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1. Introduction

In this supplementary material, we provide the main no-
tations used in the paper and elaborate the implementation
details of CPSPAN in the clustering process in more detail
than the original paper. In addition, in order to further ver-
ify the effectiveness of the proposed CPSPAN, we conduct
some additional experiments and analyses.

2. Notations

In this section, we supplement the main notations used
in the whole paper in Table | for reference.

Table 1. Basic notations used in the whole paper.

Notation Meaning
N number of instances
K number of clusters
1% number of views
D dimension of instances in v-th view

data matrix for the v-th view
complete data for the v-th view
number of complete instances

Ny for the v-th view
X;(,i’j ) paired instances of view ¢ and j
Xq(,,i’j ) unpaired instances of view ¢ and j
N j number of instances in Xgi’j)
d dimension of embeddings
H® ¢ RNvxd embedding for the v-th view
C) ¢ RExd prototype set for the v-th view

similarity matrix of the
paired instances between view ¢ and j
permutation matrix between C(*) and C¥)
E, () encoder for the v-th view
D,(+) decoder for the v-th view

S@.9) ¢ RN *Neg

P(i,,j) c REXK

*Corresponding author

3. Implementation Details for Clustering

For the proposed CPSPAN, the same autoencoder net-
work structure are adopted for all datasets. Concretely, for
the v-th view, the network structure is denoted as X®)
FCs00 — FCs00 — FCaopo — H® — FCoggo —
FCs09 — FCs00 — X, We set the dimensionality of
embeddings H® to 10 for all views. ReLU is utilized as
the activation function. The training of the model is divided
into two stages, namely the pre-training stage and the par-
tial sample and prototype alignment stage. We used Adam
as the optimizer for the entire training process. For a fair
comparison, the mean values of 10 runs are reported for all
datasets. In addition, we implement our approach using the
public toolkit of PyTorch 1.7.1 on a desktop with Windows
10 system and RTX 3080 Graphics Processing Units as well
as 64GB memory.

4. Additional Experiments

4.1. Comparison with State-of-The-Arts Under
Other Missing Rates

In this section, we conduct comparative experiments
with the seven state-of-the-art algorithms under the condi-
tion that the missing rate are set to 0.2, 0.4, 0.6, 0.8 and 0.9.
The experimental results are displayed in Table 2. From
these results, we can observe that our proposed CPSPAN
can still show advanced performance under other missing
rates, especially when the missing rate is 0.8 or even 0.9.

4.2. Structure-filling Method versus Mean-filling
Method

In order to verify that our proposed structure embedding
filling strategy is more effective than other embedding fill-
ing methods, we compare it with the mean-filling strategy
when the missing rate is 0.5. From the Table 3, We found
that the structure embedding filling strategy is obviously
better than the mean embedding filling strategy.



Table 2. The clustering performance comparisons on five benchmark datasets with different missing ratios.

in bold, while the second best results are marked with underlined numbers.

The best results are highlighted

Missing rates 0.2 04 0.6 0.8 0.9
Metrics ACC NMI F-mea | ACC NMI F-mea| ACC NMI F-mea| ACC NMI F-mea | ACC NMI F-mea
BSV 0.291 0.265 0.304 | 0.274 0.229 0.290 | 0.256 0.188 0.274 | 0.242 0.160 0.263 | 0.230 0.141 0.260
=~ PIC 0.715 0.747 0.704 | 0.619 0.644 0.622 | 0.785 0.727 0.733 | 0.764 0.697 0.699 | 0.756 0.677 0.683
5' AWP 0.810 0.720 0.727 | 0.820 0.713 0.727 | 0.765 0.691 0.695 | 0.768 0.698 0.702 | 0.774 0.698 0.708
= CPM-Nets 0.775 0.645 0.775 | 0.750 0.631 0.750 | 0.604 0.481 0.604 | 0.589 0.468 0.589 | 0.518 0.426 0.518
§ COMPLETER | 0.724 0.595 0.724 | 0.631 0.548 0.631 | 0.571 0.559 0.596 | 0.432 0.465 0484 | 0.287 0.292 0.343
3 DCP 0.655 0.662 0.666 | 0451 0.593 0.551 | 0466 0.539 0.520 | 0.160 0.039 0.165 | 0.181 0.008 0.188
DSIMVC 0.637 0.560 0.652 | 0.617 0.528 0.630 | 0.547 0.460 0.565 | 0.440 0.354 0.452 | 0371 0.291 0.380
CPSPAN 0.855 0.764 0.845 | 0.876 0.786 0.872 | 0.861 0.766 0.857 | 0.838 0.731 0.831 | 0.839 0.737 0.828
BSV 0.566 0.586 0.493 | 0.517 0.535 0419 | 0461 0477 0328 | 0406 0.423 0.260 | 0.391 0.398 0.235
= PIC 0.839 0.842 0.791 | 0.822 0.817 0.760 | 0.833 0.856 0.815 | 0.780 0.792 0.751 | 0.842 0.866 0.825
_:3 AWP 0.659 0.818 0.710 | 0.778 0.866 0.786 | 0.773 0.852 0.778 | 0.826 0.835 0.784 | 0.828 0.839 0.788
§ CPM-Nets 0.863 0.781 0.863 | 0.780 0.681 0.780 | 0.673 0.585 0.673 | 0.635 0.513 0.635 | 0.565 0.487 0.565
= COMPLETER | 0.839 0.755 0.839 | 0.692 0.723 0.723 | 0.613 0.644 0.650 | 0.579 0.618 0.620 | 0.305 0.346 0.361
£ DCP 0.697 0.744 0.725 | 0.655 0.715 0.685 | 0.602 0.697 0.649 | 0.291 0.386 0.332 | 0.288 0.388 0.333
DSIMVC 0.777 0.731 0.783 | 0.752 0.702 0.760 | 0.709 0.662 0.718 | 0.589 0.550 0.594 | 0.410 0.408 0414
CPSPAN 0.938 0.882 0938 | 0.940 0.884 0.940 | 0.931 0.873 0931 | 0.922 0.858 0.921 | 0919 0.854 0.919
BSV 0.387 0.743 0.239 | 0.346 0.741 0.237 | 0.302 0.741 0.236 | 0.283 0.740 0.236 | 0.285 0.741 0.237
PIC 0.699 0.755 0.554 | 0.711 0.767 0.570 | 0.724 0.776 0.583 | 0.698 0.752 0.549 | 0.690 0.742 0.532
S AWP 0.682 0.796 0.693 | 0.679 0.784 0.568 | 0.674 0.757 0.538 | 0.660 0.737 0.525 | 0.656 0.726 0.505
o CPM-Nets 0.187 0.457 0.205 | 0.097 0.290 0.114 | 0.082 0.242 0.094 | 0.067 0.213 0.079 | 0.034 0.112 0.042
S COMPLETER | 0.189 0.430 0.212 | 0.164 0421 0.207 | 0.152 0.417 0.201 | 0.157 0415 0.196 | 0.150 0.411 0.192
< DCP 0.246 0.492 0.279 | 0.241 0480 0.266 | 0.207 0.454 0.231 | 0.207 0.454 0.231 | 0.200 0439 0.225
DSIMVC 0.306 0.599 0322 | 0.299 0.572 0.313 | 0.274 0.542 0.287 | 0.257 0.517 0.269 | 0.235 0496 0.246
CPSPAN 0.701 0.856 0.675 | 0.680 0.848 0.659 | 0.693 0.845 0.667 | 0.690 0.848 0.662 | 0.715 0.855 0.695

Table 3. Comparison with mean embedding filling method. We
select ACC as the evaluation metric. (The missing rate is 0.5)

Structure Filling | Mean Filling
Caltech101-7 | 0.861 0.522
HandWritten | 0.936 0.530
ALOI-100 0.709 0.316

4.3. Influence of Embedding Dimension

In the last step of our CPSPAN, we first adopt the struc-
ture embedding filling method to concate the embedding of
each view, and finally use kmeans to cluster to get the fi-
nal result. Therefore, in this section, we study the impact
of the embedding dimension of each view on the clustering
results. To assess the impact of dimensions, we change the
dimensionality of the representation in the range of 32, 64,
128, 256. The missing rate is fixed to 0.5. The results in
Table 4 verifies that in most cases, too large or too small di-
mensionality can cause performance degradation. Our anal-
ysis shows that small dimensionality will lose information,
while too large dimensionality will contain a lot of redun-
dant information.

Table 4. Impact of embedding dimension on clustering results.
The best results are highlighted in bold. (The missing rate is 0.5)

Dataset Dimension ACC NMI F-mea

8 0851 0.754 0.844

10 0861 0775 0.856

16 0.895 0.810 0.892

Caltech101-7 32 0.875 0.787 0.871
64 0867 0787 0.871

128 0.891 0.809 0.887

8 0.904 0.863 0.901

10 0.936 0.879 0.935

. 16 0.880 0.853 0.875
HandWritten 3 0930 0870 0.930
64 0.842 0832 0.835

128 0.853 0.841 0.844

8 0703 0.854 0678

10 0709 0.864 0.679

16 0716 0.864 0.685

ALOI-100 32 0.680 0.854 0.651
64 0.692 0856 0.665

128 0707 0.864 0.678




