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Appendix A. Failure Cases and Better Imaging

While the main text discusses only the theoretical aspects
of the problem, this section discusses the practical aspects
of our method by discussing in more detail the limitations
regarding the input acquisition and how to capture better
images for our method.

Basics about image acquisition. Our image acquisition
process is simple. Prepare a scene and take photos of it un-
der different lighting conditions without moving a camera.
The light source can theoretically be either active (e.g., us-
ing a hand-held light) or passive (e.g., mounting a camera
and an object on the same board and moving them around)
as long as sufficient changes in illumination occur. Realis-
tically, the most probable situation may involve a combina-
tion of dynamic active lights in a static environment.

Our method has no restrictions on the size of scenes. On
the other hand, since the proposed method assumes an or-
thographic camera, extreme projection distortion is not con-
sidered. However, as a common practice, the view direc-
tions of a perspective projection camera become more paral-
lel with each other around the central field of view, so using
only the central region of a sufficiently high-resolution im-
age is not problematic for practical purposes. Throughout
the papers (i.e., main and supplementary), we used either
a 45mm or 200mm focal length camera based on the ob-
ject size to capture 4000x4000 images, of which the central
2048x2048 area was used in the preprocessing as described
in the main paper.

Failure cases and possible solutions. We observed two
major cases of failure in the course of our experiments as
illustrated in Fig. 1. First, the performance drastically de-
grades if the unmasked region contains areas where no or
little illumination change exists because our training data
(PS-Mix) contains no cases where the light source condition
doesn’t change or is very weak from image to image in any
regions of the image. For example, when a spotlight light is
illuminated on an object, the surface normal recovery could
fail if the image contains many areas that are not included in
the light diameter. Another common case is that the inten-
sity of the dynamic light source is very weak compared to

Failure case 1: Dynamic lighting variations are too weak

Failure case 2: Little changes on some areas

Figure 1. Failure cases. The performance of the proposed method
degrades significantly when changes in the illumination environ-
ment cannot be observed, whether in part or in the entire image.

the static one therefore illumination changes between im-
ages are scarce. This tends to occur when the method is
applied during the daytime or when trying to recover large
scenes of wide depth range.

There are various possible ways to improve this, such as
improving the training data by including such cases (e.g.,
spot light rendering) or adding a mechanism to identify and
ignore regions where light source changes do not occur, but
further discussion would go beyond what is allowed in the
supplementary, so we leave these issues for the future work.

The better choice of light source. Based on the discussion
above, a point light source or surface light source that can
illuminate a wide area simultaneously may seem more ap-
propriate, rather than a spotlight that tends to produce areas
that are not clearly illuminated. Generally speaking, when
automatic exposure control is turned on, the tonal resolu-
tion is degraded to increase dynamic range when very dark
and bright areas are mixed together. On the other hand,
when the entire image is bright, it is possible to represent
enough information within a narrow dynamic range, result-
ing in less image noise. Therefore, to improve the quality
of a captured image, it is essential to make the irradiance
uniform across the image.

Empirically, we have found that using a ring light for



Figure 2. Our acquisition setup simply needs a movable light
source and a camera.

selfies or a smartphone/tablet screen as a light source are
the two most effective methods available to us that meet the
above conditions. Of these, the selfie-light, which provides
sufficient light and is easy to handle, was used in many of
the experiments in this paper. The tools used in this work
are shown in Fig. 2. Since no calibration of the light source
or camera is necessary, all that is required are a single light
source, a single camera, and target objects.

When a mask is necessary and when it is not. Basically,
the proposed method does not require a mask. As one may
have noticed from the paper’s results, our method is capa-
ble of preserving the depth discontinuities of objects with-
out a mask to a level that is not possible with any existing
methods. There are three main factors that make this pos-
sible. First, unlike the existing dataset (i.e., PS-Wild), our
PS-Mix consists of multiple overlapping objects, and learn-
ing is performed without explicitly providing their bound-
aries. Second, our method is more robust than all existing
methods against inter-reflections and cast shadows that oc-
cur at depth boundaries. Third, during global interactions
of the aggregated features, no local interaction is performed
unlike existing methods, so no over-smoothing occurs.

However, there are some cases where the object mask is
helpful. The first case is simply when one wishes to recover
only the shape of a particular object in a scene. The second
case is when we want to explicitly ’hide” areas with little
lighting variation. During network training, a ground truth
mask is always given simultaneously, and the loss function
is computed only from pixels in the mask. Consequently,
information outside the mask is not taken into account in
the prediction during training. In other words, a mask can
be used to intentionally hide areas from the network where
lighting variations are weak. For this purpose, the mask
does not need to follow the contour of the object; a bound-
ing box-like specification is sufficient.

Other points to note on photography. We found that there
are other exceptional cases where our method does not work
well. If the image correction is too strong, it will fail. For

example, recent smartphones apply various image filters to
improve the appearance of images after they are taken. As a
result, the physically correct shading changes are destroyed.
Also, while the proposed method basically does not require
HDR (high-dynamic-range) images, it is not as robust with
respect to too much over- and under- exposure. Fortunately,
the automatic exposure control provided in recent digital
cameras and smartphones is very effective to avoid the sit-
uations. Similarly to other photometric stereo methods, our
method is also helpless with respect to an image blur and
an accidental misalignment of images. The above problems
can be easily solved by carefully tuning the camera, so they
are not critical in practice.

Summary

In conclusion to this section, the following points should
be kept in mind when taking photographs.

» To assume an orthographic camera, the object should
be placed in the central field of view of a camera with
a sufficiently large focal length.

e Ensure that the illumination changes throughout the
image. For this purpose, light sources that can illumi-
nate a wide area, such as a point light or a surface light,
are better than a spotlight. Alternatively, masks can be
used to hide areas of weak illumination variation.

* Turn off software image correction, increase the depth
of field to prevent blur, and ensure that the camera does
not move while taking photographs.

* The number of images can be small. If you need more,
just add more. It only takes a few seconds.

Appendix B. Network Architecture Details

Our entire framework consists of six sub-networks. The
scale-invariant spatial-light encoder includes (a) a backbone
network for the imagewise feature extraction, (b) a Trans-
former network for the pixelwise interaction along the light-
axis and (c) a feature pyramid network for the fusion of hi-
erarchical feature maps. And in the pixel-sampling Trans-
former, there are (d) a Transformer network for the feature
aggregation along the light-axis and (e) a Transformer net-
work for the feature interaction along the spatial-axis. Fi-
nally, we have (f) a MLP for the surface normal prediction.
In this section, we detail each network architecture.

Backbone: In our scale-invariant spatial-light encoder,
each sub-tensor (i.e., concatenation of a sub-image and a
sub-mask) is independently input to ConvNeXt [13] which
is a modernized ResNet [6] like architecture taking inspira-
tion from the recent Vision Transformer [5, 12]. The vari-
ants of ConvNeXt differ in the number of channels C, and



the number of ConvNeXt blocks B in each stage. We here
chose the following configuration.

« ConvNeXt-T: C = (96, 192, 384, 768), B = (3, 3, 9, 3)

The ConvNeXt block includes 7x7 depthwise convolution,
1x1 convolution with the inverted bottleneck design (4x hid-
den dimension) and 1x1 convolution to undo the hidden di-
mension. Between convolutions, layer normalization [ 18]
and GeLU [7] activation are placed. The output of Con-
vNeXt is a stack of feature maps of (B x 96 x R/4 x R/4), (B
x 192 x R/8 x R/8), (B x 384 x R/16 x R/16) and(B x 768
x R/32 x R/32) where B is the batch size and R is the input
sub-tensor size as defined in the main paper.

Transformer (interaction along light-axis): Given hier-
archical feature maps from the backbone network, we pix-
elwisely apply Transformer [16] to features of individual
scales along the light-axis as with [8]. We chose the num-
ber of channels in a hidden layer C, and the nuber of Trans-
former blocks B as follow.

¢ Transformer: C = (96, 192, 384, 768), B=(0, 1, 2, 4)

The Transformer block projects the input feature to query,
key and value vectors whose dimensions are same with the
input ones. They are then passed to a multi-head self-
attention (the number of heads is 8) with a soft-max and
a feed-forward network with two linear layers whose di-
mensionality of input and output layers is same but one of
the inner layer is twice of the input. A residual connection
around each of the two sub-layers, followed by layer nor-
malization [ 18] and dropout (p = 0.1).

Feature pyramid network: After the hierarchical feature
maps pixelwisely interact with each other using Transform-
ers, feature maps of different scales corresponding to each
input image are fused with the feature pyramid network (i.e.
UPerNet [17]) which was originally proposed for the se-
mantic segmentation task. We simply used an implemen-
tation on MMSegmentation [3] without any modifications.
The output feature size is (B x R/4 x R/4 x 256).

Transformer (aggregation along light-axis): Given m
pixel locations at the input coordinate system, we concate-
nate each pair of a raw observation and a bilinearly interpo-
lated feature vector from the output of the feature pyramid
network to a vector whose dimension is 259 (i.e., 256+3).
The feature aggregation network takes K sets of 259-dim
feature vectors at the same location as input and perform
two Transformer blocks of C=256 (shrunk from 259 to 256
by QKYV projection). The output feature is further concate-
nated with the raw observation and each 259-dim feature
vectors are again fed to another three Transformer blocks
of C=256. Then, the output K feature vectors are passed to
PMA [9] where the number of elements in a set was shrunk
from K to one using another Transformer block of C=384.

Transformer (interaction along spatial-axis): At the final
step of the pixel-sampling Transformer module, we perform
two Transformer blocks (C=384) to communicate features
among the m locations. The ndive self-attention requires
o(m?) memory consumption, however m (i.e., number of
pixel samples) is much larger than K (i.e., number of in-
put images), which makes increasing sample size difficult.
Therefore, we instead used the O(m) implementation of the
self-attention by [14] to tackle this problem (Note that the
computational cost doesn’t change).

Normal prediction network: The surface normal predictor
is a MLP with one hidden layer whose feature dimension
shrank as 384 — 192 — 3 and the norm of the output vec-
tor is normalized to be a unit surface normal vector at the
location.

Appendix C. Reflectance Recovery

As highlighted in the main paper’s conclusion, the pro-
posed framework extends beyond surface normal recovery
and can be readily applied to surface reflectance recovery by
merely substituting the training data and loss function. This
versatility enables the proposed method to render the target
scene under novel lighting environments, or in other words,
achieve novel relighting. However, recovering surface re-
flectance from images in an uncalibrated setup poses a fun-
damental ambiguity due to the countless possible combina-
tions of illumination and reflectance, such as a red surface
under white light or a white surface under red light. This
complexity makes objective evaluation nearly unattainable.

Given the challenges in evaluation, we opted not to fea-
ture the results of reflectance recovery in the main paper. In-
stead, we present them here to demonstrate that our method
is not confined to surface normal recovery. Our PS-Mix
dataset already incorporates base color, roughness, and met-
alness maps from AdobeStock [1], which were employed
to render images. We simply utilize these maps as train-
ing data and train our network using Mean Squared Er-
ror (MSE) losses between the predicted and provided base
color, roughness, and metalness maps. Once the surface
reflectance parameters and surface normals are recovered,
we can render images of the scene under novel lighting
conditions using any physically-based renderer, such as
Blender [2].

Implementation details: We implemented two separate
networks for surface normal map recovery and base color,
roughness, and metalness maps recovery, respectively. We
observed that training a single network for both tasks
slightly degraded performance. The network architecture
and training methodology were identical to those described
in the main paper, with the only difference being the train-
ing data and loss functions.

Reflectance representation: The images in both PS-
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Figure 3. Reflectance recovery and novel relighting of scenes under directional lightings.

Wild [8] and our PS-Mix were rendered using the dichro-
matic Bidirectional Reflectance Distribution Function
(BRDF) [4], which is commonly assumed in physically-
based rendering of materials. This BRDF is a combina-

tion of the diffuse, specular, and metallic BRDFs, con-
trolled by three parameters: base color € R3, roughness
€ R, and metalness € R (all parameters are within the
range 0 to 1). The diffuse BRDF includes a Schlick Fresnel
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Figure 4. Reflectance recovery and novel relighting of scenes under spatially-varying illuminations.

factor and a term for diffuse retro-reflection whose color
is determined by the base color parameter. The specular
BRDF is the Cook-Torrance microfacet BRDF that uses
the isotropic GGX (also known as Generalized-Trowbridge-

Reitz-2) with a Smith masking-shadowing function. The
roughness parameter controls the shape of the lobe, with
smaller roughness values producing steeper specular lobes,
i.e., more prominent specular highlights. The metallic



(a) W/o non-local interaction by pixel-sampling Transformer

(b) W/ non-local interaction by pixel-sampling Transformer

Figure 5. We compared the results of reflectance recovery w/ and
w/o our pixel sampling Transformer. As we observe, the non-local
interaction among aggregated features seem to be critical in the
surface reflectance recovery.

BRDF uses the same specular BRDF, but the reflected light
is colored with the base color parameter. The metalness
parameter balances the weight between the dielectric (dif-
fuse+specular) and metallic BRDFs. As per this definition,
the metalness of a surface is primarily determined by the
color of its specular reflection. In other words, if the pre-
dicted surface base color and the color of the specular re-
flection are similar, the surface is classified as metallic and
assigned a corresponding metalness value. This can result
in some black surfaces being classified as metallic, but it
does not pose an issue in novel relighting since black sur-
faces are always represented by the same BRDF, regardless
of their metalness value. For further details, please refer
to [4].

Results under directional lighting: In Fig. 3, we present
the results of reflectance recovery from random 32 images
of five objects in DiLiGenT [!5]. For each object, we
show one of the input images and the recovered surface nor-
mal (N), base color (Bc), roughness (Ro), and metalness
(Mt) maps. We observe that the proposed method could
cluster identical materials, even though we did not impose
any physically-based constraints on reflectance properties
based on prior knowledge, such as smoothness or sparsity
of basis materials, which has been done in most existing
works [10, 11, 19,20]. We also observe successful separa-
tion between the surface color and shading effects. Further-
more, several objects in DiLiGenT have metallic paintings
(e.g., Harvest and Cow), and our method correctly recov-
ered the metalness values for these areas. To the best of
our knowledge, our method is the first to recover physically
plausible metalness parameters of non-convex scenes under
unknown lighting conditions.

Using the recovered BRDF parameters, we rendered the

scenes under three different lighting conditions using the
physically-based renderer [2]: a point light collocated with
the camera position, outdoor environment lighting, and in-
door environment lighting. While the unavoidable ambigu-
ity of the problem setup makes quantitative evaluation im-
possible, we obtained highly plausible rendering results for
each lighting condition. Note that all results were based on
the surface normal map, not the surface meshes, so we can-
not render global lighting effects such as cast shadows and
inter-reflections.

Our analysis of the results revealed an interesting obser-
vation: non-local interactions are more critical in recovering
surface reflectance than surface normal. As shown in Fig. 5,
we found that the recovery of material properties required a
broad range of observations, including from low-frequency
(diffuse) to high-frequency (specular) components. Reli-
able low-frequency information is almost sufficient for sur-
face normal prediction, but it is not enough for recovering
material properties, and focusing on a specific pixel is not
adequate. The non-local interaction of aggregated features
proved helpful in seeing different surface points of the same
material for the recovery of surface reflectance, resulting in
our outstanding results.

Results under spatially-varying lighting: In Fig. 4, we
present the results of reflectance recovery and novel re-
lighting from images under spatially-varying illuminations.
The results demonstrate that the proposed method achieves
physically plausible performance, overcoming the challeng-
ing conditions of each scene.

For instance, in the Figures dataset, a metallic-painted,
non-planar object and a non-metallic, planar object exist in
the same scene, but the network successfully reconstructed
the normal map without distinguishing between these ob-
jects. Additionally, the metalness parameters were suc-
cessfully recovered in the metallic-painted area, as demon-
strated in the relighting results. The Cable objects have
complex tangles of long, thin cables, and such geometries
tend to produce ambiguous depth discontinuities when han-
dled by existing methods. The proposed method not only
accurately reconstructed these geometries but also recov-
ered uniform base color without being affected by cast
shadows or inter-reflections caused by non-convex geome-
tries. For other objects such as Toast, Keychain, and Al-
ligator, the proposed method successfully recovered a de-
tailed surface normal map that preserved depth discontinu-
ities accurately and produced perceptually plausible surface
reflectance maps that were unaffected by shading and global
illumination effects. The novel relighting results demon-
strate that our results are of practical quality for the capture
of surface attributes.

These results suggest that the proposed method is highly
effective not only in surface normal recovery but also in sur-
face reflectance recovery and novel relighting of the scene.



However, we emphasize once again that we are aware that
the results of this experiment are not objective, and further
quantitative evaluation of surface reflectance recovery is left
for future work.
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