
A. Softmax and Entropy
Theorem 1. H ({p0, p1, p2}) is a monotonic decreasing
function of β, where
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Thus, if x > 1, then ∂H
∂x ≤ 0 and H is a strictly monotonic

decreasing function of x unless y0 = y1 = y2. Moreover,

x = eβ is a strictly monotonic increasing function of β,

and x > 1 if β > 0. Therefore, H is a strictly monotonic

decreasing function of β, provided that β > 0.

B. Implementation and Training Details
In this section, we describe the implementation and train-

ing details of CTC. First, we describe the software for tra-

ditional codecs and the libraries for learning-based algo-

rithms. Second, we present the implementation details of

the proposed context models CRR and CDR. Then, we ex-

plain how to train the proposed CTC algorithm. Note that

the implementation and acceleration details of DPICT [27]

are available in [22].

B.1. Software and Libraries

We adopt the traditional codecs JPEG2000 [2], BPG444

[10], VTM 12.0 [11] for comparison.

JPEG2000: We use the open software in [2]. We execute

the following commands for encoding and decoding. We

transform RGB-formatted images, such as png files, into

raw files.

{buildpath}/opj compress -i {inputfile}
-o {bin} -r {15:150}
-F {width},{height},3,8,u@1x1:1x1:1x1
{buildpath}/opj decompress -i {bin} -o
{outputfile}
BPG444: We use the software in [10] and enter the follow-

ing commands.

{buildpath}/bpgenc {inputfile} -o {bin}
-q {26:52}
-f 444 -e x265

{buildpath}/bpgdec -o {outputfile} {bin}
VTM 12.0: We execute the reference software package in

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM/-

/tree/VTM-12.0 with the following commands.

{buildpath}/EncoderApp -i {inputfile} -c
{cfgpath}/encoder intra vtm.cfg
-o /dev/null -b {bin} -wdt {width} -hgt
{height} -fr 1 -f 1
-q 24, 26, 30, 31:43
--InputChromaFormat=444
--InputBitDepth=8
--ConformanceWindowMode=1
--InputColourSpaceConvert=RGBtoGBR
--SNRInternalColourSpace=1
--OutputInternalColourSpace=0

{buildpath}/DecoderApp -b {bin} -o
{outputfile} -d 8
--OutputColourSpaceConvert=GBRtoRGB

We use Pytorch [36] and CompressAI [8] libraries



to implement the proposed CTC algorithm. Also, we

employ the source codes and pretrained parameters in

CompressAI for the Minnen et al.’s algorithm [33]. For

the other learning-based codecs, we use the results provided

in the original papers.

B.2. Implementation of CRR and CDR

The main network of the proposed CTC algorithm is in

Figure 2, and the detailed structures of the CRR and CDR

modules are in Figure 4. The context modules are incor-

porated into the main network as follows. There are three

CRR models for different intervals of trit-plane levels l. We

denote them as CRRL, CRRL−1, and CRR≤L−2, where the

subscripts indicate the ranges of trit-plane levels in which

the corresponding models are used. In other words,

P̃l =

⎧⎪⎪⎪⎨
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CRRL

(
Ŷl−1,M,Σ,El,Pl

)
if l = L,

CRRL−1

(
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)
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CRR≤L−2

(
Ŷl−1,M,Σ,El,Pl

)
if l ≤ L− 2.

(23)

Similarly, we implement three CDR models CDRL−1,

CDRL−2, and CDR≤L−3 to obtain

Ỹl =

⎧⎪⎪⎪⎪⎪⎨
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Ŷl if L− 1 < l ≤ L,

CDRL−1

(
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)
if L− 2 < l ≤ L− 1,

CDRL−2

(
Ŷl,M,Σ

)
if L− 3 < l ≤ L− 2,

CDR≤L−3

(
Ŷl,M,Σ

)
if l ≤ L− 3.

(24)

Whereas CRR estimates the probability tensor P̃l for

each trit-plane Tl ( l = 1, . . . , L), CDR performs the pre-

diction of Ỹl for any l ≤ L − 1. Therefore, l is an inte-

ger in (23) but a real number in (24). The trit-plane levels

l ≤ L − 2 are supported by a single CRR model, and the

levels l ≤ L− 3 are by a single CDR model. These choices

are made to strike a balance between the number of param-

eters and the RD performance. Also, CDR is not used at the

top level L − 1 < l ≤ L because the refinement of a latent

tensor Ŷl is not necessary at such a fine level.

Note that the proposed CDR is conceptually similar to

LRP in [34]. However, there are clear differences between

them. Whereas LRP predicts residual errors by taking only

the mean and latent tensors as input, CDR exploits the stan-

dard deviation Σ as the additional context. In this way,

CDR can refine partially reconstructed latent elements by

exploiting their uncertainty levels, which are inversely pro-

portional to the standard deviations. To demonstrate the im-

portance of Σ, we have implemented an ablated version of

CDR without Σ. It increases the BD-rate by +2.45% on the

Kodak lossless dataset. Moreover, while the quantization

step size is 1 in LRP, it is larger in the proposed algorithm

(i.e. 3L−l when the first l trit-planes are decoded). Thus,

there are more opportunities for reducing quantization er-

rors in the proposed algorithm. To achieve this goal, the

proposed CDR exploits both M and Σ.

B.3. Training of CTC

We train the main network for 300 epochs using the rate-

distortion loss L = D + λR with λ = 5.

In the trit-plane slicing module in Figure 2, a latent ten-

sor is sliced into L trit-planes. Note that the maximum

trit-plane level L depends on the latent tensor, as described

in [22]. However, L = 7 for most images. The selection

of CRR and CDR models in (23) and (24) is dependent on

L. Therefore, for stable training of these models, as well as

the decoder retraining, we fix L = 7 and use the training

images with L = 7 only.

We use the cross-entropy loss in (4) to train the three

CRR models. The CRR process is performed for every trit,

except when the original probabilities are (p0, p1, p2) =
(0, 1, 0). In such a case, the trit requires no bit, and there

is no reason to update its probabilities.

The CDR loss in (6) can be rewritten as

�CDR(l) = ‖Y − Ỹl‖F (25)

where l denotes a trit-plane level. The first CDR model

CDRL−1 in (24) supports a partially reconstructed level

l ∈ (L − 2, L − 1]. For its training, we use the sum of

losses, given by

�CDR(L− 1) + �CDR(α) + �CDR(L− 2) (26)

where α ∼ U(0, 1) is a uniform random variable. The

losses for the other two models CDRL−2 and CDR≤L−3

are similarly defined.

Then, the decoder is retrained to minimize the loss �DEC

in (7). Note that the original decoder is optimized for the

case when all trit-planes are received (i.e. the highest level

l = L). Thus, the decoder is retrained to consider lower

levels as well. However, due to the retraining, the perfor-

mances at high levels can be degraded. To alleviate the

degradation, we set large weighting parameters at high lev-

els, compared to low levels. Specifically, we define the loss

as

�DEC = 100×∑L
l=L−1 ‖gs(Ỹl)−X‖F (27)

+
∑L−2

l=L−4 ‖gs(Ỹl)−X‖F . (28)

Note that we consider five levels from L − 4 to L, and set

bigger weights at the two highest levels L and L− 1.

The training epochs for the context models and the de-

coder retraining are summarized in Table 4. These training

schedules are determined by observing the convergence of

the validation performance.



Table 4. The numbers of epochs for the context model training and the decoder retraining (gs).

CRRL CRRL−1 CRR≤L−2 CDRL−1 CDRL−2 CDR≤L−3 gs

300 300 10 30 30 30 100

C. More Experiments
C.1. RD curves

Figures 12 and 13 compare the RD curves on the CLIC

validation dataset and the JPEG-AI testset, respectively. All

learning-based algorithms, including the proposed CTC, are

optimized to minimize the MS-SSIM loss in Figure 12(b)

and Figure 13(b).

Figure 14 compares the proposed CTC with the trit-plane

coding without RD priorities. More specifically, in ‘With-

out RD priorities,’ the trits in each trit-plane are transmitted

in the 3D raster scan order, instead of the decreaing order of

their RD priorities [27]. This alternative method performs

badly compared to CTC. However, we see that its perfor-

mance is also improved by employing the two context mod-

ules, CRR and CDR, and the decoder retraining scheme.

C.2. Time complexity for high-resolution images

We compare the time complexities for compressing 2K

images in the CLIC validation dataset and the JPEG-AI test-

set in Table 5. The proposed CTC algorithm is based on

trit-plane coding, which represents each latent element with

about 7 trits. Hence, CTC increases the number of entropy-

coded data by a factor of about 7, as compared with non-

FGS codecs such as He et al. [20]. This is the main reason

(and a price for enabling FGS) that CTC is slower than [20].

However, it can be observed from Table 5 that the proposed

context modules, CRR and CDR, increase the complexities

only moderately.

Table 5. Time complexity comparison of CTC with Minnen et
al. [33] and He et al. [20].

Encoding (s) Decoding (s)

He et al. [20] 1.00 0.91

Minnen et al. [33] 25.85 78.49

CTC w/o context modules 8.10 7.19

CTC 8.70 8.26

C.3. Reconstructed images of CTC

Figures 15∼20 show various images reconstructed by

the proposed CTC algorithm at levels l = L, L− 2, L− 3,

and L−4. The images with resolutions larger than 512×768
are center-cropped.
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Figure 12. RD curve comparison on the CLIC validation dataset.
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Figure 13. RD curve comparison on the JPEG-AI testset.
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Figure 14. RD curve comparison of CTC and the alternative trit-plane coding method without RD priorities on the Kodak lossless dataset.

The dashed curve means that the context modules, CRR and CDR, and the decoder retraining are not employed.
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Figure 15. Reconstructed images of “kodim01.png” and “kodim02.png.” The bitrates (bpp) and PSNRs (dB) are reported below each

image.
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Figure 16. Reconstructed images of “kodim09.png” and “kodim19.png.” The bitrates (bpp) and PSNRs (dB) are reported below each

image.
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Figure 17. Reconstructed images of “ales-krivec15949.png” and “andrew-ruiz-376.png.” The bitrates (bpp) and PSNRs (dB) are reported

below each image.
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Figure 18. Reconstructed images of “nomao-saeki-33553.png” and “philipp-reiner-207.png.” The bitrates (bpp) and PSNRs (dB) are

reported below each image.
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Figure 19. Reconstructed images of “000505 TE 1336x872.png” and “000505 TE 1336x872.png.” The bitrates (bpp) and PSNRs (dB)

are reported below each image.
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Figure 20. Reconstructed images of “00010 TE 2000x1128.png” and “00015 TE 3680x2456.png.” The bitrates (bpp) and PSNRs (dB)

are reported below each image.


