
Supplementary for NS3D:
Neuro-Symbolic Grounding of 3D Objects and Relations

The appendix is organized as the following. In Appendix A, we formally define the domain-specific language (DSL) used
by NS3D. In Appendix B, we provide dataset details, additional qualitative examples on both 3D-REC and 3D-QA tasks, and
an additional experiment on scene complexity generalization, where we train models on scenes with a small number of objects
but test on larger and more complex scenes.

A. Domain-Specific Language
In this section, we summarize the value types (Table 1) and function definitions (Table 2) of the domain-specific language

used in our paper. The scene operation is parameter-free, while other functions take input object set’s and output an object set,
represented as the object score vector. Query-type operations take input object set’s and output answers of the target type,
such as Boolean values (e.g., “is there a chair?”) and concept names (e.g., “what is the type of the object next to the table?”).
Existence and counting-related operations involve a score threshold t = 0.8, which is a scalar hyperparameter. In our
experiment, the threshold t is chosen over a separate 3D-QA dataset based on scenes from the train set, instead of the test set.
The query object, query relation, and query t relation operations are implemented through finding the object or relation label
based on object score vectors.

Zero-shot transfer to 3D-QA. NS3D composes learned models on 3D-REC to build new 3D-QA operators in a zero-shot
manner, requiring no additional training. The 3D-QA modules can be implemented by reusing the MLPs learned for object
and relation classification from the 3D-REC task. Intuitively, let us consider query object in 3D-QA, which takes an object as
input and outputs its category. Since we have already learned classifiers for all categories (MLPs used in the filter operation),
NS3D directly reuses these modules to answer the question: it evaluates all MLP classifiers on the object feature and returns
the category with the highest score.

Type Representation Semantics

object set Object score vectors. Set of objects selected from a scene.

category Concept names: table, chair, piano, etc. Object-level properties.

relation Concept names: near, left, behind, etc. (Binary) Relationships between two objects.

t relation Concept names: between, anchor-left etc. (Ternary) Relationships among three objects.

∗boolean Strings: yes, no. Boolean values.

∗integer Integers: 0, 1, 2, etc. Count of objects.

Table 1. Types in the NS3D domain-specific language. ∗: Types that are only used in the 3D-QA task.
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Signature & Implementation Semantics

scene() −→ y: object set

Implementation: yi = 0, for all i ∈ {1, 2, · · · ,M}

Return all objects in the 3D scene.

filter(x: object set, c: category) −→ y: object set

Implementation: yi = min (xi, probc
i) = min

(
xi,MLPc

(
f obj
i

)) Return all objects satisfying a concept c.

relate(xt: object set, xr: object set, rel: relation) −→ y: object set

Implementation: probrel
i,j = MLPrel(f rel

i,j)

yi = min
(
xt
i,
∑

j sx(xr)j · probrel
i,j

)
Return all objects that satisfy the relationship rel
between the object sets.

ternary relate(xt: object set, xr1: object set, xr2: object set,

trel: t relation) −→ y: object set

Implementation: probtrel
i,j,k = MLPtrel(f ternary

i,j,k )

yi = min
(
xt
i,
∑

j

∑
k sx(xr1)j · sx(xr2)k · probtrel

i,j,k

)
Return all objects that satisfy the ternary relation-
ship trel between the object sets.

anchor(object set, object set) −→ object set

Implementation: internally handled using ternary relate.

Return all objects that satisfy the relationship
anchored on the first object set.

∗query exist(x: object set) −→ y: boolean

Implementation: y =

{
yes if maxi(σ(xi)) > t

no if maxi(σ(xi)) ≤ t

Return Yes/No corresponding to existence of ob-
ject in the object set.

∗query count(x: object set) −→ y: integer

Implementation: y =
∑

i 1 [σ(xi) > t]

Return count of objects in the object set.

∗query object(x: object set) −→ c: category

Implementation: c = argmaxc

(∑
i sx(x)i ·MLPc

(
f obj
i

)) Return type of object in the object set.

∗query relation(xt object set, xr: object set) −→ rel: relation

Implementation: rel = argmaxrel

(∑
i

∑
j sx(xt)i · sx(xr)j ·MLPrel(f rel

i,j)
) Return relationship between the object sets.

∗query t relation(xt:object set, xr1: object set, xr2: object set) → trel: t relation

Implementation: trel =

argmaxtrel

(∑
i

∑
j

∑
k sx(xt)i · sx(xr1)j · sx(xr2)k ·MLPtrel(f ternary

i,j,k )
)

Return ternary relationship between the object
sets.

Table 2. Primitive functions defined in the NS3D domain-specific language. ∗: Functions that are only used in the 3D-QA task. Here, sx(·) is
the Softmax function, σ(·) is the Sigmoid function, and 1[·] is the indicator function which returns 1 when the expression inside the brackets
evaluates to true, and 0 otherwise.



B. Experimental Details and Additional Results
In this section, we first present details for the datasets used in the main text. Then, we provide additional results on the

scene complexity generalization task, where we train models on scenes with a small number of objects but test on larger and
more complex scenes. Finally, we showcase additional qualitative examples for both the 3D-REC and 3D-QA tasks.

B.1. Dataset

ReferIt3D datasets. For settings where NS3D was trained on the full ReferIt3D dataset, we used the exact SR3D training
data for all networks, including 707 scenes with object category annotations and 65, 844 query-answer pairs in total.

Data efficiency datasets. We generated data-efficient train sets with randomly sampled 0.5% (329 examples), 1.5% (987
examples), 2.5% (1,646 examples), 5% (3,292 examples), and 10% (6,584 examples) of the train set, with the same full test set
from SR3D used for evaluation.

PAIRS and SCENE generalization datasets. We created two new datasets to test generalization ability. Both of the datasets
are built on the SR3D train and test set.

The first dataset (PAIRS) evaluates performance on unseen object-relation-object pairs. The referring expressions in the
train set include the top 5 percent of object-relation-object pairs: i.e., the referred object category, relation type, and the
reference object category (e.g., chair-closest-door). The test set contains the bottom 95 percent of object-relation-object pairs
in the long-tailed distribution. The train set and test set consists of 16,200 examples and 10,520 examples respectively.

The second dataset (SCENE) evaluates performance on an unseen scene type. The train set includes train examples with all
scene types aside from that of “living room”, while the test set only contains examples in living rooms. The train set and test
set consists of 57,125 examples and 1,320 examples respectively.

3D-QA dataset. We manually created a small evaluation set of 50 examples for the 3D-QA task, based on the test set of
ReferIt3D [1]. The input is a set of objects in the scene, O = {O1, ..., OM}, and a question Q. In contrast to the 3D-REC task,
where the output is the target object, the output for 3D-QA is an answer in text form (the vocabulary contains all categories,
relations, Yes/No, and integers). The dataset consists of four main types of questions created from the following templates:

Existence-typed questions:

• Is there a [Object] [Relation] [Object]? A: Yes/No
• Is there a [Object] [Relation] [Object] and [Object]? A: Yes/No
• Facing [Object], is there a [Object] [Relation] [Object]? A: Yes/No

Counting-typed questions:

• How many [Object] are in the scene? A: Integer
• How many [Object] are [Relation] [Object]? A: Integer

Object-typed questions:

• What is the item [Relation] [Object]? A: [Object]
• What is the item [Relation] [Object] and [Object]? A: [Object]
• Facing [Object], what is the item [Relation] [Object]? A: [Object]

Relation-typed questions:

• What is the relationship between [Object] and [Object]? A: [Relation]
• Facing [Object], what is the relationship between [Object] and [Object]? A: [Relation]



B.2. Scene Complexity Generalization

OVERALL VIEW-DEP.

NS3D (OURS) 0.627 0.620
MVT [3] 0.405 0.396
SAT [5] 0.444 0.415
TRANSREFER [2] 0.360 0.344

Table 3. Generalization results from sparse scenes to dense scenes.

For all experiment results reported in the main text,
NS3D was trained on examples with only 10 objects given
in the scene, and evaluated on the full test set with up to
88 objects in the scene. NS3D is able to show this scene
complexity generalization, as it does not need the full
scene point cloud as its input and instead only explicitly
models a given object set and relations between specified
objects. This improves training efficiency, reduces the
need for annotated 3D objects, which are expensive to
acquire in 3D domains, and enables generalization to
more cluttered scenes.

We show that baselines methods cannot generalize as NS3D does, and yields significantly decreased performance when
trained on 10 objects per scene and evaluated on more complex scenes. In Table 3, we see that NS3D outperforms prior works
by a large margin in this setting. We did not test BUTD-DETR, because BUTD-DETR explicitly encodes the full 3D scene as
input, with all objects given in train and test, and hence does not directly apply to this partial scene setup.

B.3. NR3D Results

OVERALL VIEW-DEP.

NS3D (OURS) 0.526 0.432
BUTD-DETR [4] 0.382 0.331
MVT [3] 0.430 0.324
SAT [5] 0.329 0.248
TRANSREFER [2] 0.360 0.286

Table 4. Results on a constrained version of NR3D from the ReferIt3D
datasets.

We report results on NR3D, the natural language vari-
ant of ReferIt3D. While NS3D does work on natural lan-
guage, as Codex can parse NR3D input into programs,
Codex parsing yields 91 distinct function modules and
5892 concepts, resulting in a separate long-tailed prob-
lem. Hence, we ran additional experiments on a subset
of NR3D, by restricting utterances to those that parse to
the same set of functions and concepts in SR3D, which
yields 3659 train examples and 1041 test examples.

We train NS3D as well as top-performing baselines,
and see that NS3D significantly outperforms prior work
(Table 4). This suggests that NS3D can learn from natural
language data in a data-efficient way. Examples from this NR3D subset include noisy natural language such as “The picture
above the bed with the laptop on it.” and “The monitor that you would class as in the middle of the other two”; both exhibit
noisy natural language, with more complex underlying programs than the SR3D training set.

B.4. Qualitative Examples

In Figure 1, we show additional examples of the ReferIt3D 3D-REC task in SR3D, with examples of binary and ternary
relations. In Figure 2, we present comparisons of NS3D against baselines on view-dependent examples, with the green outline
indicating correct selection and red outline indicating incorrect selection. We see that NS3D is able to outperform prior work
in disambiguating the target referred object.

In Figure 3, we present additional qualitative examples of NS3D on the 3D-QA task. We see examples of success cases in
green and failure cases in red for NS3D in the zero-shot transfer setting.



Instruction: Select the microwave that 
is close to the kitchen cabinets.

Instruction: Select the desk that is 
supporting the laptop.

Instruction: Select the ottoman that is 
in the center of the desk and the end 
table.

Instruction: Looking at the front of the 
bed, select the nightstand that is on the 
right side of it.

Instruction: Facing the front of the 
couch, choose the towel that is on the 
left side of it.

Instruction: Choose the suitcase that is 
in the middle of the bathtub and the 
cabinet. 

Figure 1. Additional examples of the input language instruction, scene, and the target output in the ReferIt3D 3D-REC task.



Instruction: Facing the front of 
the couch, choose the table that 
is on the left of it. 

Instruction: Looking at the 
front of the refrigerator, choose 
the cabinet on the right of it.

NS3D

BUTD-
DETR

Instruction: Facing the front of 
the file cabinet, select the chair
that is to the right of it.

MVT

SAT

Trans
Refer

Table

Table

Table

Table

Table

Cabinet

Cabinet

Cabinet

Kitchen 
cabinets

Shower walls

Chair

Office Chair

Office Chair

Office Chair

Office Chair

Figure 2. Comparison between NS3D and baselines on the 3D-REC task, with the green outline indicating correct selection and red outline
indicating incorrect selection.



Q: Is there a laptop next to 
the backpack?
A: No

Q: Facing the toilet, is there a 
sink to the left of the toilet?
A: YesNS3D: No NS3D: Yes

Q: What is the item between 
the door and the couch?
A: Shelf

Q: How many chairs are 
next to the lamp?
A: 2

Q: How many kitchen 
cabinets are in the scene?
A: 5

Q: What is the item besides 
the dining table?
A: ChairNS3D: Table NS3D: Chair

NS3D: 2 NS3D: 5

Q: What is the relationship 
between the vending 
machine and the lamp?
A: Near

Q: Facing the door, what is 
the relationship between the 
table and the door?
A: LeftNS3D: Near NS3D: Right

Existence-typed
questions

Counting-typed
questions

Object-typed
questions

Relation-typed
questions

Figure 3. Qualitative examples of NS3D on the 3D-QA task. Examples of success cases are marked in green, while failure cases are marked
in red.



References
[1] Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas Guibas. Referit3d: Neural listeners for fine-grained

3d object identification in real-world scenes. In European Conference on Computer Vision, pages 422–440. Springer, 2020. 3
[2] Dailan He, Yusheng Zhao, Junyu Luo, Tianrui Hui, Shaofei Huang, Aixi Zhang, and Si Liu. Transrefer3d: Entity-and-relation aware

transformer for fine-grained 3d visual grounding. In Proceedings of the 29th ACM International Conference on Multimedia, pages
2344–2352, 2021. 4

[3] Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang. Multi-view transformer for 3d visual grounding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15524–15533, 2022. 4

[4] Ayush Jain, Nikolaos Gkanatsios, Ishita Mediratta, and Katerina Fragkiadaki. Bottom up top down detection transformers for language
grounding in images and point clouds. In European Conference on Computer Vision, pages 417–433. Springer, 2022. 4

[5] Zhengyuan Yang, Songyang Zhang, Liwei Wang, and Jiebo Luo. Sat: 2d semantics assisted training for 3d visual grounding. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1856–1866, 2021. 4


	. Domain-Specific Language
	. Experimental Details and Additional Results
	. Dataset
	. Scene Complexity Generalization
	. NR3D Results
	. Qualitative Examples


