
Transformer-Based Learned Optimization
Supplementary Material

Erik Gärtner1,2* Luke Metz1 Mykhaylo Andriluka1

C. Daniel Freeman1 Cristian Sminchisescu1

1Google Research 2Lund University
erik.gartner@math.lth.se

{lmetz,mykhayloa,cdfreeman,sminchisescu}@google.com

In this supplementary material, we include additional re-
sults and visualizations (sec. 1), describe details of our imple-
mentation of Optimus (sec. 2), list the input features (sec. 3),
summarize the hyperparameters of our method (sec. 4) and
include the details of the datasets used in the paper (sec. 5).

1. Additional visualizations

The following section provides additional visualizations
of the experiments in the main paper.
Results on standard evaluation functions. We evaluate
Optimus on a benchmark of 15 classical optimization test
functions. Fig. 5 and tab. 4 provides detailed per-function
results. These results were then aggregated to calculate the
performance profile (fig. 3 in the main paper).
Comparison of optimizer efficiency. Fig. 4 shows the effi-
ciency of Optimus on N -dimensional Rosenbrock functions
and compares it to other optimization algorithms. Note
that Optimus achieves better loss values while using signif-
icantly less compute than BFGS and Adafactor MLP. For
N = 1000, Optimus converges after ∼60 function evalua-
tions achieving a loss value ∼5 while BFGS achieves a loss
of ∼106 using ∼240 function evaluations. The plot was gen-
erated using the same Rosenbrock optimization trajectories
as presented in the main paper.
Runtime Comparison. In fig. 1 we plot the runtime of
the optimization step for Optimus and other optimization
methods on the task of finding minima of N -dimensional
Rosenbrock functions while varying N between 2 and 1000.
In this comparison we use a widely adopted implementa-
tion of BFGS from the SciPy [15] package. Both Optimus
and BFGS [4] have O(N2) time complexity. Interestingly
for large N Optimus optimization step is faster than BFGS,
which is likely to be due to its more efficient Jax [3] imple-
mentation.

*Work done during an internship at Google.

Figure 1. Time required to compute the optimizer update step as a
function of dimensionality of the objective function.

Additional Optimization Trajectories. Fig. 6 presents ad-
ditional visualizations of optimization trajectories on N -
dimensional Rosenbrock functions. Note how Optimus tends
to vary its step size throughout the trajectories while Adafac-
tor MLP tends to monotonically decrease its step size. We
have observed that Adafactor MLP generally tends to learn
a learning rate schedule based on the current iteration (a
feature to the networks) and decrease its step size monotoni-
cally.

2. Implementation details

The Optimus algorithm is shown in alg. 1 and the corre-
sponding neural network architecture is shown in fig. 2.
Training. We implement Optimus in Jax [3] using Haiku [7]
and the learned_optimization1 framework. When training
Optimus on human motion reconstruction task we using
a batch size of 20. We generate the batches by sampling

1https://github.com/google/learned_optimization

1

https://github.com/google/learned_optimization

x0

Loss

L0 ∇L0

θ Encoder ℰ1

…

Linear
Projection

Encoder ℰL

z0 z1 zK

αK dK
⋮ ⋮
α0 d0

u1
K

⋮
u10

uL
K
⋮
uL0

M
L
P

Optimus

M
L
P

M
L
P

… Δxk = Biλa exp(λbα) ⊙ d

Bi = Bi−1 +
L

∑
l=1

ul(ul)⊤

…xN

Loss

LN

Figure 2. Left: schematic overview of applying our Transformer-
based learned optimizer, Optimus, to iteratively minimize the loss L.
Right: architecture of Optimus consisting of L stacked Transformer
encoders that predict the parameter update ∆xk given the feature
vector zk consisting of the associated gradient dL

dxk
together with

the features from [10].

…

Ln

Recon.
Loss

Recon.
Loss

TDS TDS TDS

Recon.
Loss

s0

xn
q1 q2 qT

s1 s2 sT

Physics
Loss

Figure 3. Overview of the physics loss introduced in [5] where the
optimization variable x corresponds to joint torques of a physically
simulated human with the goal of minimizing a pose reconstruction
loss between the physical character and observed visual evidence.

random windows from the Human3.6M [8] training set, then
rolling out the optimization for 50 steps, and computing the
PES [14] gradients every 5 steps using 2 antithetic samples.
We learn the weights using Adam [9] with the learning rate
of 5× 10−4. To stabilize the training we perform gradient
clipping to gradients with a norm greater than 3.

2.1. Distributed Physics Loss

We use the differentiable physics loss introduced in [5]
using the Tiny Differentiable Simulator [6] (TDS) that was
implemented in C++. A schematic overview of the loss
function is available in fig. 3, however, see [5] for an in-depth
explanation. The gradients of the loss are computed using the
automatic differentiation framework CppAD [2]. We wrap

the simulation step function as a custom TensorFlow [1]
function to enable easier integration with Jax when training
Optimus. We sample rollouts from 400 distributed servers
exposing the loss function using the Courier2 framework.
We do this to overcome the issue of the slow evaluation time
of the physics loss.

3. Input features
In the following we list the features z used as input by

Optimus. The features are identical to the features used
in [10] and we list them here to make the paper more self-
contained.

• the parameter values

• the 3 momentum values (m)

• the second moment value (v)

• 3 values consisting of momenta normalized by rms
gradient norm −m/

√
v

• the (
√
v + ε)−1

• 3 AdaFactor normalized gradient values

• the tiled, AdaFactor row features (3 features)

• the tiled, AdaFactor column features (3 features)

• 1.0 divided by the square root of these previous 6
AdaFactor features

• 3 features consisting AdaFactor normalized momentum
values

• 11 features formed by taking the current
timestep, t, and computing tanh(t/x) where x ∈
{1, 3, 10, 30, 100, 300, 1000, 3000, 10k, 30k, 100k}.

4. Hyperparameters and Computional Re-
sources

We train Optimus using a distributed setup on the Google
Compute Engine3. When training on the DiffPhy [5] recon-
struction task, we distributed the loss function on 400 vCPU
instances. This significant computational cost is what moti-
vated us to find a model which converges faster than prior
work (e.g. Adafactor MLP [10]). We trained approximately
30 such models throughout experimentation.

Training models onN -dimensional Rosenbrock functions
was much faster as its loss function evaluates in∼5ms rather
than ∼4s. We trained those models for 48 hours using 40

2https://github.com/deepmind/launchpad/tree/
master/courier

3https://cloud.google.com/compute

https://github.com/deepmind/launchpad/tree/master/courier
https://github.com/deepmind/launchpad/tree/master/courier
https://cloud.google.com/compute

vCPU instances. In total, we trained approximately 100 such
models.

The primary hyperparameters and the ranges of them
that we tested are presented in tab. 3. Due to the high com-
putational expense, we could not test all combinations ex-
haustively. We chose a short truncation length (5) on the
physics tasks as it allows us to update the network more
often which speed up the training convergence. Similarly,
having a smaller batch size allowed us to update the model
more frequently as gathering training batches was faster.

5. Datasets Details
We use three sets of data in the paper. Firstly, we evaluate

on the established Human3.6M [8] dataset, which is recorded
in a laboratory setting with the permission of the actors. We
list the sequences used in our validation set in tab. 2. When
comparing to prior work we use the protocol established
in [11] namely evaluating on sequences Directions, Discus-
sions, Greeting, Posing, Purchases, Taking Photos, Waiting,
Walking, Walking Dog and Walking Together from subjects
S9 and S11. We evaluate the motions using only camera
60457274 and following prior work [11,16] we downsample
the sequences from 50 FPS to 25 FPS.

Next, we use the AIST4 [13] dataset which features pro-
fessional dancers performing to copyright-cleared dance mu-
sic. The sequences we evaluate on are given in tab. 1. Fi-
nally, we provide qualitative examples of our method on
“in-the-wild“ internet videos that were released under cre-
ative common licenses.

4https://aistdancedb.ongaaccel.jp/

Sequence Frames
gBR_sBM_c06_d06_mBR4_ch06 1-120
gBR_sBM_c07_d06_mBR4_ch02 1-120
gBR_sBM_c08_d05_mBR1_ch01 1-120
gBR_sFM_c03_d04_mBR0_ch01 1-120
gJB_sBM_c02_d09_mJB3_ch10 1-120

gKR_sBM_c09_d30_mKR5_ch05 1-120
gLH_sBM_c04_d18_mLH5_ch07 1-120
gLH_sBM_c07_d18_mLH4_ch03 1-120
gLH_sBM_c09_d17_mLH1_ch02 1-120
gLH_sFM_c03_d18_mLH0_ch15 1-120
gLO_sBM_c05_d14_mLO4_ch07 1-120
gLO_sBM_c07_d15_mLO4_ch09 1-120
gLO_sFM_c02_d15_mLO4_ch21 1-120

gMH_sBM_c01_d24_mMH3_ch02 1-120
gMH_sBM_c05_d24_mMH4_ch07 1-120

Table 1. Sequences from the dance dataset AIST [13] used for
evaluation.

Sequence Subject Camera Id Frames
Phoning S11 55011271 400-599
Posing_1 S11 58860488 400-599
Purchases S11 60457274 400-599

SittingDown_1 S11 54138969 400-599
Smoking_1 S11 54138969 400-599

TakingPhoto_1 S11 54138969 400-599
Waiting_1 S11 58860488 400-599
WalkDog S11 58860488 400-599

WalkTogether S11 55011271 400-599
Walking_1 S11 55011271 400-599
Greeting_1 S9 54138969 400-599
Phoning_1 S9 54138969 400-599
Purchases S9 60457274 400-599

SittingDown S9 55011271 400-599
Smoking S9 60457274 400-599

TakingPhoto S9 60457274 400-599
Waiting S9 60457274 400-599

WalkDog_1 S9 54138969 400-599
WalkTogether_1 S9 55011271 400-599

Walking S9 58860488 400-599

Table 2. Sequences from the Human3.6M [8] pose dataset used in
our ablations and experiments with reinforcement learning agents.

https://aistdancedb.ongaaccel.jp/

Algorithm 1 The Optimus algorithm. zk denotes the Adafactor MLP features from [10] and � denotes elementwise
multiplication.

Initial guess x0

B0 ← I
k ← 0
repeat
{α,d,∆Bk} ← Optimus(zk)
Bk ← Bk−1 + ∆Bk . Update learned preconditioning matrix.
sk ← Bk[λa exp(λbα)� d]
xk ← xk−1 + sk

k ← k + 1
until k > MAX_ITERS orf(xk) > 1

N

∑N
i=1 βf(xk−i) + ε

Variable Search grid Value Used
Learning Rate {0.1, 0.01, 0.001, 5× 10−4, 1× 10−4} 5× 10−4

Model Dimension {64, 128, 256, 512} 128
Encoders {1, 2, 3, 4, 5} 3
λa {0.001, 0.01, 0.1} 0.1
λb {0.001, 0.01, 0.1} 0.1
Batch Size {20, 50, 128} 20
PES truncation length {5, 10, 20} 5

Table 3. An overview of the different hyperparameters tested during designing of Optimus. Value Used refers to the value used on the human
pose reconstruction task from video.

50 100 150 200 250

10 −1
1

10
10 2
10 3
10 4
10 5
10 6

Optimus
BFGS
Momentum
Adafactor MLP
10d
100d
1000d

Function Evaluations

Lo
ss

Figure 4. Comparison of loss vs number of function evaluations on the N -dimensional Rosenbrock functions for a maximum budget of 200
steps. Note that BFGS may evaluate the function multiple times per step due to its line search.

10 20 50 100 250 500 1000

10 −5

10 −4

10 −3

10 −2

10 −1

1

10

BFGS
Optimus
Adafactor MLP
Adam
Momentum

Ackley

Dimensions

Lo
ss

(a) Ackley

10 20 50 100 250 500 1000

10 −2

1

10 2

10 4

10 6

10 8

10 10 BFGS
Optimus
Adafactor MLP
Adam
Momentum

Dixon-Price

Dimensions

Lo
ss

(b) Dixon-Price

10 20 50 100 250 500 1000

10 −8

10 −6

10 −4

10 −2

1

BFGS
Optimus
Adafactor MLP
Adam
Momentum

Griwank

Dimensions

Lo
ss

(c) Griwank

10 20 50 100 250 500 1000

10 −6

10 −4

10 −2

1

10 2

10 4 BFGS
Optimus
Adafactor MLP
Adam
Momentum

Levy

Dimensions

Lo
ss

(d) Levy

10 20 50 100 250 500 1000

10 −12
10 −10
10 −8
10 −6
10 −4
10 −2

1
10 2

BFGS
Optimus
Adafactor MLP
Adam
Momentum

Perm Function 0, d, beta

Dimensions

Lo
ss

(e) Perm Function 0, d, beta

10 20 50 100 250 500 1000
10 −8
10 −6
10 −4
10 −2

1
10 2
10 4
10 6

BFGS
Optimus
Adafactor MLP
Adam
Momentum

Powel

Dimensions

Lo
ss

(f) Powel

10 20 50 100 250 500 1000

5
10
2

5
10 2

2

5
10 3

2

5
10 4

2

5
BFGS
Optimus
Adafactor MLP
Adam
Momentum

Rastrigin

Dimensions

Lo
ss

(g) Rastrigin

10 20 50 100 250 500 1000

1
10

10 2
10 3
10 4
10 5
10 6

BFGS
Optimus
Adafactor MLP
Adam
Momentum

Rosenbrock

Dimensions

Lo
ss

(h) Rosenbrock

10 20 50 100 250 500 1000

10 −15
10 −12
10 −9
10 −6
10 −3

1
10 3
10 6 BFGS

Optimus
Adafactor MLP
Adam
Momentum

Rotated Hyper-Ellipsoid

Dimensions

Lo
ss

(i) Rotated Hyper-Ellipsoid

10 20 50 100 250 500 1000

10 −12

10 −10

10 −8

10 −6

10 −4
BFGS
Optimus
Adafactor MLP
Adam
Momentum

Sphere

Dimensions

Lo
ss

(j) Sphere

10 20 50 100 250 500 1000

10
2

5
10 2

2

5
10 3

2

5
10 4 BFGS

Optimus
Adafactor MLP
Adam
Momentum

Styblinski-Tang

Dimensions

Lo
ss

(k) Styblinski-Tang

10 20 50 100 250 500 1000

10 −8

10 −6

10 −4

10 −2

1
BFGS
Optimus
Adafactor MLP
Adam
Momentum

Sum of Powers

Dimensions

Lo
ss

(l) Sum of Powers

10 20 50 100 250 500 1000

10 −12
10 −10
10 −8
10 −6
10 −4
10 −2

1
10 2

BFGS
Optimus
Adafactor MLP
Adam
Momentum

Sum of Squares

Dimensions

Lo
ss

(m) Sum of Squares

10 20 50 100 250 500 1000

10 2
10 3
10 4
10 5
10 6
10 7
10 8 BFGS

Optimus
Adafactor MLP
Adam
Momentum

Trid

Dimensions

Lo
ss

(n) Trid

10 20 50 100 250 500 1000
10 −12
10 −8
10 −4

1
10 4
10 8

10 12
10 16
10 20 BFGS

Optimus
Adafactor MLP
Adam
Momentum

Zakharov

Dimensions

Lo
ss

(o) Zakharov

Figure 5. Evaluation results used to generate performance profile plot in Sec. 5.1 of the paper. Here we show results separately for each
objective function. We plot objective value averaged over 64 randomly initialized optimization runs on the y-axis and dimensionality of the
objective function on the x-axis. Each method has a fixed budget of 200 iterations.

50k

100k

150k

20
0k

250k
300k

35
0k

400k

−8 −6 −4 −2 0 2

−2

−1

0

1

2

3

4

5

Optimus
Adafactor MLP
BFGS
Minima

(a) 10d Rosenbrock

50k

100k
150k

200k
250k

−5 −4 −3 −2 −1 0 1 2

−1

0

1

2

3

4

5

6

7 Optimus
Adafactor MLP
BFGS
Minima

(b) 10d Rosenbrock

50k

100k
150k

200k
250k300k

350k 400k450k

−5 −4 −3 −2 −1 0 1 2

0

2

4

6

8 Optimus
Adafactor MLP
BFGS
Minima

(c) 10d Rosenbrock

0.1M

0.2M
0.3M

0.4M
0.5M

0.6
M

−8 −6 −4 −2 0 2 4 6

0

2

4

6

8
Optimus
Adafactor MLP
BFGS
Minima

(d) 100d Rosenbrock

100k

200k
300k

400k
500k600k

−7 −6 −5 −4 −3 −2 −1 0 1 2
−2

0

2

4

6

8
Optimus
Adafactor MLP
BFGS
Minima

(e) 100d Rosenbrock

10
0k

20
0k

30
0k

40
0k

50
0k

60
0k

−2 0 2 4 6 8

−3

−2

−1

0

1

2

3

4 Optimus
Adafactor MLP
BFGS
Minima

(f) 100d Rosenbrock

10k
20k30k

40k

50k

60k

60k

−4 −3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3

4

Optimus
Adafactor MLP
BFGS
Minima

(g) 1000d Rosenbrock

100k

200k
300k

400k

50
0k

−8 −6 −4 −2 0 2 4
−1

0

1

2

3

4

5

6

7

8 Optimus
Adafactor MLP
BFGS
Minima

(h) 1000d Rosenbrock

50k
10
0k

15
0k

20
0k

−2 −1 0 1 2 3 4 5 6

−5

−4

−3

−2

−1

0

1

2 Optimus
Adafactor MLP
BFGS
Minima

(i) 1000d Rosenbrock

Figure 6. Example trajectories on N -dimensional Rosenbrock functions. We visualize the trajectory for the first two dimensions.

Table 4. Full results for experiments on classical optimization functions. Each value is averaged over 64 random initializations. We
implement the functions according to the formulas presented in [12].

Function BFGS Optimus Adafactor MLP Adam Momentum
Ackley 2d 1.11e+01 6.65e+00 1.69e-01 8.51e+00 8.99e+00
Ackley 10d 1.34e+01 7.16e-01 1.11e-01 1.06e+01 1.31e+01
Ackley 20d 1.36e+01 2.12e-01 2.68e-01 1.16e+01 1.34e+01
Ackley 50d 1.36e+01 5.46e-02 5.19e-01 1.15e+01 1.34e+01
Ackley 100d 1.37e+01 6.80e-06 9.02e-02 1.18e+01 1.36e+01
Ackley 250d 1.36e+01 3.65e-01 1.26e-01 1.18e+01 1.36e+01
Ackley 500d 1.37e+01 1.38e+00 1.13e-01 1.17e+01 1.37e+01
Ackley 1000d 1.37e+01 5.60e-05 7.71e-02 1.16e+01 1.37e+01
Dixon-Price 2d 4.64e-13 4.67e+00 8.86e-06 2.83e-01 5.42e+00
Dixon-Price 10d 6.35e-01 4.24e-01 6.67e-01 3.81e+00 2.49e+01
Dixon-Price 20d 6.67e-01 7.60e-03 6.68e-01 1.19e+01 3.44e+01
Dixon-Price 50d 7.58e-01 3.62e-02 6.77e-01 6.56e+01 8.19e+01
Dixon-Price 100d 5.54e+00 4.63e-01 7.20e-01 2.56e+02 1.89e+02
Dixon-Price 250d 8.67e+06 1.17e+00 1.05e+00 1.58e+03 9.12e+02
Dixon-Price 500d 8.93e+07 6.57e+00 2.20e+00 6.39e+03 6.60e+03
Dixon-Price 1000d 4.90e+08 3.30e+01 1.25e+01 2.53e+04 4.04e+09
Griwank 2d 2.00e-02 9.04e-01 1.43e-01 1.96e-02 1.91e-02
Griwank 10d 6.92e-02 2.81e-01 7.45e-01 5.16e-02 8.33e-02
Griwank 20d 5.78e-04 5.63e-02 8.05e-01 9.16e-03 8.78e-01
Griwank 50d 9.31e-10 4.48e-02 9.25e-01 1.62e-03 1.06e+00
Griwank 100d 0.00e+00 3.41e-02 1.79e+00 1.69e-03 1.11e+00
Griwank 250d 0.00e+00 4.68e-02 3.07e+00 9.31e-04 1.28e+00
Griwank 500d 0.00e+00 2.30e-02 5.20e+00 9.29e-04 1.57e+00
Griwank 1000d 0.00e+00 1.74e-01 9.34e+00 2.64e-04 2.14e+00
Levy 2d 8.36e+00 5.65e+00 3.74e+00 8.40e+00 3.80e+00
Levy 10d 2.20e+01 3.72e-01 1.15e-01 2.06e+01 1.53e+01
Levy 20d 4.00e+01 1.31e-06 4.16e-02 3.81e+01 3.03e+01
Levy 50d 9.51e+01 2.81e-03 5.89e-02 9.17e+01 7.12e+01
Levy 100d 1.83e+02 3.96e-06 3.27e-03 1.78e+02 1.37e+02
Levy 250d 4.20e+02 1.41e-03 8.96e+00 4.34e+02 3.39e+02
Levy 500d 9.28e+02 1.52e-03 1.31e+02 8.89e+02 6.95e+02
Levy 1000d 1.81e+03 9.78e-03 2.93e+03 1.76e+03 1.38e+03
Perm Function 0, d, beta 2d 1.76e-12 1.16e-01 1.07e-01 9.96e-09 5.65e-09
Perm Function 0, d, beta 10d 2.03e-12 8.17e-11 2.58e-10 5.69e-07 6.02e-07
Perm Function 0, d, beta 20d 1.06e-12 4.45e-10 1.24e-09 2.37e-06 2.60e-06
Perm Function 0, d, beta 50d 1.83e-12 7.14e-10 8.96e-09 1.61e-05 1.70e-05
Perm Function 0, d, beta 100d 1.89e-13 4.80e-09 4.70e-08 6.49e-05 6.73e-05
Perm Function 0, d, beta 250d 4.21e-08 2.95e-08 3.21e-02 4.02e-04 4.05e-03
Perm Function 0, d, beta 500d 6.24e-05 2.96e-07 4.53e-02 1.61e-03 6.86e-03
Perm Function 0, d, beta 1000d 1.25e-01 4.52e-06 1.33e+01 6.36e-03 2.27e+00
Powel 2d 1.08e-08 4.29e-01 5.16e+00 7.83e+00 3.43e+01
Powel 10d 1.81e-08 1.04e+01 7.02e+01 1.94e+01 1.20e+02
Powel 20d 1.15e-07 8.17e-01 5.39e+01 3.82e+01 1.50e+02
Powel 50d 2.09e-05 5.92e-02 1.14e+02 9.74e+01 4.31e+02
Powel 100d 1.78e-03 1.38e-02 2.94e+02 2.12e+02 8.98e+02
Powel 250d 9.41e+01 3.26e-03 5.87e+02 4.77e+02 2.18e+03
Powel 500d 3.35e+04 7.06e-02 1.37e+03 9.98e+02 4.54e+03
Powel 1000d 1.76e+05 1.26e+00 2.41e+03 1.93e+03 8.88e+03

Continued on next page

Table 4 – continued from previous page
Function BFGS Optimus Adafactor MLP Adam Momentum

Rastrigin 2d 6.17e+01 3.30e+00 2.85e+00 3.99e+01 5.59e+01
Rastrigin 10d 3.04e+02 5.24e+00 1.01e+01 1.93e+02 2.16e+02
Rastrigin 20d 6.57e+02 7.12e+00 2.10e+01 4.20e+02 5.44e+02
Rastrigin 50d 1.57e+03 1.33e+01 5.53e+01 1.05e+03 1.33e+03
Rastrigin 100d 3.18e+03 2.27e+01 1.05e+02 2.04e+03 2.66e+03
Rastrigin 250d 8.03e+03 5.48e+01 2.63e+02 5.14e+03 6.61e+03
Rastrigin 500d 1.61e+04 1.06e+02 5.45e+02 1.03e+04 1.33e+04
Rastrigin 1000d 3.30e+04 2.10e+02 1.10e+03 2.05e+04 2.67e+04
Rosenbrock 2d 5.07e-13 3.48e+01 5.06e-01 3.58e+00 5.17e+00
Rosenbrock 10d 5.43e-01 5.84e+00 4.12e+00 9.52e+01 2.16e+02
Rosenbrock 20d 1.69e+01 2.00e+00 1.41e+01 1.99e+02 2.89e+02
Rosenbrock 50d 8.40e+01 2.56e+00 4.40e+01 2.89e+02 3.04e+02
Rosenbrock 100d 2.46e+02 4.47e+00 9.50e+01 5.26e+02 5.56e+02
Rosenbrock 250d 5.24e+05 2.37e+01 2.45e+02 1.16e+03 5.50e+02
Rosenbrock 500d 2.11e+06 5.33e+00 4.93e+02 2.31e+03 1.02e+03
Rosenbrock 1000d 2.91e+06 2.17e+01 1.04e+03 4.61e+03 1.99e+03
Rotated Hyper-Ellipsoid 2d 2.36e-14 2.59e+01 1.74e+00 3.81e-07 5.32e-08
Rotated Hyper-Ellipsoid 10d 8.08e-15 2.18e+00 9.38e-03 2.31e-05 2.53e-05
Rotated Hyper-Ellipsoid 20d 1.45e-14 1.89e-01 6.46e-10 1.05e-04 9.07e-05
Rotated Hyper-Ellipsoid 50d 1.80e-15 1.95e-08 3.06e-07 6.81e-04 7.03e-04
Rotated Hyper-Ellipsoid 100d 7.18e-15 2.22e-07 2.24e+00 2.71e-03 2.86e-03
Rotated Hyper-Ellipsoid 250d 2.76e+02 5.88e-06 1.08e+01 1.71e-02 2.43e-01
Rotated Hyper-Ellipsoid 500d 4.09e+03 8.07e-05 7.24e+03 6.87e-02 3.61e+00
Rotated Hyper-Ellipsoid 1000d 1.91e+05 2.97e-04 3.70e+04 2.73e-01 1.94e+02
Sphere 2d 7.07e-14 4.24e-04 3.22e-03 1.84e-09 3.68e-11
Sphere 10d 1.25e-13 1.33e-09 1.81e-05 2.77e-08 1.66e-10
Sphere 20d 2.21e-13 7.14e-10 8.02e-09 6.15e-08 3.35e-10
Sphere 50d 1.40e-12 3.89e-10 7.48e-07 1.65e-07 8.28e-10
Sphere 100d 1.14e-12 5.59e-10 3.54e-06 3.32e-07 1.66e-09
Sphere 250d 1.73e-12 1.42e-09 2.19e-05 8.34e-07 4.13e-09
Sphere 500d 8.48e-12 4.04e-05 7.99e-05 1.68e-06 8.37e-09
Sphere 1000d 1.01e-11 1.60e-03 1.61e-04 3.33e-06 1.66e-08
Styblinski-Tang 2d 1.40e+01 4.59e+00 3.40e+00 1.10e+01 1.04e+01
Styblinski-Tang 10d 7.13e+01 3.39e+01 8.66e+00 5.00e+01 6.83e+01
Styblinski-Tang 20d 1.47e+02 6.51e+01 1.73e+01 1.43e+02 1.46e+02
Styblinski-Tang 50d 3.69e+02 1.66e+02 4.34e+01 3.61e+02 3.50e+02
Styblinski-Tang 100d 7.52e+02 3.40e+02 8.69e+01 7.10e+02 7.30e+02
Styblinski-Tang 250d 1.90e+03 8.20e+02 2.17e+02 1.78e+03 1.79e+03
Styblinski-Tang 500d 3.83e+03 1.52e+03 4.34e+02 3.57e+03 3.64e+03
Styblinski-Tang 1000d 7.59e+03 1.99e+03 8.70e+02 7.13e+03 7.17e+03
Sum of Powers 2d 3.86e-08 2.16e-08 3.42e-09 2.14e-06 3.96e-05
Sum of Powers 10d 2.16e-06 8.71e-09 1.66e-07 2.85e-04 1.38e-03
Sum of Powers 20d 3.60e-06 4.18e-09 1.25e-07 4.06e-04 2.11e-03
Sum of Powers 50d 4.24e-06 2.92e-09 1.92e-07 3.92e-04 2.53e-03
Sum of Powers 100d 4.99e-06 9.19e-09 4.53e-04 4.20e-04 6.37e-03
Sum of Powers 250d 5.32e-06 1.74e-08 1.66e+00 3.94e-04 3.05e-01
Sum of Powers 500d 5.63e-06 1.45e-02 4.90e+00 3.98e-04 9.88e-01
Sum of Powers 1000d 4.38e-06 2.95e-01 5.62e+00 4.14e-04 1.76e+00
Sum of Squares 2d 1.76e-12 1.16e-01 1.07e-01 9.96e-09 5.65e-09
Sum of Squares 10d 2.03e-12 8.17e-11 2.58e-10 5.69e-07 6.02e-07

Continued on next page

Table 4 – continued from previous page
Function BFGS Optimus Adafactor MLP Adam Momentum

Sum of Squares 20d 1.06e-12 4.45e-10 1.24e-09 2.37e-06 2.60e-06
Sum of Squares 50d 1.83e-12 7.56e-10 8.96e-09 1.61e-05 1.70e-05
Sum of Squares 100d 1.89e-13 4.80e-09 4.70e-08 6.49e-05 6.73e-05
Sum of Squares 250d 4.21e-08 2.95e-08 3.21e-02 4.02e-04 4.05e-03
Sum of Squares 500d 6.24e-05 2.96e-07 4.53e-02 1.61e-03 6.86e-03
Sum of Squares 1000d 1.25e-01 4.90e-06 1.33e+01 6.36e-03 2.27e+00
Trid 2d 5.00e+00 5.00e+00 5.00e+00 5.00e+00 5.00e+00
Trid 10d 6.50e+01 6.50e+01 6.51e+01 6.50e+01 6.50e+01
Trid 20d 2.30e+02 2.30e+02 2.31e+02 2.95e+02 2.30e+02
Trid 50d 1.33e+03 1.32e+03 1.35e+03 1.47e+04 1.32e+03
Trid 100d 5.16e+03 5.11e+03 1.39e+04 1.56e+05 1.04e+04
Trid 250d 5.55e+04 8.92e+05 2.18e+06 2.61e+06 1.57e+06
Trid 500d 4.67e+06 1.64e+07 2.09e+07 2.10e+07 1.83e+07
Trid 1000d 9.91e+07 1.57e+08 1.68e+08 1.67e+08 1.62e+08
Zakharov 2d 3.61e-12 2.21e-01 8.11e-05 1.58e-01 2.11e-02
Zakharov 10d 6.40e-12 9.58e-05 8.85e-04 3.00e+02 2.31e+07
Zakharov 20d 6.28e-12 2.61e-03 2.45e+00 6.68e+02 2.09e+09
Zakharov 50d 4.78e-12 1.46e+01 8.71e+01 1.83e+03 3.71e+11
Zakharov 100d 3.20e+06 4.54e+01 1.34e+02 2.71e+04 3.45e+13
Zakharov 250d 4.94e+11 2.12e+02 1.89e+02 1.81e+07 4.45e+15
Zakharov 500d 2.82e+14 3.46e+02 5.61e+02 4.80e+08 2.96e+17
Zakharov 1000d 1.53e+19 2.08e+19 1.15e+19 1.63e+10 2.08e+19

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. 2

[2] B. Bell. Cppad: a package for c++ algorithmic differentiation,
2021. 2

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James
Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne,
and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. 1

[4] Roger Fletcher. Practical Methods of Optimization. John
Wiley & Sons, New York, NY, USA, 1987. 1

[5] Erik Gärtner, Mykhaylo Andriluka, Erwin Coumans, and
Cristian Sminchisescu. Differentiable dynamics for articu-
lated 3d human motion reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 2

[6] Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng,
and Gaurav S Sukhatme. NeuralSim: Augmenting differen-
tiable simulators with neural networks. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 2021. 2

[7] Tom Hennigan, Trevor Cai, Tamara Norman, and Igor
Babuschkin. Haiku: Sonnet for JAX, 2020. 1

[8] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 36(7):1325–1339, jul 2014. 2, 3

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[10] Luke Metz, C Daniel Freeman, James Harrison, Niru Mah-
eswaranathan, and Jascha Sohl-Dickstein. Practical tradeoffs
between memory, compute, and performance in learned opti-
mizers. arXiv preprint arXiv:2203.11860, 2022. 2, 4

[11] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and Chris-
tian Theobalt. Physcap: Physically plausible monocular 3d
motion capture in real time. ACM Transactions on Graphics,
39(6), dec 2020. 3

[12] S. Surjanovic and D. Bingham. Virtual library of simulation
experiments: Test functions and datasets. Retrieved Novem-
ber 9, 2022, from http://www.sfu.ca/~ssurjano.
7

[13] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki, and
Masataka Goto. Aist dance video database: Multi-genre,

multi-dancer, and multi-camera database for dance informa-
tion processing. In Proceedings of the 20th International
Society for Music Information Retrieval Conference, ISMIR
2019, pages 501–510, Delft, Netherlands, Nov. 2019. 3

[14] Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased
gradient estimation in unrolled computation graphs with per-
sistent evolution strategies. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 10553–10563. PMLR, 18–24 Jul
2021. 2

[15] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu
Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Con-
tributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. 1

[16] Kevin Xie, Tingwu Wang, Umar Iqbal, Yunrong Guo, Sanja
Fidler, and Florian Shkurti. Physics-based human motion
estimation and synthesis from videos. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 11532–11541, October 2021. 3

http://www.sfu.ca/~ssurjano

	. Additional visualizations
	. Implementation details
	. Distributed Physics Loss

	. Input features
	. Hyperparameters and Computional Resources
	. Datasets Details

