VidL tasks

across 13 downstream datasets, including text-to-video re-
trieval, video question answering, and video captioning. For
text-to-video retrieval, we report downstream performance
on MSRVTT [32], DiDeMo [9], and LSMDC [26] and use
Recall at K (R@K, K=1,5,10) as the evaluation metric.
For video question answering, we consider datasets in both
multiple-choice and open-ended settings, including TGIF-
Action, TGIF-Transition, TGIF-Frame [10], MSRVTT-
MC [33], MSRVTT-QA, MSVD-QA [31], LSMDC-MC
and LSMDC-FiB [29]. We evaluate our models using ac-
curacy. For video captioning, we report CIDER scores on
MSRVTT and MSVD.

We follow the standard training/validation/testing splits
of the original datasets. If not otherwise stated, we sparsely
sample T = 5 video frames and adopt video frame size 224
with patch size H = W = 32. Similar to pre-training, we use
AdamW [18] to fine-tune our model for each downstream
task with a warmup learning rate schedule of 2e-5 peak
learning rate, betas of (0.9, 0.98), and weight decay of 1e-
3. All finetuning experiments are conducted on Microsoft
Azure [1] adopting mixed-precision training with Deep-
Speed [25].2 All video data are pre-processed by evenly
extracting 32 frames to avoid expensive decoding on-the-
fly. During training, we randomly sample T frames from 32
frames, resize the shorter side of all frames to 224, and ran-
dom crop (224x224) at the same location for all the frames
in a given video. During inference, we evenly sample T
frames from 32 frames and center crop (224x224) for all
the sampled video frames.

C.1. Text-To-Video Retrieval

For text-to-video retrieval, similar to visual-text match-
ing (VTM) during pre-training, we treat corresponding
video-text pairs in the same batch as positives and all other
pairwise combinations as negatives. We adopt a fully-
connected (FC) layer (FCT2V) over the VidL representation
hc of the [CLS] token to learn through classification:

bpos = FCT2V(hc
pos), b

neg = FCT2V(hc
neg),

LT2V = − 1

B

B∑
i

log
bpos
i

bpos
i +

∑
bneg
i

,
(3)

where hc
pos or hc

neg is hc of positive or negative pairs. In
particular, we use pre-trained FCVTM for zero-shot text-to-

2We conduct retrieval finetuning on 8 80GB A100 GPUs to enable
larger batch size, while all other finetuning experiments are conducted on
8 32GB V100 GPUs.

VideoQA Task #Option

Multiple-Choice

TGIF-Action [10] 5
TGIF-Transition [10] 5
MSRVTT-MC [33] 5
LSMDC-MC [29] 5

Open-Ended

TGIF-Frame [10] -
MSRVTT-QA [31] -

MSVD-QA [4] -
LSMDC-FiB [29] -

Table 11. Summary of video question answering tasks. For open-ended
Video QA, we do not limit the answer vocabulary to a fixed candidate set.

video retrieval and to initialize FCT2V for further fine-tuning
on each downstream text-to-video retrieval task.
MSRVTT [32] contains 10K YouTube videos with 200K
human annotations. For fair comparison [2, 11], we train
on 9K training+validation splits and evaluate on the 1K-A
testing split. We adopt batch size 20 per GPU and train for
10 epochs.
DiDeMo [9] consists of 10K videos annotated with 40K
sentences from Flickr. Following [2, 11], we concatenate
all sentences from the same video into a paragraph and per-
form paragraph-to-video retrieval for DiDeMo. We adopt
batch size 16 per GPU and train for 10 epochs.
LSMDC [26] contains 118K video clips from 202 movies.
Each clip has a caption from movie scripts or descriptive
video services. Following [2,19], we evaluate on 1K testing
clips that disjoint from the training+validation splits. We
adopt batch size 20 per GPU and train for 5 epochs.

C.2. Video Question Answering

We test our model on video question answering (QA)
tasks in both multiple-choice and open-ended settings as
Table 11. We follow LAVENDER [13] to formulate Video
QA as Masked Language Modeling due to its superior per-
formance. For multiple-choice QA tasks, we concatenate
question with all answer options and add a [MASK] to form
the input text (Q+A0+A1+A2+A3+A4+[MASK]). We treat
the same Masked Language Modeling (MLM) layer as used
in pre-training upon hx to predict the word token corre-
sponding to the answer index (e.g., 0,1,2,3,4). Simi-
larly, for open-ended QA tasks, we apply MLM over the
input (Q+[MASK]). Cross-entropy loss is used to supervise
the downstream finetuning over the whole word vocabulary.
TGIF-Action, TGIF-Transition, and TGIF-Frame [10]
require spatial-temporal reasoning to answer questions re-
garding GIF videos in TGIF-QA Specifically, we aim to test
our model along three dimensions: (i) Action: to recognize
the repeated action; (ii) Transition: to identify the transi-
tion between the before and after states; (iii) Frame: to an-
swer questions about a specific frame from the GIF video.
Among them, TGIF-Action and TGIF-Transition are col-
lected under a multiple-choice setting, and TGIF-Frame is



an open-ended video QA task with free-form answers. We
adopt batch size 24 and train for 56/20/10 epochs for Ac-
tion/Transition/Frame, respectively.
MSRVTT-MC [33] and MSRVTT-QA [31] are created
based on videos and captions in MSRVTT [32]. MSRVTT-
MC is a multiple-choice task with videos as questions,
and captions as answers. Each video contains 5 captions,
with only one positive match. This setting can be viewed
as video-to-text retrieval, hence we simply evaluate the
model trained on MSRVTT-Retrieval. MSRVTT-QA con-
tains 243K open-ended questions over 10K videos. We
adopt batch size 24 per GPU and training epochs 8.
MSVD-QA [31] consists of 47K open-ended questions over
2K videos, based on video-caption pairs from MSVD [4].
We adopt batch size 24 per GPU and train for 10 epochs.
LSMDC-MC and LSMDC-FiB [29] are built from the
LSMDC dataset [26]. Similar to MSRVTT-MC, LSMDC-
MC requires the model to select the only positive caption
that describes the video from 5 caption candidates, and can
be formulated as video-to-text retrieval. LSMDC-FiB re-
places a word in the question sentence with the [BLANK]
token, and requires the model to recover the missing word.
We regard LSMDC-FiB as an open-ended Video QA task.
In particular, we replace the [BLANK] token with [MASK]
token, and use the MLM prediction head over the represen-
tation hx of the [MASK] token to predict the correct answer.
We adopt batch size 24 per GPU and train for 10 epochs.

C.3. Video Captioning

For video captioning, we evaluate on MSRVTT [32] and
MSVD [5]. MSRVTT consists of 10K videos with 20 cap-
tions per video, and MSVD contains 2K videos, with 40
captions per video. We follow the standard captioning splits
to train/evaluate with VIOLETv2. The captioning finetun-
ing is formulated as masked language modeling (MLM)
with a causal attention mask so that the current word to-
ken only attends to the tokens before it, following Swin-
BERT [14]. During training, we set the probability of ran-
dom masking caption tokens to 0.15, the same as what is
used in MLM during pre-training. We adopt batch size 24
per GPU and train for 20 epochs. During inference, we
generate the captions auto-regressively. At each generation
step, a [MASK] token is appended to the previously gener-
ated tokens, and the model will predict the current tokens
based on the learned embedding at the [MASK] token po-
sition. We perform generation until the model outputs a
[SEP], which is defined as the sentence ending token or
when it reaches the maximum generation step 50.



Figure 2. Qualitative examples of zero-shot text-to-video retrieval on MSRVTT [32].



Figure 3. Qualitative examples of zero-shot text-to-video retrieval on DiDeMo [9].



Figure 4. Qualitative examples of zero-shot text-to-video retrieval on LSMDC [26].
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