Supplementary materials for the paper
“Meta-Learning with a Geometry-Adaptive Preconditioner”

A. Toy example

To build an intuition for the effect of Riemannian metric,
we construct a 2-D toy example over the parameter space. A
learner minimizes an objective function of the form below.

f(x1,x2) :aﬁ + x% + z122

+ —(sin® 5z; + sin” 5xy) (13)

— D =

— —(cos? 3x; + cos® 3xz)
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We set the initial point to (z1,z2) = (—4,—2) and the
learning rate to 0.1. In Figure 2 (a), we train the learner for
50 iterations. In Figure 2 (b), we define a preconditioner P
as follows:
0.5 0.1
Pi= {0.1 —0.3] (14

and train the learner with P for 13 iterations. In Figure 2
(c), we derive a preconditioner Py, which is the Riemannian
metric corresponding to the parameter space (Eq. 13) as
follows [32]:
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where v = 2x; + 2 + 3sin(3z1)cos(3z1) +
5cos(bxy)sin(bzy) and v = 229 4+ x1 +
3sin(3zg) cos(3z2) + 5Hcos(bra)sin(bxs). We train
the learner with P for 50 iterations.

B. Proofs of Theorems

Definition 1. Two n x n matrices A and B are similar if
there exists an invertible n x n matrix P such that

B=P'AP (16)

Lemma 1. Let A = blkdiag(Ay,--- , A,) be a block di-
agonal matrix such that the main-diagonal blocks A; are
k X k positive definite matrices. Then A is a positive definite
matrix.

Proof. First, we show that A is a positive definite matrix.
For all non-zero = (x1,--- ,x,) € R™ where z; € RF,
we can derive the following.

x' Az = 2T blkdiag(A;,--- , A,)x
=l Ay + -2l Apxy, (17)
> 0 (" A; is a positive definite)

Next, we show that A is a symmetric matrix. Since A; is a
symmetric matrix (i.e., A; = AiT), we find that the following
is satisfied.

AT = blkdlag(Ah e ’An)T
_ 3 T DR T
= blkdiag(A] -, AT) (18)
= blkdlag(A17 T 7An)
=A

Hence, A is a symmetric matrix. Therefore, A is a positive
definite matrix. O

Theorem 1. Let G, € R™*" be the ‘I-layer k-th inner-
step’ gradient matrix transformed by meta parameter M* for
task 1. Then preconditioner P gap induced by élTk is a Rie-
mannian metric and depends on the task-specific parameters

0 1.

Proof. We can rewrite the GZT i as follows:

élrk = Ulr,k(Ml ’ Elr,k)vlr,k:T
= (UL MU UL VT 19
= Di—,kGi,ka

where D!, = UL, M'U T To induce preconditioner in
Eq. (19), we reformulate Eq. (19) as the general gradient
descent form (i.e., matrix-vector product):

vee(GL ;) = blkdiag(D. ;,,--- , DL ;) - vec(GL ;)
N————
n times (20)
= PGAp . VeC(Gi_,k)

where Pgap is a block diagonal matrix such that the main-
diagonal blocks are D ;’s. Now, we prove that block D! ,

is a positive definite matrix. Since D' , is similar to M! by
Definition 1, they have the same eigenvalues. In addition, all
eigenvalues of DlT ;; are positive because all eigenvalues of

M! are positive. Next, we show that DlT & 18 @ symmetric
matrix as below.

(DL )" = (Ul MU, 1"
=U, MU, " 1)
-l
Therefore, Dlﬂ & 18 a positive definite matrix. By Lemma 1,

Pgap is a positive definite matrix.
Since the unitary matrix U’ , depends on the gradient

matrix G. ,, it depends on the task-wise parameters 0, j.



Hence, Pgap depends on the task-wise parameters 6, ;, be-
cause it depends on the unitary matrix Ul

Since Pgap depends on the task-wise parameters Or k. it
can be expressed as a function which is a smooth function
mapping from the given 0, to a positive definite matrix
blkdlag( Tk DlTk) Hence, Pgap is a Riemannian

metric.
Therefore, Pgap is a Riemannian metric and depends on
the task-specific parameters 6, ;. O

Lemma 2. If a random vector x = (X1, -+, X,) € R"
follows an uniform distribution on the (n — 1)-dimensional
unit sphere, the variance of the random variable X; satisfies
the following.

V(X = (22)

Proof. Since X1, --- , X, follow an identical distribution,

V(X;) = V(X,) holds for all 7, j. Thus,
nV(X;) =Y V(X,). (23)
i=1

Then, we derive the sum of variance as follows:

DV =) E(X7) (- E(X) =0)
=1 i=1

=E()_X}) 24)

=E(1X]13)
=1.

By Eq. (23) and (24), we have

V(Xi) = (25)

1
o
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Lemma 3. If two independent random vectors x =

(X1, -, Xn),y = (Y1,---,Y,) € R" follow a uniform
distribution on the (n — 1)-dimensional unit sphere, then

1
ne2

P([(z,y)| > €) < (26)
ne

Proof. Since we can rotate coordinate so that y =
(1,0,---,0) € R™, we have

(x,y) = X;. 27)
Following Eq. (27), we show that its expectation is equal to:

El(z,y)] = E[X4],

.y (28)

and its variance is equal to:

Vi(z,y)] = V[X4],
1 (29)
= (by Lemma 2).

By applying Chebyshev’s inequality [12] on (x, y), we have

<5

be a €. Then we rewrite

Pz, y)| = (30

E\w

for any real number £ > 0. Let k

the in Eq. (30) as follows:

%\

P([{z,y)| > ¢) < 3D

1
me2
This result indicates that the two vectors  and y become
asymptotically orthogonal as n increases. O

Assumption 2. The elements of gradient matrix follows an
i.i.d. normal distribution with zero mean.

Theorem 2. Let G € R™*" be a gradient matrix and G be
the gradient matrix transformed by meta parameter M. Un-
der the Assumption 2, as n becomes large, G asymptotically
becomes equivalent to MG as follows:

G =~ MG (32)
Proof. Letgi,g2,--- ,gm are the row vectors of G. Then,
g1
lga ] ToaTl
G = : . (33)
gm
lgmll Tgml]

Under the Assumption 2, g1, g2, - - - , g, follow an i.i.d mul-
tivariate normal distribution. Then, we have

gi
1L (Vi # 4), 34
ol * Tas] oY
and Hy T “g 7 are located on the (n — 1)-dimensional unit
sphere [41]. Since independent vectors ﬁ, Hf}'—{” are lo-

cated on the (n — 1)-dimensional unit sphere, the vectors are
asymptotically orthogonal as n increases by Lemma 2. Now,
we rewrite G as follows.

g1
gl I
G=1 : (35)
g?Yl
llgml] Ly
Since I is a unitary matrix and (Hg—hl, e Hg—""”)T approxi-
mately becomes semi-unitary matrices as n increases, the sin-
gular values of G asymptotically become ||g1]|,- - , [|gm]|-

By Eq. (35), the following holds under the Assumption 2
as n becomes sufficiently large.

G~ MG (36)
O



C. Implementation Details

For the reproducibility, we provide the details of im-
plementation. Our implementations are based on Torch-
meta [15] library. Our implementation code is available at:
https://github.com/Suhyun777/CVPR23-GAP.

C.1. Hyper-parameters

For all the experiments, we use the hyper-parameters in
Table 9.

Hyper-parameter Sinusoid ini-ImageNet tiered-ImageNet  Cross-d
Sshot  10shot 20shot 1shot Sshot 1shot  Sshot  1shot 5 shot
Bathc size 4 4 4 4 2 4 2 4 2
Total training iteration 70000 70000 70000 80000 80000 130000 200000 80000 80000
inner learning rate « 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
outer learning rate /3, 0.001 0.001 0.001  0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
outer learning rate 3 0.001 0.001 0.0001  0.003  0.0001  0.003  0.0001 0.003 0.0001
The number of training inner steps 5 5 5 5 5 5 5 5 5
The number of testing inner steps 10 10 10 10 10 10 10 10 10
Data augmentation None random flip random flip random flip

Table 9. Hyper-parameters used for training GAP on various few-
shot learning experiments.

C.2. Backbone Architecture
C.2.1 2-layer MLP network.

For the few-shot regression experiment, we use a sim-
ple Multi-Layer Perceptron (MLP) with 1-dimensional in-
put/output and 40-dimensional hidden layers as in [20].

C.2.2 4-Conv network.

For the few-shot classification and cross-domain few-shot
classification experiments, we use the standard Conv-4 back-
bone used in [56], comprising 4 modules with 3 x 3 convolu-
tions, with 128 filters followed by batch normalization [26],
ReLU non-linearity, and 2 x 2 max-pooling.

C.3. Optimization

We use ADAM optimizer [28]. For tiered-ImageNet ex-
periment, the learning rate (LR) is scheduled by the cosine
learning rate decay [38] for every 500 iterations. In all the
experiments except for the tiered-ImageNet, the learning rate
is unscheduled.

C.4. Preconditioning

In the few-shot regression experiment, we apply precondi-
tioner only to the hidden layer. In both few-shot classification
and cross-domain few-shot classification, we only apply pre-
conditioner to 4 convolutional layers.



