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A. Detailed Experiment Settings

We introduce the implementation details of GAN-IPL,
Diff-IPL, and the evaluation metrics.

GAN-IPL. Our method is developed in PyTorch [10].
We use the Adam [9] optimizer with a learning rate of 0.05
for latent mapper and 0.002 for StyleGANs. The training
process includes 300 iterations for prompt learning and 300
iterations for generator adaptation, using a single NVIDIA
RTX 3090 GPU. The batch size is set to 32 for prompt learn-
ing and 2 for generator adaptation. The number of learned
prompt vectors m is set to 4. The 4 prompt vectors are ini-
tialized as the word embeddings of “a photo of a”. We use
the same Layer-Freezing technique as NADA [2] to select
the suitable training layers for each iteration and set the ex-
ponential moving average (EMA) decay [17] to 0.99. In the
domain regularization loss, following CLIP [13], we sep-
arately concatenate 79 manually designed sets of prompts
(e.g., “a photo of a ...”, “a drawing of a ...”) with a do-
main label and feed them into ET. The average vector of
the 79 encoded feature vectors replaces the encoded fea-
ture vector of the domain label ET(Ys) or ET(Yt). For
each domain, the ratio parameter λ of the domain regular-
ization loss is selected among [1, 10], according to the best
Inception Score [14] of adapted generators. The values of λ
on different settings are provided in Tab.1. Compared with
NADA, the additional training time from the latent mapper
is about 10 minutes, which is easily acceptable.

Diff-IPL. Applied with the Adam [9] optimizer, the
learning rates for latent mapper and diffusion autoencoders
[12] are set to 7e−2 and 3e−5, respectively. The train-
ing process requires higher memory cost, utilizing a single
NVIDIA A6000 GPU. Following Diff-CLIP [8], the batch
size is set to 1 for generator adaptation. We also precom-
pute the latent codes of 50 training images via the reverse
process of diffusion autoencoders and train target-domain
generators for 5 epochs as [8]. We can further accelerate
training with fewer diffusion discretization steps [16]. In
our experiments, the number of forward steps and reverse
steps are reduced to 100 and 250, respectively.

Metrics. We utilize Inception Score (IS) [14], Single
Image Fréchet Inception Distance (SIFID) [15], Structural
Consistency Score (SCS) [18] and identity similarity (ID)

Table 1. Loss term ratio λ on different settings.

Setting Source→Target λ

GAN-IPL

Photo→Disney 1
Photo→Anime painting 1
Photo→Wall painting 1

Photo→Ukiyo-e 1
Human→Pixar character 1

Human→Tolkien elf 5
Human→Werewolf 5

Photo→Cartoon 10
Photo→Pointillism 10

Photo→Cubism 10

Diff-IPL
Photo→Wall painting 3
Human→Tolkien elf 2

[1, 3] for quantitative evaluation. In specific, for ID, we
compute the identity similarity in ArcFace [1] for FFHQ
(human faces). For AFHQ (dog faces), we apply TransFG
[3], a fine-grained species recognition approach to extract
identity features and compute the cosine similarity between
source and target (generated) images. For SIFID, we manu-
ally collect several reference images of each target domain
from the internet and compute the SIFID score for each ref-
erence image. We enclose these reference images in the
folder “reference”. Although the variance of different ref-
erence images may lead to an imprecise score in some ex-
treme cases, the superiority of an effective method could
still be verified if it outperforms others in most cases.

B. Latent Space Interpolation

The state-of-the-art generative models [4–7] all have
smooth latent spaces for source-domain image generation.
We show that the target-domain generators obtained by our
method also preserve this superiority. In Fig.1, each row
contains a sequence of images from the same target domain,
the left-most column and right-most column are respec-
tively two images Gt(w1) and Gt(w2) synthesized with two
different latent codes w1 and w2. For latent space interpola-
tion, an interpolated image is Gt((1−α)w1+αw2), where
α ∈ [0, 1]. For each row, images from left to right corre-
spond to α ranging from 0 to 1. The visual results show that
our method has good robustness and generalization ability.
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Figure 1. Visual results of latent space interpolation. The source domain is “Photo” while the target domains are ”Wall painting”, ”Pixar
character” and ”Cartoon” from top to bottom. For each row, the left-most column and right-most column are respectively two images
synthesized with two different latent codes. The remaining columns refer to images synthesized with interpolated latent codes.
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Figure 2. Visual results of cross-model interpolation. In each row, the left-most image is generated by the source-domain generator. The
middle and the right-most images are synthesized by two different target-domain generators. The other images represent cross-model
interpolations between two different domains.

The various target-domain spaces obtained by our method
are consistently smooth.

C. Cross-model Interpolation

Beyond latent space interpolation, we also showcase the
model weight smoothness across different domains. In spe-
cific, we adopt linear interpolation in weight space for either
Gs(·, θs) and Gt(·, θt) or Gt1(·, θt1) and Gt2(·, θt2), where
Gs(·, θs) denotes the source domain generator, Gt1(·, θt1)
and Gt2(·, θt2) denote two adapted generators of different
target domains. For example, let θ1, and θ2 represent the
model weights of two generators. Given a latent code w, we

generate the corresponding image by an interpolated model,
G(w, (1 − α)θ1 + θ2), where α ∈ [0, 1]. Fig.2 shows that
our method has good cross-model interpolation ability, ei-
ther from a source domain to a target domain or between
different target domains.

D. More Well-directed Prompts

A straightforward way to alleviate the mode collapse is-
sue is to manually design a set of well-directed prompts. For
example, introduce “with eyes looking forward” as addi-
tional prompts to reduce the squinting eyes issue in “Anime
painting”, or use “with black eyebrows” to solve the blue



eyebrows issue in “Ukiyo-e”. In Fig.3, we show that these
detailed prompts may lead to other undesired patterns. For
“Anime painting”, although the squinting eyes issue can
be partly addressed, the generated images of NADA shows
some similar bleeding eyes patterns. For “Ukiyo-e”, the
thick black eyebrows replace the original blue eyebrows for
generated results of NADA, but the connecting two eye-
brows together is a new undesired pattern. It is worth noting
that our IPL is still better than NADA with these additional
text prompts and avoids undesired patterns.

Source

“Photo” “Anime painting” “Anime painting with 
eyes looking forward”

“Photo” “Ukiyo-e” “Ukiyo-e with 
black eyebrows”

NADA Ours NADA Ours

Figure 3. Image synthesis comparison results with more detailed
prompts. The source domain is “Photo” and the target domains are
“Anime painting” and “Ukiyo-e”. Additional prompts are “with
eyes looking forward” and “with black eyebrows” for “Anime
painting” and “Ukiyo-e”, respectively. The yellow box areas show
the mode collapse patterns of NADA [2].

E. Geometry Adaptation
As shown in Fig.4, IPL can make diversified geometric

edits, such as emotion, haircut, age, and identity like other
image manipulation methods.

“Human” + “Surprised” + “Curly hair” “Child” “Elon Musk”

Figure 4. Geometry adaptation results of IPL.

F. Quantitative Results of Diffusion Models
To quantify the performance improvement of Diff-IPL

compared to Diff-CLIP [8] and Diff-CLIP+, IS, SCS, ID
and SIFID are evaluated. As illustrated in Tab.2, Diff-IPL
performs the best IS, SCS and ID on the two settings, indi-
cating its superiority in the diversity and quality of gener-
ated images, together with the structure and identity preser-
vation capability compared to source images. In addition,
Diff-IPL achieves the best SIFID score in most cases, show-
casing that our method generates the desired target-domain
style better.

Table 2. Quantitative evaluation results of Diff-CLIP [8],
Diff-CLIP+ and Diff-IPL. S→T, P→WP and H→TE denote
Source→Target, Photo→Wall painting and Human→Tolkien elf,
respectively. The best results are bold.

S→T Method IS [14] (↑) SCS [18] (↑) ID [1] (↑)
SIFID [15] (↓)

R1 R2 R3

P→WP

Diff-CLIP 1.696 0.662 0.595 5.493 5.066 5.727

Diff-CLIP+ 2.542 0.611 0.554 2.644 2.099 2.455

Diff-IPL 2.953 0.744 0.785 2.022 1.841 2.004

H→TE

Diff-CLIP 2.055 0.684 0.328 6.091 8.138 7.779

Diff-CLIP+ 2.711 0.627 0.399 2.218 4.283 4.055

Diff-IPL 2.893 0.696 0.709 2.749 3.421 3.696

G. Diffusion Models versus GANs
We compare the Inception Score results of diffusion

models and GANs in Fig.3. The superiority of Diff-
CLIP+ over NADA indicates diffusion models can handle
more cases with better base performance. Assisted with
IPL, GAN-IPL showcases competitive performance to Diff-
CLIP+. Moreover, integrating IPL with Diff-CLIP+ as
Diff-IPL also leads to a significant improvement, indicating
IPL’s compatibility with both GANs and diffusion models.

Table 3. Quantitative comparison of GANs and diffusion models.
We compare the Inception Score (↑) [14] results for Photo→Wall
painting and Human→Tolkien elf.

Source→Target NADA (GAN) GAN-IPL Diff-CLIP+ Diff-IPL

Photo→Wall painting 2.183 2.676 2.542 2.953

Human→Tolkien elf 2.479 2.778 2.711 2.893

H. Effect of the Number of Prompts
To ensure comparison fairness, we adopted the setting

m = 4 in experiments. In Tab.4, we investigate the ef-
fect of m by setting it as 1,2,4,8,16, with the same 300
training iterations. The Inception Score results show that
learned prompts (results of different m) consistently exceed
the manual prompts (NADA). In addition, too small or too
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Figure 5. Additional results of GAN-IPL.

large m may lead to insufficient learning and performance
degradation. Overall, m ∈ [4, 8] can be optimal.

Table 4. Quantitative results of different m. We evaluate the In-
ception Score (↑) [14] for Photo→Ukiyo-e.

Source→Target NADA m = 1 m = 2 m = 4 m = 8 m = 16

Photo→Ukiyo-e 2.205 2.757 2.943 2.974 3.047 2.651

I. More Visual Results

We provides more visual results of GAN-IPL and Diff-
IPL across all target domains mentioned in our main paper.
In specific, we display additional generative model adap-
tation results for GAN-IPL in Fig.5 and real-world image
translation results for Diff-IPL in Fig.6. Although Diff-IPL
has stronger inversion capability for real images (discussed
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Figure 6. Additional results of Diff-IPL.

in our main paper), the visual results of GAN-IPL and Diff-
IPL seem to be comparable for general cases. In practice,
GAN-IPL is more suitable for applications where plenty
of target-domain images are required, since GANs perform
a more efficient generative process than diffusion models.
While Diff-IPL is more appropriate for applications where
the structure and identity of source-domain images need to
be precisely preserved in target-domain images.

J. Prompt Visualization
Since the prompt vectors are continually optimized,

there is no one-to-one correspondence between learned
prompt vectors and realistic words. Even so, we try
to find some relationships by searching the closest word
within the vocabulary for every prompt vector. Following
CoOp [19],the Euclidean distance between a prompt vec-
tor and the embedding of the a realistic word is computed.
We present several cases of these searched image-specific
words in Fig.7. Overall, our discovery is similar to the dis-
cussion in [19]. A few words are somewhat relevant to their
corresponding image, e.g., fashionista, thinkers and musi-
cian, while most of the words remain difficult for us to find
their connection to images. We conjecture that a source im-
age should contain rich and diverse image-specific seman-
tics. With the limited prompt length, one prompt vector may
contain an integration of many different semantics and can
not be correctly interpreted with the closest word in the ex-
isting vocabulary.

Limitation. Sincerely, the unknown visualization of
learned prompt vectors may somewhat limit the inter-
pretability of IPL. We expect that future works could inves-
tigate better solutions to effectively decouple and visualize
the semantics of a continually optimized prompt vector.

fashionista 
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redcarpet

howe
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thrive
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ireland
nunes

Figure 7. Visualization of the learned prompt vectors. For each
image, we present the nearest words of the prompt vectors com-
puted in the word embedding space. Red words may be somewhat
relevant to corresponding images.

K. Large Domain Shift.

In general, there is a strong correlation between source
and target domains in domain adaptation tasks. As demon-
strated in Fig.8, generator adaptation with a large domain
shift (e.g., from “Human” to “Cat”) is challenging for all
existing zero-shot generators and requires future investiga-
tion. However, we can observe that IPL could present more
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Figure 8. Image synthesis comparison results with a large domain
shift. The source domain is “Human” and the target domain is
“Cat”. We compare IPL with StyleCLIP [11] and NADA [2].

cat-like whiskers and eyes, compared with other zero-shot
competitors, i.e., StyleCLIP [11] and NADA [2].

L. Social Impact
IPL may contribute to artistic image synthesis applica-

tions in social media industries. It may also assist the other
computer vision tasks (e.g., recognition and detection) as a
data augmentation technique. However, the ability of IPL to
synthesize fake images from real-world images may bring
some ethical problems, which must be treated carefully.
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