
1. Supplementary materials
In the supplementary material, we provide details and

extra experiments that are not shown in the main paper.

2. Effects of the local and global temporal con-
text perception for sign recognition

As depicted in Fig. 1 of the main paper, the temporal ag-
gregation module in baseline framework incorporates both
local and global temporal context perception. This baseline,
which combines local-global temporal context perception,
has been widely adopted in recent works [4, 6, 10–12, 19].
Specifically, the local temporal context perception captures
adjacent frames to better identify isolated signs [3, 11],
while the global temporal context perception emphasizes
sequence correlation [4, 8, 13].

As mentioned in Sec.3.3 of the main paper, we con-
ducted a simple ablation study on the widely-used RWTH-
2014 dataset [9] to demonstrate the importance of incorpo-
rating both local and global temporal context perception in
the temporal aggregation module. In practice, following the
baseline (as detailed in Sec.3.1 of the main paper) we re-
main either 1D-TCN (CSLR-LocTAM) or BLSTM (CSLR-
GloTAM) respectively in the temporal aggregation module,
as detailed in Sec.4.1 of the main paper. Notably, our base-
line, CSLR-LocTAM, and CSLR-GloTAM have the same
structure with [6, 10, 11, 19]. Results in Tab. 1 indicate that
coupling 1D-TCN and BLSTM in the temporal aggregation
module is among the top-performing ones. Therefore, we
confirm the necessity of incorporating both local and global
temporal context perception in temporal aggregation mod-
ule, as also highlighted in previous leading studies.

3. Ablation on language models
In this section, we employ three different language mod-

els for CTCA to evaluate the language model’s importance.
As shown in the Tab. 2, varying the language model repre-
sents similar WERs, but CTCA with the pre-trained BERT
obtains the best result. This result shows the semantic cor-
relation among glosses extracted by the pre-trained BERT
is more effectively.

4. Experiments about chain depth variants of
BLSTM in the general CSLR framework

To evaluate the chain depth influence mentioned in
Sec.3.2 of the main paper, we also consider about whether
to increase the number of layers of BLSTM. As shown in
Table 3, with more BLSTM layers, the IIW, as well as the
WER values, become worse. For these results we consider
that previous works [6, 13] have presented that in general
CSLR network the CTC loss provides a limited contribu-
tion to the learning of the spatial perception module(SPM),

Table 1. Ablation results (WER, %) of local and global temporal
context perception for temporal aggregation module of the base-
line on RWTH-2014 [9]. “Baseline” is followed the Fig 1 of the
main paper, and the “CSLR-LocTAM” and “CSLR-GloTAM” has
been introduced in Sec.4.1 of the main paper.

Methods
Dev Test

del/ins WER del/ins WER

Baseline 7.0/3.0 21.8 6.7/2.7 22.1

CSLR-LocTAM 9.4/3.1 24.2 9.2/2.9 23.8

CSLR-GloTAM 8.4/3.5 23.0 8.5/2.9 23.1

Table 2. Results of different language models on the RWTH-2014.

Methods Dev(WER) Test(WER)

3-layer BLSTM 19.9 20.5

6-layer Transformer 19.8 20.7

pre-trained BERT 19.5 20.1

which the penalty for SPM is hard to conduct from the
BLSTM, due to the chain rules of back-propagation. This
makes the BLSTM is prone to over fit on the sequential or-
der of sign actions [3, 6]. Therefore, increasing the number
of BLSTM layers makes the situation worse.

5. Experiments about model ensemble

In Tab. 4, we conduct the ensemble by averaging outputs
of global & local temporal perception branch. The ensem-
ble model obtains a similar but slightly worse performance.
For this phenomenon, we explain that the proposed CTCA
focuses on exploring a desired temporal aggregation mod-
ule, and we find that it should be a shallow architecture to
allow more effective training of spatial perception module
but also should be a deep one for a high temporal aggre-
gation capability. Therefore, we conduct a cross-temporal
context aggregation (CTCA) to transfer the local tempo-
ral context and the linguistic prior to the global perception
module. This operation causes the global perception mod-
ule is more strong than the local. Therefore, when averaging
their probabilities, the final probability might be worse.

Table 3. Baseline CSLR with different numbers of BLSTM layers.
Methods SPM-IIW TAM-IIW Dev Test

1-layer(2048) 6.4E-5 8.3E-5 21.5 22.5

2-layers(1024) 5.8E-5 7.4E-5 21.3 22.2

7-layers(512) 7.4E-4 1.6E-4 26.1 27.2

28-layers(256) 3.8E-4 6.1E-4 97.6 97.9



Table 4. Ensemble of local & global branches on the RWTH-2014.

Methods Dev(WER)↓ Test(WER)↓
CTCA 19.5 20.1

Ensemble 20.4 22.0

6. Complement the implementation details
In this section we will introduce the main implemen-

tation details. Unless otherwise specified we use the
ResNet18 as initialization for the spatial perception mod-
ule, and the batch size and weight decay are set to 4 and
1e−4, respectively. In addition, we train our CTCA for 100
epochs with the Adam optimizer [7] and an initial learning
rate of 1e − 4, the learning rate is decayed (0.1) at 30 and
60 epochs. Specifically, in the CSL-Daily [18] benchmark,
the initial learning rate and weight decay are set to 5e − 5
and 1e − 6, respectively. And the learning rate is decayed
(0.5) at 30 and 60 epochs.

Furthermore, for the gloss feature embedding we exploit
pre-trained German and Chinese BERT model [2, 5] as the
BERT initialization for RWTH benchmarks [1,9] and CSL-
Daily benchmark, respectively.
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Figure 1. IIW trends of SPM & TAM of CTCA, SMKD, VAC and
local transformer. Similar to Fig. 2 of the main paper, the left y-
axis (blue) presents IIW values of SPM, and the right (red) y-axis
contains IIW values of TAM.

7. Qualitative complementary experiments
The IIW trends and analysis. In this section we ex-
tensively study the limitations and desirable properties of
Temporal Aggregation Module (TAM) via IIW. As shown
in Fig. 1, IIW trends of SPM & TAM of two SOTA works
VAC and SMKD are not consistent and keep high IIW val-
ues during the training process, inferring that SPM has low
generalization and is not well-trained. In addition. we also
use IIW to analyze the local-global-mixed architecture, lo-
cal transformer in [16, 19], which the resnet18 is the SPM,
the local transformer is the TAM. In Fig. 1, the local-global-
mixed architecture’s TAM can be effectively optimized with
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Figure 2. The visualization of training loss curve, test loss curve
and the WER(%) values of the baseline and the CTCA on the
RWTH-2014 test set.

Ba
se

L3 51
2

L9 25
6

L2
2

12
8

L1 51
2

L1 25
6

L1 12
8

G
T

LT
SD

PN
CT

CA

Conv1 Conv2 Conv3 Conv4

0.007

0.006

0.005

0.004

0.003

Figure 3. Statistics of layer-wised gradients of different method’s
spatial perception module. “Base”, “GT”, “LT”, “SDPN” and
“CTCA” , denote the Baseline, the CSLR-GloTAM, the CSLR-
LocTAM, the SPM-shared dual-path network, and the CTCA, re-
spectively. Lα denotes the α chain depth of temporal aggregation
module. “512” is the channel number.

decreasing IIW values while its SPM suffers from insuffi-
ciently trained, i.e., the IIW value gradually increases.

Above all, these analysis also infers that TAM should be
shallow but has high local & global aggregation capabil-
ity. To this end, we propose CTCA that contains a dual-
path network and the cross-context knowledge distillation
loss function. The dual-path network consists of a shared
SPM, and two parallel branches for GloTAM and LocTAM.
The LocTAM is removed during inference. The proposed
loss function can transfer the local temporal context and the
linguistic prior to the global perception module. With our
contributions, IIW trends of SPM & TAM are towards the
desired style [15], that is, they keep similar trends and go
down, thus relieving the generalization problem mentioned
in Fig 2 of the main paper.
The train-test losses gap. Besides counting the infor-
mation stored in weights (IIW) [15] in the main paper
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Figure 4. Ablation on GradCAM [14] visualization. Samples come from the test set of the RWTH-2014. Colors of images change from
blue to yellow and to red, meaning the model will pay higher attention to the regions.

(a)Baseline (b)CSLR-GloTAM (c)CSLR-LocTAM (d)CTCAOne-hot Binary Mask

0-2:ON;  3-5: JETZT;  6-12: WETTER;  13-17: WIE-AUSSEHEN;  18-21: MORGEN;  22-32: SAMSTAG;  33-38: ZWEITE;  39-46: APRIL;  47-49: OFF;  50-52: ON;  
53-56: ZEIGEN-BILDSCHIRM;  57: OFF;

0-9: MORGEN;  10-17: TEMPERATUR;  18-24: ZWEIZWANZIG;  25-28: GRAD;  29-33: NORD;   34-42: SEE;   43-48: IX;   49-58: ZWEIDREISSIG; 59-65: GRAD;  
66-79: FLUSS;

Figure 5. Two test samples are chosen for self-similarity matrices heatmaps visualization of temporal aggregation module’s representations
(the reder color represents the higher similarity).

Fig 1, we also employ the complementary train-test losses
gap of the model to verify the model generalization ability
in Fig. 2. In Fig. 2, the CTCA has better model generaliza-
tion ability and performance than the baseline, which has
lower WER values and a lower gap between the training
loss curve and the test loss curve, especially before the 10-
th epoch the CTCA achieves a good fitting.

The influence of temporal aggregation module chain
depth on the spatial perception module. Motivated CAM
methods [14,17] propose that if the magnitude of gradient of
the layer is larger, it provides more current category infor-
mation. In this section, we visualize the statistics of layer-
wised gradients of SPM to indicate the influence of chain
depth of TAM to the SPM, complementary. In practice, we
visualize the summation gradient of each convolution layer
at the last block in SPM(owning informative category infor-
mation) for all RWTH-2014 training samples. We adopt the

model of fixed epoch i.e., 35-th.

In Fig. 3, under the same experiments setting with
Sec.3.2, results of distinct chain depths TAMs are shown.
As the TAM chain depth increases the magnitude of gra-
dients of SPM decreases, which indicates that the SPM
with large chain depth TAM is unable to pay more atten-
tion to recognize and locate the current signs leading to
sub-optimization. In addition, the CSLR-GloTAM and the
CSLR-LocTAM can be regarded as extreme cases of TAM
reducing the chain depth. Fig. 3 also shows that the magni-
tude of gradients of the CSLR-GloTAM, CSLR-LocTAM,
and SPM-shared dual-path network (SDPN) is large than
the baseline, which also indicates that reducing TAM chain
depth is a benefit to the SPM discriminating signs.

T-SNE visualization of spatial perception module rep-
resentations. To explore whether the spatial perception
module representations can be enhanced by the SDPN and
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Figure 6. T-SNE visualization of distinct methods’ spatial percep-
tion module representations. Each circle is plotted by the intra-
glosses mean (circle center) and intra-glosses variance (circle ra-
dius) of SPM representations, which covers all samples of cor-
responding glosses. The “circle dist” and “var” are the distance of
three circle centers and the variances of three circles, respectively.

CTCA, we also provide T-SNE visualization of SPM repre-
sentations of top-3 high-frequency glosses from the RWTH-
2014 training set. If the “circle dist” is large indicating
less coincidence of inter-glosses representations distribu-
tion, and if the “var’ is small denoting the distribution of
the intra-glosses representation is compact. As shown in
Fig. 6, the “circle dist” and “var” of Fig. 6 (b) (SDPN)
and Fig. 6 (c) (CTCA) are larger and smaller than
Fig. 6 (a) (Baseline), respectively. Especially three circles
in Fig. 6 (c) are the smallest and highly distinguishable.
These results enumerate the architecture of SDBN is ben-
efit to SPM discriminating signs, and demonstrate that the
cross-context knowledge distillation loss can enhance the
SPM representations power effectively.
GradCAM visualization of spatial perception module
rep- resentations. Moreover, we also adopt the Grad-
CAM [14] to show spatial activations of signs to demon-
strate the SPM generalization ability. In practice, feature
maps with shape of 7 × 7 from the last layer at the stage
4 of ResNet18 will be employed to compute spatial acti-
vations. As shown in Fig. 4, we obvious that the SPM of
CTCA is able to locate regions of signs occurrence more
precisely than the baseline, which shows the strong gener-
alization ability of CTCA’s SPM.
The visualization of the self-similarity matrices
heatmaps. To further illustrate the local-global tempo-
ral reception context of CTCA qualitatively, we follow
the SMKD [6] to visualize the self-similarity matrices
heatmaps of 1D-TCN branch and BLSTM branch repre-
sentations. In the Fig. 5, we choose some videos in the
RWTH-2014 [9] test set and can see that the self-similarity
matrix heatmap of CTCA (d) is able to regard as the fusion
of 1D-TCN (b) and BLSTM (c), which means the BLSTM
branch perceiving local-global temporal context.
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