Supplementary

A. Model Details

A.1. Model Architecture

Our model utilizes the vision encoder and text encoder to learn uni-modal representations, and the fusion encoder to conduct cross-modal interactions, respectively. The whole architecture is displayed in Fig. 5.

A.2. Previous Pre-training Tasks

Contrastive Learning (CL). We conduct CL on the global representations from vision and text encoders. Given a batch of image-text pairs, for an image (text), the paired text (image) is tread as the positive sample, and other texts (images) are negative samples. We use the InfoNCE loss as follows:

$$\mathbf{NCE}_{V2T} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(s(V_i, T_i)/\tau)}{\sum_{n=1}^{N} \exp(s(V_i, T_n)/\tau)},$$

$$\mathbf{NCE}_{T2V} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(s(T_i, V_i)/\tau)}{\sum_{n=1}^{N} \exp(s(T_i, V_n)/\tau)},$$
(5)

where N is the batchsize and τ serves as a learnable temperature parameter. The similarity function is formatted as cosine similarity, $s(V,T) = \frac{\phi_v(V)^T \phi_t(T)}{||\phi_v(V)|| \cdot ||\phi_t(T)||}$, where ϕ is a linear projection head. The vision-text contrastive loss is defined as:

$$\mathcal{L}_{CL} = \mathbf{NCE}_{V2T} + \mathbf{NCE}_{T2V} \,. \tag{6}$$

For the video-text data, we use the mean pooling of M frame [CLS] features to denote the global representation of a video and then also use Eq. (5) for contrastive learning.

Vision-Text Matching (VTM). The model is required to predict whether a pair of image-text (video-text) is matched or not. Specifically, we conduct a binary classification on the concatenation of the visual and textual global features. The loss is defined as:

$$\mathcal{L}_{VTM} = \mathbf{CE}(\phi(\text{concat}[V,T]), y), \tag{7}$$

where V, T are [CLS] features and y is the ground truth. **CE** is Cross-Entropy loss and ϕ refers to a binary classifier. The image-text (video-text) pairs serve as positive samples, and we randomly replace the image (video) in a data pair with another image (video) to build negative sample.

Masked Language Modeling (MLM). We adopt MLM following BERT [24], which conducts a classification on the vocabulary list to predict masked words. We randomly mask out 15% text tokens, and replace them with the [MASK] token, random words, or left unchanged, with the probability of 80%, 10% and 10%, respectively. The classification loss is as follows:

$$\mathcal{L}_{MLM} = \mathbf{CE}(\phi(T_{mask}), y), \tag{8}$$

where T_{mask} is the output masked token feature, ϕ serves as a classifier, and y is the original token ID.

The overall training objective of our model is:

$$\mathcal{L} = \mathcal{L}_{CL} + \mathcal{L}_{ITM} + \mathcal{L}_{MLM} + \mathcal{L}_{SCL}, \qquad (9)$$

where \mathcal{L}_{SCL} is defined in Eq. (3).

B. Experiments Details

B.1. Pre-training Settings

In the image-text pre-training phase, we train the model for 100k steps totally using a batch size of 4096 on 64 NVIDIA A100 GPUs. We adopt the AdamW optimizer with a weight decay of 0.01. The learning rate of uni-modal encoders is warmed up from 0 to 1e - 5 in first 10% steps and then decayed linearly. The fusion transformer has a five times higher learning rate. As for the video-text pre-training, the model is trained for 10k steps with the same batch size. The maximal learning rate of uni-modal encoders is 5e - 6, and other settings are similar to the first phase.

In terms of the model architecture, We utilize CLIP-ViT-224/16 [39] and RoBERTa [34] to initialize vision and language encoders following METER [9]. The fusion encoder consists of dual-stream cross-modal blocks of 6 layers, each with a hidden dimension of 768 and 12 heads in the multihead attention. As for data pre-processing, the image size

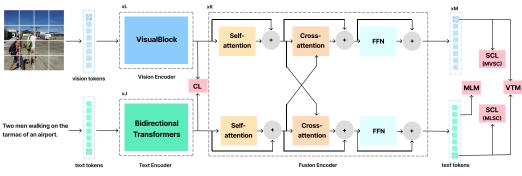


Figure 5. The whole architecture of our model.

is set to 288×288 for pre-training and 384×384 for finetuning, respectively. RandAugment [7] is applied for data augmentation. We resize each frame of video to 224×224 and uniformly sample 4 frames as video input. Moreover, the maximum length of input text is 50. The temperature hyper-parameter τ in Eq. (2) is set as 0.03.

B.2. Downstream Tasks

Visual Question Answering (VQA). Given an image and its corresponding question, the model needs to understand visual and textual information simultaneously to predict the answer. We concatenate output [CLS] features of the image and question, and then conduct a classification on the candidates set of 3,129 answers.

Visual Reasoning (NLVR2). Given a pair of images and a description, the model is expected to reason whether their relationship is consistent. Specifically, this task is transformed to a binary classification problem.

Image-Text Retrieval. There are two sub-tasks: (1) using images as queries to retrieve texts (TR); (2) using texts as queries to retrieve images (IR). The recall ratio is employed as the evaluation metrics. We evaluate our model

on Flickr30K [38] and COCO [33]. Flickr30K contains 1K images and 5K texts for evaluation, and COCO includes 5K images and 25K texts. Generally, there are five correct captions for an image.

Video-Text Retrieval. Similar to exiting methods [10, 14, 18], we focus on text-to-video recall metrics. Our pre-trained model is evaluated on MSRVTT [51] and LSDMC [40], which both contain 1K video-text pairs for testing.

C. Visualization Cases

The proposed SCL encourages the global representations to learn global-to-local alignment, which implies that they have a more accurate attention distribution on local information of the other modality. To illustrate this, we show more visualization cases of [CLS] tokens' attention maps in Fig. 6.

D. Broader Impacts

Since our model predicts content based on learned statistics of pre-training datasets and we do not filter out possible inappropriate image- or video-text pairs (e.g., of violence and blood), our model may be used to retrieve unhealthy videos for spreading.

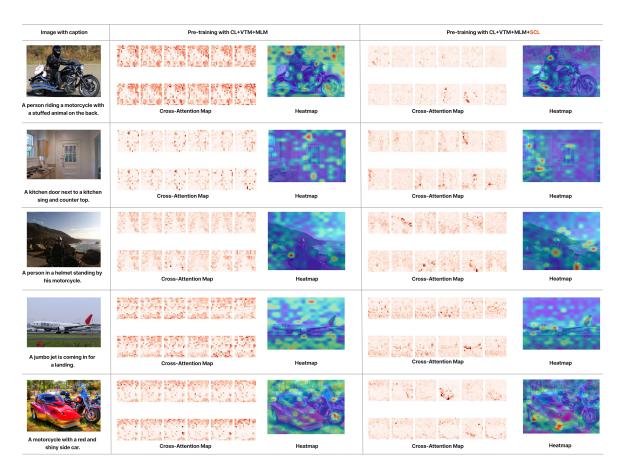


Figure 6. The cross-attention visualization of text [CLS] on the whole image for the model pre-trained with or without SCL.