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This supplementary document is organized as follows:
Sec. 1 provides further implementation details.
Sec. 2 provides additional ablation studies.
Sec. 3 provides additional generalization analysis.
Sec. 4 provides more qualitative comparisons on multi-

ple unseen datasets, i.e., Cityscapes [3], BDD100K [14] and
Mapillary [7].

1. Further Implementation Details
Training. We train all models on four NVIDIA Tesla

V100 GPUs, where the batch size per domain on each GPU
is 4. In addition, we adopt the automold road augmentation
library [6] to enhance the representation ability of style pro-
jection during the training phase, which enriches the style
of images by the simulation of various urban scenarios, in-
cluding diverse brightness, weather, motion blur and so on.
Specially, for the single-source setting, we set multiply sets
of style and semantic bases to improve the representation
ability of our method. In other words, the number of bases
M no longer depends on the number of source domains.
During the training phase, the style and semantic informa-
tion of current image is used to update the nearest style and
semantic bases by Eq. 7 and Eq. 13 (in the main text).

Hyper-parameter setting. Following [2, 4], we adopt
19 classes that are compatible with all datasets as our pre-
diction goal, i.e., C = 19. The momentum coefficient α for
style and semantic bases in Eq. 7 and Eq. 13 is set to 0.9
and 0.999, respectively, to achieve the best generalization
performance. We empirically set the temperature parameter
τ in Eq. 12 to 0.1, and set the weight β and γ of loss terms
in Eq. 14 to 1.0 and 0.1, respectively, to balance the value
of each loss term. In addition, we set the number of style
and semantic bases to 10 for the single-source setting.

Network architecture. Following existing DGSS meth-
ods [2, 4, 5], we conduct main experiments by adopting
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Distance C B M Avg.-T

µ/
√
σ2 + ϵ [13] 45.87 42.18 47.48 45.18

KL-Divergence [9] 47.13 42.78 47.37 45.76
W-distance [12] 46.36 43.21 48.23 45.93

Table 1. Ablation results for different distance measures in Eq. 3
in the main text.

Layer1 Layer2 Layer3 C B M Avg.-T

40.60 36.06 41.39 39.35
45.76 41.67 46.36 44.60
46.36 43.18 48.23 45.92
46.42 42.52 47.49 45.48

Table 2. Ablation results for our proposed style projection behind
different layers of networks.

DeepLabV3+ [1] with the ResNet-50 backbone. The out-
put stride of DeepLabV3+ is set to 16 and 8 for ResNet-50
and ResNet-101, respectively. We replace the final segmen-
tation classifier with an MLP projection head which consists
of two standard convolution operations to generate 256-
dimensional deep features. In addition, we remove the aux-
iliary per-pixel cross-entropy loss proposed in PSPNet [15]
to avoid using the learnable classifier and fully demonstrate
the effectiveness of semantic clustering.

2. Additional Ablation Studies
Distance measure. We investigate the influence of dif-

ferent distance measures used to estimate the style similar-
ity between the current image and style bases in Eq. 3 (in the
main text). As listed in Table 1, we test three common dis-
tribution distance functions according to the value of mean
µ and variance σ, i.e., µ/

√
σ2 + ϵ [13], KL-Divergence [9]

and Wasserstein distance [12]. We can find that the Wasser-
stein distance performs better than other two distance mea-
sures. Remarkably, the performance differences between
these three functions are not significant, which demon-
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(a) Cityscapes (Target)
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(b) BDD100K (Target)
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(c) Mapillary (Target)
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(d) Synthia (Source)

Figure 1. Source (G, S) → Target (C, B, M): Comparison of validation performance with existing DGSS methods (i.e., IBN-Net [8],
RobustNet [2] and WildNet [5]) in different epochs, where all methods with the ResNet-50 backbone are trained 40K iterations on two
synthetic (GTAV, Synthia) datasets.

Sty.-Pro. Aug. Sem.-Clu. C B M Avg.-T

36.03 28.15 32.61 32.26
43.73 39.38 43.92 42.34
44.87 42.42 46.37 44.55
46.36 43.18 48.23 45.92

Table 3. Ablation results for strong augmentation used in style
projection. Sty.-Pro., Aug. and Sem.-Clu. indicate style projec-
tion, style augmentation and semantic clustering, respectively.

strates the robustness of our style projection for different
distance measures.

Different layers. As listed in Table 2, we investigate
the influence of applying our proposed style projection be-
hind different layers of networks. We can find that there is
the best generalization performance when style projection
is applied behind both the first and second layers.

Style augmentation. As listed in Table 3, we conduct
ablation experiments to demonstrate the effectiveness of au-
tomold road augmentation for style projection. Compared
with the second and third lines, we can find that the style
augmentation brings approximately 2% mIoU gains in av-
erage, which demonstrates the style augmentation success-
fully enhances the representation ability of style projection

for unseen domains.

3. Additional Generalization Analysis

To demonstrate the superior generalization ability of our
method, we conduct a set of contrast experiments with the
same training iterations (i.e., 40K). We show the validation
curves of different DGSS methods on both source and tar-
get datasets in Fig. 1. We can find that the performances
of all methods on the source dataset (Fig. 1d) are gradu-
ally increasing as the training goes on, while the perfor-
mances of existing methods on target datasets (Fig. 1a-1c)
are continuously declining or fluctuating. On the contrary,
the performance of our method is also gradually increas-
ing on the target datasets, which fully demonstrates that our
method successfully avoids overfitting on the source dataset
and consistently outperforms existing DGSS methods.

4. More Qualitative Results

To qualitatively demonstrate the superior generalization
of our proposed method, we further compare the visual
segmentation results with existing state-of-the-art meth-
ods (i.e., PintheMem [4] and WildNet [5]). All methods
with the ResNet-50 backbone are trained on two synthetic



datasets (i.e., GTAV [10], Synthia [11]), and tested on three
real-world datasets (i.e., Cityscapes [3], BDD100K [14] and
Mapillary [7]).

Cityscapes. As shown in Fig. 2, we first provide qual-
itative comparisons on the Cityscapes dataset. Compared
with synthetic (source) datasets, the brightness of images in
the Cityscapes dataset is relatively dim. Due to the change
of brightness, Baseline and other DGSS methods are weak-
ened to predict some objects, such as road, sidewalk, person
and so on. On the contrary, our method successfully pre-
dicts these objects, which demonstrates our method is well
generalized to brightness changes.

BDD100K. As shown in Fig. 3, Fig. 4 and Fig. 5, we
provide comprehensively qualitative comparisons on the
BDD100K dataset. Compared with the Cityscapes dataset,
the BDD100K dataset contains various urban scenarios
which are acquired in adverse weather (snow and rain), spe-
cial time (dusk and night), unseen structure (overpass and
bridge) and so on. To demonstrate the wide effectiveness
of our method, we qualitatively compare our method with
other DGSS methods in various conditions, including di-
verse weather, illumination, reflection, dusk, night, shadow
and unseen structure. We can find that our method shows
superior robustness over existing DGSS methods in various
real-world scenarios.

Mapillary. As shown in Fig. 6, we further provide qual-
itative comparisons on the Mapillary dataset. Similar to the
BDD100K dataset, the Mapillary dataset contains various
urban scenarios captured from different conditions. We also
compare our method with other DGSS methods in different
scenarios, including dusk, unseen structure and so on. Com-
pared with these methods, our method predicts given ob-
jects more accurately, such as road, sky, traffic sign and so
on, which demonstrates the superior generalization of our
method for unseen scenarios again.
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Unseen images Baseline PintheMem [4] WildNet [5] Ours Groundtruth

Figure 2. Source (G+S) → Target (C): Qualitative comparison on the Cityscapes dataset. All methods adopt DeepLabV3+ with the
ResNet-50 backbone.
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Figure 3. Source (G+S) → Target (B): Qualitative comparison on the BDD100K dataset. All methods adopt DeepLabV3+ with the
ResNet-50 backbone.
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Figure 4. Source (G+S) → Target (B): Qualitative comparison on the BDD100K dataset. All methods adopt DeepLabV3+ with the
ResNet-50 backbone.
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Figure 5. Source (G+S) → Target (B): Qualitative comparison on the BDD100K dataset. All methods adopt DeepLabV3+ with the
ResNet-50 backbone.
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Figure 6. Source (G+S) → Target (M): Qualitative comparison on the Mapillary dataset. All methods adopt DeepLabV3+ with the
ResNet-50 backbone.
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