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A. Discussion on Non-parameter-efficient
Methods

Methods Params (M) R@1 R@5 R@10 MnR↓MdR↓
X-Pool [3] 1.3 (1.1%) 40.5 64.8 75.0 18.9 2.0
VoPF 0.1 (0.1%) 42.6 68.4 78.7 15.8 2.0
X-Pool [3]+VoP 1.4 (1.2%) 43.1 69.5 79.5 14.5 2.0

Table 1. Comparison with non-parameter-efficient X-Pool [3]
after freezing the CLIP backbone. The t2v retrieval results are
obtained on the MSR-VTT-9k dataset.

Our work aims to greatly reduce the overall storage
costs while achieving promising cross-modal retrieval per-
formance. Related non-parameter-efficient methods [3,7,8]
requires to fine-tune the additional parameters together
with the CLIP backbone, which results in an unaffordable
overhead. Despite the potential for better performance,
these methods contradict our purpose. Therefore, they are
not included in the fundamental comparison for fairness. To
illustrate the value of studying parameter-efficient methods,
in Tab. 1, we compare with the state-of-the-art X-Pool [3]
by freezing the CLIP backbone. We observe that without
fine-tuning the backbone, X-Pool underperforms our VoPF

with much more parameter overhead. And equipping
our simplest VoP significantly boosts its performance with
negligible additional parameters. The comparison results
demonstrate the superiority of our proposed methods as
parameter-efficient solutions.

B. Retrieval Results with ViT-B/16
In this section, we change the visual encoder to a ViT-

B/16 to examine all solutions including ours with a heavier
backbone. Compared to the default ViT-B/32, ViT-B/16
splits the image into more and smaller 16×16 patches,
increasing the computational effort to learn more detailed
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Methods Params (M) R@1 R@5 R@10 MnR↓ MdR↓
Full 118.1 (100%) 44.9 72.2 81.7 13.5 2.0
Bias [1] 0.1 (0.105%) 42.2 68.5 78.2 13.9 2.0
Proj [5] 0.7 (0.555%) 39.1 65.7 75.6 17.6 2.0
Partial [5] 7.7 (6.506%) 43.0 69.3 78.5 15.8 2.0
AdapterATTN [4] 2.0 (1.680%) 41.7 66.4 76.6 15.1 2.0
AdapterFFN [2] 2.0 (1.680%) 41.4 66.5 77.0 15.0 2.0
Ju et al. [6] 4.8 (3.990%) 36.7 64.6 76.8 - 2.0
VoP 0.1 (0.104%) 43.4 69.1 80.5 14.2 2.0
VoPP 0.5 (0.448%) 43.9 70.0 80.9 12.9 2.0
VoPC 14.3 (12.077%) 44.6 71.8 80.2 14.6 2.0
VoPF 0.1 (0.104%) 46.5 73.0 81.5 12.4 2.0
VoPF+P 0.4 (0.333%) 47.1 72.4 81.8 12.9 2.0
VoPF+C 14.1 (11.962%) 47.7 72.4 82.2 12.0 2.0

Table 2. t2v results on the MSR-VTT-9k dataset with ViT-B/16.

relational information while slightly reducing the number
of parameters (118.1M v.s.119.8M). We here report the
t2v results obtained on MSR-VTT-9k in Tab. 2 and also
compare with the method proposed by Ju et al. [6]. Several
observations as follows: (1) Our VoP now outperforms
all parameter-efficient tuning protocols including Partial,
showing its ability to effectively transfer the latent knowl-
edge with fewer trainable parameters. (2) The proposed
video prompts still steadily reinforce VoP, where VoPF and
its variants outperform Full. (3) equipping with two video
prompts brings a 3.7% to 4.3% improvement to VoP, and
our VoPF+C even yields a remarkable t2v R@1 47.7%.

C. Detailed Retrieval Results
We here report the detailed retrieval results on MSR-

VTT-7k (Tab. 3), DiDeMo (Tab. 4), ActivityNet (Tab. 5),
LSMDC (Tab. 6) for reference. Note that these results are
obtained using CLIP with ViT-B/32 unless otherwise stated.
The conclusions in these tables are generally consistent with
those from the above experiments.
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Methods Params (M)
t2v v2t

R@1 R@5 R@10 MnR↓ MdR↓ R@1 R@5 R@10 MnR↓ MdR↓
Full 119.8 (100%) 40.9 67.9 78.4 18.3 2.0 41.7 69.6 79.7 12.7 2.0
Bias [1] 0.1 (0.104%) 39.7 65.9 76.7 17.9 2.0 41.2 66.6 78.9 14.0 2.0
Proj [5] 0.7 (0.547%) 36.0 63.6 74.6 21.4 3.0 36.9 63.6 74.6 17.8 3.0
Partial [5] 7.7 (6.410%) 39.2 64.0 74.7 20.9 3.0 37.7 63.6 74.9 16.9 3.0
AdapterATTN [4] 2.0 (1.655%) 39.6 65.4 76.8 16.8 2.0 41.6 67.6 79.8 12.4 2.0
AdapterFFN [2] 2.0 (1.655%) 39.9 65.3 76.9 16.8 2.0 41.6 67.6 79.2 12.7 2.0
VoP 0.1 (0.103%) 39.7 66.7 77.9 16.7 2.0 41.4 68.8 80.8 12.5 2.0
VoPP 0.5 (0.441%) 40.6 66.0 76.7 16.6 2.0 41.6 69.0 79.5 12.3 2.0
VoPC 14.3 (11.898%) 40.0 67.3 78.2 17.0 2.0 41.7 69.4 79.1 12.3 2.0
VoPF 0.1 (0.103%) 42.0 67.4 78.2 16.2 2.0 42.8 68.4 79.8 12.3 2.0
VoPF+P 0.4 (0.328%) 43.5 68.1 79.2 16.0 2.0 43.4 71.0 80.4 11.3 2.0
VoPF+C 14.1 (11.785%) 42.7 68.2 79.3 15.9 2.0 44.2 69.6 80.8 11.4 2.0

Table 3. Retrieval results on the MSR-VTT-7k dataset.

Methods Params (M)
t2v v2t

R@1 R@5 R@10 MnR↓ MdR↓ R@1 R@5 R@10 MnR↓ MdR↓
Full 119.8 (100%) 41.6 68.4 78.2 17.7 2.0 40.2 68.4 78.7 11.9 2.0
Bias [1] 0.1 (0.104%) 36.5 63.4 75.2 24.8 3.0 36.8 65.7 75.8 15.1 2.0
Proj [5] 0.7 (0.547%) 35.6 61.3 72.6 24.4 3.0 34.5 60.9 72.6 18.8 3.0
Partial [5] 7.7 (6.410%) 39.3 65.5 75.7 22.3 2.0 36.9 64.2 74.5 17.0 2.0
AdapterATTN [4] 2.0 (1.655%) 36.4 62.8 73.9 23.5 3.0 36.3 64.4 74.8 15.4 2.0
AdapterFFN [2] 2.0 (1.655%) 36.3 63.4 75.4 22.9 3.0 35.6 64.3 75.6 14.8 3.0
VoP 0.1 (0.103%) 38.2 66.9 76.1 19.8 2.0 38.1 65.7 76.5 13.5 2.0
VoPP 0.5 (0.441%) 38.9 67.7 78.1 17.2 2.0 40.6 68.3 78.6 11.6 2.0
VoPC 14.3 (11.898%) 40.0 68.0 78.5 18.3 2.0 39.1 65.3 76.7 13.8 3.0
VoPF 0.1 (0.103%) 44.7 70.8 79.7 15.7 2.0 43.5 70.9 81.4 9.8 2.0
VoPF+P 0.4 (0.328%) 45.3 72.3 80.4 13.8 2.0 44.7 71.2 81.1 9.9 2.0
VoPF+C 14.1 (11.785%) 46.4 71.9 81.5 13.6 2.0 44.4 71.8 81.8 9.5 2.0

Table 4. Retrieval results on the DiDeMo dataset.

Methods Params (M)
t2v v2t

R@1 R@5 R@10 MnR↓ MdR↓ R@1 R@5 R@10 MnR↓ MdR↓
Full 119.8 (100%) 36.8 66.9 80.1 9.3 3.0 38.9 70.1 81.9 8.4 2.0
Bias [1] 0.1 (0.104%) 31.3 60.3 74.2 13.4 3.0 33.7 63.8 77.6 11.4 3.0
Proj [5] 0.7 (0.547%) 29.8 59.1 73.3 14.2 4.0 31.1 60.6 74.6 13.1 3.0
Partial [5] 7.7 (6.410%) 33.6 64.0 77.8 10.6 3.0 33.4 64.6 77.8 10.2 3.0
AdapterATTN [4] 2.0 (1.655%) 31.6 60.5 74.4 13.1 3.0 33.3 63.6 77.1 11.3 3.0
AdapterFFN [2] 2.0 (1.655%) 31.8 61.0 75.0 12.8 3.0 33.6 63.9 77.3 11.1 3.0
VoP 0.1 (0.103%) 32.3 61.9 75.5 12.4 3.0 33.7 64.7 77.2 11.1 3.0
VoPP 0.5 (0.441%) 32.8 62.3 75.4 12.3 3.0 34.8 65.0 78.2 10.7 3.0
VoPC 14.3 (11.898%) 32.6 62.5 76.5 12.0 3.0 34.2 64.8 78.4 10.7 3.0
VoPF 0.1 (0.103%) 34.6 62.6 76.4 11.6 3.0 35.5 65.1 77.4 10.2 3.0
VoPF+P 0.4 (0.328%) 36.1 65.5 78.5 10.9 3.0 36.3 65.9 79.2 10.1 3.0
VoPF+C 14.1 (11.785%) 35.1 63.7 77.6 11.4 3.0 35.6 65.9 77.8 10.4 3.0

Table 5. Retrieval results on the ActivityNet dataset.

Methods Params (M)
t2v v2t

R@1 R@5 R@10 MnR↓ MdR↓ R@1 R@5 R@10 MnR↓ MdR↓
Full 119.8 (100%) 22.0 39.9 49.9 56.8 11.0 21.9 40.0 48.2 50.7 12.0
Bias [1] 0.1 (0.104%) 17.4 36.2 44.9 73.2 14.0 18.0 36.0 44.9 62.2 15.0
Proj [5] 0.7 (0.547%) 15.7 32.7 40.8 83.7 20.0 17.1 32.6 39.9 76.4 21.0
Partial [5] 7.7 (6.410%) 18.0 33.8 41.8 79.9 18.0 15.9 33.2 41.5 72.3 18.0
AdapterATTN [4] 2.0 (1.655%) 18.4 38.0 46.4 68.9 13.0 19.7 37.6 46.3 55.4 13.0
AdapterFFN [2] 2.0 (1.655%) 18.7 38.9 47.3 63.6 13.0 19.8 38.4 47.0 57.8 12.0
Ju et al. [6] † 4.8 (3.990%) 18.8 38.5 47.9 - 12.3 - - - - -
VoP 0.1 (0.103%) 19.0 37.9 46.5 66.9 14.0 18.5 36.1 45.3 59.5 14.0
VoPP 0.5 (0.441%) 19.2 38.3 47.3 64.4 12.0 19.7 38.9 48.1 55.4 12.0
VoPC 14.3 (11.898%) 20.4 40.0 48.1 65.9 12.0 20.3 38.7 48.5 56.9 11.0
VoPF 0.1 (0.103%) 20.6 39.5 49.1 60.3 11.0 21.2 39.4 49.2 52.3 11.0
VoPF+P 0.4 (0.328%) 20.7 40.7 49.7 59.1 11.0 21.5 40.6 50.7 50.8 10.0
VoPF+C 14.1 (11.785%) 21.1 40.9 49.6 60.1 11.0 22.3 40.3 50.7 51.1 10.0

Table 6. Retrieval results on the LSMDC dataset. † denotes that it uses CLIP with ViT-B/16.
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