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A. Implementation Details

We implement our framework using the Detectron2 [27]
library.
Multi-Scale Feature Modeling. We adopt the settings
from [4] for modeling the image pixel-level features. More
specifically, we use 6 MSDeformAttn [31] inside our pixel
decoder, applied to feature maps with resolutions 1/8, 1/16,
and 1/32 of the original image. We use lateral connections
and upsampling to aggregate the multi-scale features to a fi-
nal 1/4 resolution scale. We map all the features to a hidden
dimension of 256.
Unified Task-Conditioned Query Formulation. We ini-
tialize the N − 1 queries as repetitions of task-token, Qtask.
Unless stated otherwise, we set N = 250 and Nctx = 16.
Our text tokenizer and text encoder are the same as [29].
We use a single linear layer to project the tokenized task
input, followed by a layer-norm to obtain Qtask.
Task-Dynamic Mask and Class Prediction Formation.
Following [4], we set L = 3 inside the transformer decoder.
Therefore, we have a total of 3L (9) stages inside our trans-
former decoder. We also calculate an auxiliary loss on each
intermediate class and mask predictions after every trans-
former decoder stage [4].
Training Settings. We train our model with a batch size of
16. When training on ADE20K [6] and Cityscapes [5], we
use the AdamW [20] optimizer with a base learning rate of
0.0001, poly learning rate decay and weight decay 0.1. We
use a crop size of 512×512 and 512×1024 on ADE20K
and Cityscapes, respectively. We train for 90k and 160k
iterations on Cityscapes and ADE20K, respectively. For
data augmentation, we use shortest edge resizing, fixed size
cropping, and color jittering followed by a random horizon-
tal flip.

When training on COCO [15], we use a step learning
rate schedule along with the AdamW [20] optimizer, a base
learning rate of 0.0001, 10 warmup iterations, and a weight
decay of 0.05. We decay the learning rate at 0.9 and 0.95
fractions of the total number of training steps by a factor of
10. We train for a total of 100 epochs with LSJ augmenta-

#queries PQ AP mIoU #param.

100 51.3 41.9 60.8 47M
120 51.0 42.0 60.8 47M
150 51.5 42.5 61.2 47M
200 51.3 42.5 60.0 47M

Table I. Ablation on Number of Queries. We find N = 150
performs best on the COCO dataset.

Nctx PQ AP mIoU #param.

0 41.7 27.5 46.5 47M
8 41.0 27.2 46.5 47M

16 41.9 27.3 47.3 47M
32 41.7 27.5 46.8 47M

Table II. Ablation on number of learnable text context embed-
dings. We find Nctx = 16 performs best.

contrastive-loss weight PQ AP mIoU

λQ↔Qtext = 0.0 51.1 42.1 60.2
λQ↔Qtext = 0.5 51.5 42.5 61.2
λQ↔Qtext = 1.0 50.7 42.0 60.5

Table III. Ablation on Contrastive Loss’ Weight. We find
λQ↔Qtext = 0.5 gives the best performance.

PQ AP mIoU #param.

conv. pos + sinusoidal feats 49.8 35.9 57.0 219M
sinusoidal pos + conv. feats 49.8 35.3 56.1 219M

Table IV. Ablation on Positional Encodings. We find that using
conv. pos + sinusoidal feats give a better performance.

tion [7, 8] with a random scale sampled from the range 0.1
to 2.0 followed by a fixed size crop to 1024×1024 resolution.
Evaluation Settings. We follow the same evaluation set-
tings as Mask2Former [4]. Unless stated otherwise, we re-
port results for the single-scale inference setting. Unlike the
training stage, during evaluation, we use the ground-truth
annotations from the respective task GT labels to calcu-
late the metric scores instead of deriving the labels from
the panoptic annotations. Additionally, we set the value of
task in “the task is {task}” as panoptic, instance and se-
mantic to obtain the corresponding task predictions.
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Figure I. Comparison to Swin-L Mask2Former [4]. Our single OneFormer model outperforms Mask2Former [4], the previous single
architecture SOTA system on ADE20K val [6], Cityscapes val [5], and COCO val2017 [15] for all three segmentation tasks. With DiNAT-L
OneFormer, we achieve even more improvements.

Task Token Input PQ PQTh PQSt AP mIoU

the task is panoptic 67.2 61.0 71.7 45.3 83.0
the task is instance 25.6 60.8 0.0 45.6 6.3
the task is semantic 56.9 36.2 71.9 27.2 83.0

Table V. Quantitative Analysis on Task Dynamic Nature of
OneFormer. Our OneFormer is sensitive to the input task to-
ken value. We report results with Swin-L† OneFormer on the
Cityscapes [5] val set. The numbers in pink denote results on sec-
ondary task metrics.

B. Additional Ablations

Ablation on Number of Queries. We study the effect of the
different number of queries on the COCO dataset in Tab. I.
We conduct experiments using the ResNet-50 (R50) [10]
backbone and train for 50 epochs. We find that N = 150
performs the best.

Additionally, we tune the number of queries on the
Swin-L† backbone separately. During our experiments, we
found that N = 250 is the best setting with Swin-l† on
ADE20K [6] and Cityscapes [5] datasets. On COCO [15],
N = 150 gives the best performance with Swin-L†. We also
noticed that with smaller backbones like R50 [10], N = 150
is the optimal setting on the ADE20K [6] dataset.
Ablation on Contrastive Loss’ Weight. We run ablations
on the weight for the contrastive loss’ weight on the COCO
dataset in Tab. III. We conduct our experiments using the
ResNet-50 (R50) [10] backbone and train for 50 epochs.
We find that λQ↔Qtext = 0.5 is the optimal weight setting.
Ablation on Number of Learnable Text Context Embed-
dings. We study the effect of different number of learn-
able text context embeddings on the ADE20K [6] dataset in
Tab. II. We conduct our experiments using the ResNet-50
(R50) [10] backbone and train for 160k iterations. We find
that Nctx = 16 performs best.
Ablation on Positional Encodings. We empirically find
that convolutionally mapping the flattened 1/4-scale fea-

tures (from the pixel decoder) to obtain the positional en-
codings and using sinusoidal image features as inputs to the
class transformer perform better than using the standard si-
nusoidal positional encoding and convolutional features set-
ting as shown in Tab. IV. We conduct experiments using the
Swin-L† [18] backbone and train for 160k iterations.

C. Individual Training

In this section, we analyze our OneFormer’s perfor-
mance with individual training on the panoptic, instance,
and semantic segmentation task. For this study, we con-
duct experiments with the ResNet-50 (R50) [10] backbone
on the ADE20K [6] dataset. We train all models for 160k
iterations with a batch size of 16.

As shown in Tab. VI, OneFormer outperforms
Mask2Former [4] (the previous SOTA pseudo-universal
image segmentation method) with every training strategy.
Furthermore, with joint training, Mask2Former [4] suffers
a significant drop in performance, and OneFormer achieves
the highest PQ, AP and mIoU scores.

In order to train OneFormer on a single task, we set the
value of task as that of the corresponding task in our task
token input: “the task is {task}” for the samples during
training. Therefore, under Panoptic Training, only panoptic
ground truth labels will be used, and similarly, for Semantic
and Instance Training, only semantic and instance ground
truth labels shall be used, respectively. The joint training
strategy remains the same as described in Sec 3.1 (main
text) with uniform sampling for each task-specific ground
truth label. Note that for training OneFormer, we derive all
ground truth labels from the panoptic annotations.



training strategy method PQ AP mIoU

Panoptic Training
Mask2Former [4] 40.7 25.2 45.6
OneFormer (ours) 41.4 (+0.7) 27.0 (+1.8) 46.1 (+0.5)

Instance Training
Mask2Former [4] — 26.4 —
OneFormer (ours) — 26.7 (+0.3) —

Semantic Training
Mask2Former [4] — — 47.2
OneFormer (ours) — — 47.3 (+0.1)

Joint Training
Mask2Former† [4] 40.8 25.7 46.6
OneFormer (ours) 41.9 (+1.1) 27.3 (+1.6) 47.3 (+0.7)

Table VI. Comparison between Individual and Joint Training. Unlike Mask2Former [4] which shows large variance in performance
among the different training strategies, OneFormer performs fairly well under all training strategies and outperforms Mask2Former [4].
We train all models with R50 [10] backbone on the ADE20K [6] dataset for 160k iterations. † We retrain our own Mask2Former [4] using
the joint training strategy.

D. Analysis on the Task-Dynamic Nature of
OneFormer

We analyze OneFormer’s ability to capture the inter-
task differences by changing the value of {task} in the
task token input: “the task is {task}” as panoptic, in-
stance, or semantic, during inference. We report quanti-
tative report results with our Swin-L† OneFormer trained
on Cityscapes [5] dataset in Tab. V. When we set task as
“instance”, we observe that PQSt drops to 0.0%, and there
is only a −0.2% drop on PQTh metric as compared to the
setting when task is panoptic. This observation proves
that OneFormer learns to change its feed-forward output
depending on the task dynamically. Similarly, there is a
sizable drop in the PQ, PQTh and AP metrics for the seman-
tic task with PQSt improving by +0.2% showing that our
framework can segment out amorphous masks for “stuff”
regions but does not predict different masks for “thing” ob-
jects. We observe that the mIoU/AP scores when {task} is
panoptic are close to the best scores. We reason that panop-
tic segmentation is a superset of instance and semantic seg-
mentation, due to which setting {task} as panoptic demon-
strates good performance on all three metrics.

We further provide qualitative evidence in Fig. II. As
demonstrated by the first example in Fig. II, the rider and
bicycle regions are detected. However, the other “stuff”
regions are misclassified in the semantic inference output
when task=“instance”. Similarly, the people are detected
in the second example, and the other “stuff” regions are mis-
classified. In further evidence, in both examples, the dis-
tinct “thing” objects are segmented into a single amorphous
mask in the panoptic and instance inference outputs when
task=“semantic”. Therefore, the differences in the quali-
tative results demonstrate OneFormer’s ability to be guided
by the task token and output task-dependent predictions.

E. Comparison to SOTA Methods at System-
Level for Image Segmentation

In this section, we compare OneFormer to other SOTA
systems for panoptic, instance, and semantic segmentation
tasks on the ADE20K val [6], Cityscapes val [5], and COCO
val2017 [15] datasets. As shown in Fig. I, our single One-
Former model outperforms Mask2Former for the three im-
age segmentation tasks on all three datasets. Note that we
are comparing the same OneFormer models referenced in
our main text to other systems without applying additional
system-level training techniques or using additional data
and huge backbones.

E.1. SOTA Systems on ADE20K val

As shown in Tab. VII, without using any extra train-
ing data, Swin-L OneFormer sets new state-of-the-art
performance on instance segmentation with 37.8% AP,
and DiNat-L OneFormer sets new state-of-the-art perfor-
mance on panoptic segmentation with 51.5% PQ beat-
ing the previous state-of-the-art Swin-L Mask2Former’s [4]
34.9% AP and ConvNeXt-L KMaX-DeepLab’s [30] 50.9%
PQ, respectively. Furthermore, DiNAT-L OneFormer and
ConvNeXt-L OneFormer achieve the new-state-of-the-art
single-scale and multi-scale mIoU scores of 58.3% and
58.8%, respectively, compared to other systems that do not
use extra data during training.

E.2. SOTA Systems on Cityscapes val

Our ConvNeXt-L OneFormer sets the new state-of-the-
art performance on panoptic segmentation with 70.1% PQ
with single-scale inference. Similarly, ConvNeXt-XL One-
Former achieves a new state-of-the-art 48.9% AP score
with single-scale inference as shown in Tab. IX.

E.3. SOTA Systems on COCO val

Without using any extra training data, DiNAT-L One-
Former matches the previous state-of-the-art KMaX-



Method Backbone #Params Crop Size Extra Data PQ AP mIoU
(s.s.)

mIoU
(m.s.)

Individual Training

Mask2Former [4] BEiT-3 [25] 1.9B 896×896 ✓ — — 62.0 62.8
UPerNet [28] FD-SwinV2-G [26] >3B 896×896 ✓ — — — 61.4
Mask DINO [13] Swin-L [18] 223M 896×896 ✓ — — 59.5 60.8
Mask2Former [4] ViT-Adapter-L [2] 568M 896×896 ✓ — — 59.4 60.5
UPerNet [28] SwinV2-G [17] >3B 896×896 ✓ — — 59.3 59.9

UPerNet [28] ViT-Adapter-L [2] 571M 640×640 ✗ — — 58.0 58.4
MSFaPN-Mask2Former [12] SeMask Swin-L† [12] — 640×640 ✗ — — 57.0 58.2
FaPN-Mask2Former [11] Swin-L [18] — 640×640 ✗ — — 56.4 57.7
SeMask Mask2Former [12] SeMask Swin-L† [12] — 640×640 ✗ — — 56.4 57.5
Mask2Former-Semantic [11] Swin-L [18] 216M 640×640 ✗ — — 56.1 57.3

Mask2Former-Panoptic [4] Swin-L [18] 216M 640×640 ✗ 48.1 34.2 54.5 —
kMaX-DeepLab [30] ConvNeXt-L† [19] 232M 641×641 ✗ 48.7 — 54.8 —

Mask2Former-Instance [4] Swin-L [18] 216M 640×640 ✗ — 34.9 — —
kMaX-DeepLab [30] ConvNeXt-L† [19] 232M 1281×1281 ✗ 50.9 — 55.2 —

Joint Training

OneFormer Swin-L [18] 219M 640×640 ✗ 49.8 35.9 57.0 57.7
OneFormer Swin-L [18] 219M 896×896 ✗ 51.1 37.6 57.4 58.3
OneFormer Swin-L [18] 219M 1280×1280 ✗ 51.4 37.8 57.0 57.7

OneFormer ConvNeXt-L [19] 220M 640×640 ✗ 50.0 36.2 56.6 57.4
OneFormer ConvNeXt-XL [19] 372M 640×640 ✗ 50.1 36.3 57.4 58.8

OneFormer DiNAT-L [9] 223M 640×640 ✗ 50.5 36.0 58.3 58.4
OneFormer DiNAT-L [9] 223M 896×896 ✗ 51.2 36.8 58.1 58.6
OneFormer DiNAT-L [9] 223M 1280×1280 ✗ 51.5 37.1 58.2 58.7

Table VII. Comparison to SOTA systems on ADE20K val [6]. OneFormer achieves new-state-of-the-art performances on all three
segmentation tasks when compared with SOTA systems not using extra training data.

DeepLab [30] with 58.0% PQ score. Swin-L OneFormer
achieves the best PQTh score of 64.4%. For evaluating on
the semantic segmentation task, we generate semantic GT
annotations from the corresponding panoptic annotations.
As shown in Tab. VIII, DiNAT-L OneFormer achieves an
impressive 68.1% mIoU.

While analyzing the COCO dataset, we found serious
discrepancies between the GT panoptic and instance anno-
tations. Therefore, for fair comparison, during evaluation,
we generate the instance annotations from the panoptic an-
notations for calculating the AP scores as only use panop-
tic annotations during training. We provide more informa-
tion about the discrepancies in Appendix F. DiNAT-L One-
Former achieves 49.2% AP outperforming Mask2Former-
Instance [4].

F. Analysis on Discrepancy between Instance
and Panoptic Annotations in COCO

During our joint training, we derive the semantic and in-
stance ground-truth labels from the corresponding panop-
tic annotations. Unlike, Cityscapes [5] and ADE20K [6]
datasets, which combine the semantic and instance anno-
tations to generate the corresponding panoptic annotations
while preparing the data, COCO [15] has separate sets of

panoptic and instance annotations. As expected, there are
no discrepancies between the panoptic and instance anno-
tations in the Cityscapes [5] and ADE20K [6] datasets.
However, because COCO [15] has separately developed
panoptic and instance annotations, we discover significant
discrepancies in the COCO train2017 and val2017 [15]
datasets as shown in Fig. III and Fig. IV, respectively.

In Fig. III, the instance annotations merge the “tie” ob-
ject into the “person” object. In another example, instance
annotations merge the “dog” and “boat” into a single in-
stance, while the panoptic annotations segment the two in-
stances correctly.

In Fig. IV, the instance annotations skip multiple “per-
son” and “motorcycle” objects in different images, while
the panoptic annotations include them all. In another exam-
ple, instance annotations leave out a group of “person” ob-
ject instances in the background, and panoptic annotations
merge those instances into a single object mask.

These discrepancies are a significant barrier to develop-
ing and evaluating a unified image segmentation model. As
demonstrated in Fig. III and Fig. IV, our predictions match
the panoptic annotations much more than the instance anno-
tations which is expected from our training strategy involv-
ing only panoptic annotations. Therefore, while comparing



Method Backbone #Params Extra Data PQ PQTh PQSt AP APinstance mIoU

Individual Training

Mask DINO [13] Swin-L [18] 223M ✓ 59.4 — — — 54.5 —
kMaX-DeepLab [30] ConvNeXt-L [19] 232M ✓ 58.1 64.3 48.8 — — —

kMaX-DeepLab [30] ConvNeXt-L [19] 232M ✗ 58.0 64.2 48.6 — — —
Mask2Former-Panoptic [4] Swin-L [18] 216M ✗ 57.8 64.2 48.1 48.7 48.6 67.4
Panoptic SegFormer [14] Swin-L [18] 221M ✗ 55.8 61.7 46.9 — — —

Mask2Former-Instance [4] Swin-L [18] 216M ✗ — — — 49.1 50.1 —

Joint Training

OneFormer Swin-L [18] 219M ✗ 57.9 64.4 48.0 49.0 48.9 67.4

OneFormer DiNAT-L [9] 223M ✗ 58.0 64.3 48.4 49.2 49.2 68.1

Table VIII. Comparison to SOTA systems on COCO val2017 [15]. OneFormer achieves the best PQTh score among the SOTA systems
trained without using any extra data. APinstance represents evaluation on the original instance annotations.

Method Backbone #Params Crop Size Extra Data MS
(PQ & AP) PQ AP mIoU

(s.s.)
mIoU
(m.s.)

Individual Training

HRNetV2-OCR+PSA [16] HRNetV2-W48 [22] — 1024×2048 ✓ ✗ — — — 86.9
HRNetV2-OCR [16] HRNetV2-W48 [22] — 1024×2048 ✓ ✗ — — — 86.3
Mask2Former [4] ViT-Adapter-L [2] 571M 896×896 ✓ ✗ — — 84.9 85.8

Mask2Former [4] SeMask Swin-L [12] 223M 512×1024 ✗ ✗ — — 84.0 85.0
Mask2Former-Semantic [4] Swin-L [18] 215M 512×1024 ✗ ✗ — — 83.3 84.3

Panoptic-DeepLab [3] SWideRNet [1] — 1025×2049 ✓ ✓ 69.6 46.8 — 85.3
Axial-DeepLab-XL [24] Axial ResNet-XL [24] 173M 1025×2049 ✓ ✓ 68.5 44.2 — 84.6
EfficientPS [21] EfficientNet [23] — 1025×2049 ✓ ✓ 67.5 43.5 — 82.1

Panoptic-DeepLab [3] SWideRNet [1] — 1025×2049 ✓ ✗ 68.5 42.8 84.6 85.3
Axial-DeepLab-XL [24] Axial ResNet-XL [24] 173M 1025×2049 ✓ ✗ 67.8 41.9 84.2 —

kMaX-DeepLab [30] ConvNeXt-L [19] 232M 1025×2049 ✗ ✗ 68.4 44.0 83.5 —
Panoptic-DeepLab [3] SWideRNet [1] — 1025×2049 ✗ ✗ 66.4 40.1 82.2 82.9
Axial-DeepLab-XL [24] Axial ResNet-XL [24] 173M 1025×2049 ✗ ✗ 64.4 36.7 80.6 81.1
Mask2Former-Panoptic [4] Swin-L [18] 216M 512×1024 ✗ ✗ 66.6 43.6 82.9 —

Mask2Former-Instance [4] Swin-L [18] 216M 512×1024 ✗ ✗ — 43.7 — —

Joint Training

OneFormer Swin-L [18] 219M 512×1024 ✗ ✗ 67.2 45.6 83.0 84.4

OneFormer ConvNeXt-L [19] 220M 512×1024 ✗ ✗ 68.5 46.5 83.0 84.0
OneFormer ConvNeXt-XL [19] 372M 512×1024 ✗ ✗ 68.4 46.7 83.6 84.6

OneFormer ConvNeXt-L [19] 220M 512×1024 ✓ ✗ 70.1 48.7 84.6 85.2
OneFormer ConvNeXt-XL [19] 372M 512×1024 ✓ ✗ 69.7 48.9 84.5 85.8

OneFormer DiNAT-L [9] 223M 512×1024 ✗ ✗ 67.6 45.6 83.1 84.0

Table IX. Comparison to SOTA systems on Cityscapes val [5]. OneFormer achieves new-state-of-the-art performances on the instance
and panoptic segmentation tasks when compared with SOTA systems using single-scale inference.

our Swin-L† OneFormer to other SOTA methods in Tab. 3
(main text), we evaluate the AP score on instance GTs de-
rived from the panoptic annotations.
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Figure II. Qualitative Analysis on Task Dynamic Nature of OneFormer. When task = “instance”, the semantic inference outputs
display fair detection of “thing” regions and misclassifications for the “stuff” regions. Similarly, when task = “semantic”, the distinct
object masks are grouped into a single amorphous mask, as expected by the formulation of the semantic segmentation task. Zoom in for
best view.
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Figure III. Discrepancy between instance and panoptic annotations in the COCO train2017 [15] dataset. The “tie” instance is merged
into the “person” instance in the instance annotations, whereas the panoptic annotations segment the two objects separately in the first,
third, and fifth rows. Similarly, “dog” and “boat” are merged into a single instance in the instance annotations in the second row. The
“bowl” and “spoon” are segmented as a single instance in instance annotations in the fourth row. Lastly, the ‘tennis racket” and the small
“sports ball” are segmented distinctly in panoptic annotations, unlike instance annotations in the last row. Zoom in for best view.
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Figure IV. Discrepancy between instance and panoptic annotations in the COCO val2017 [15] dataset. The instance annotations skip
multiple “person” and “motorcycle” objects in the first and fourth rows. The instance annotations leave out a group of “person” objects in
the background, and panoptic annotations merge those objects into a single object mask in the second, third, fifth, and sixth rows. A similar
case is observed with “bus” in the background in the last row. Zoom in for best view.
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