Supplementary materials for the paper "Meta-Learning with a Geometry-Adaptive Preconditioner"

A. Toy example

To build an intuition for the effect of Riemannian metric, we construct a 2-D toy example over the parameter space. A learner minimizes an objective function of the form below.

$$
\begin{align*}
f\left(x_{1}, x_{2}\right)= & x_{1}^{2}+x_{2}^{2}+x_{1} x_{2} \\
& +\frac{1}{2}\left(\sin ^{2} 5 x_{1}+\sin ^{2} 5 x_{2}\right) \tag{13}\\
& -\frac{1}{2}\left(\cos ^{2} 3 x_{1}+\cos ^{2} 3 x_{2}\right)
\end{align*}
$$

We set the initial point to $\left(x_{1}, x_{2}\right)=(-4,-2)$ and the learning rate to 0.1 . In Figure 2 (a), we train the learner for 50 iterations. In Figure 2 (b), we define a preconditioner \mathbf{P}_{1} as follows:

$$
\mathbf{P}_{1}=\left[\begin{array}{cc}
0.5 & 0.1 \tag{14}\\
0.1 & -0.3
\end{array}\right]
$$

and train the learner with \mathbf{P}_{1} for 13 iterations. In Figure 2 (c), we derive a preconditioner \mathbf{P}_{2}, which is the Riemannian metric corresponding to the parameter space (Eq. 13) as follows [32]:

$$
\mathbf{P}_{2}=\left[\begin{array}{cc}
1+u^{2} & u v \tag{15}\\
u v & 1+v^{2}
\end{array}\right]
$$

where $u=2 x_{1}+x_{2}+3 \sin \left(3 x_{1}\right) \cos \left(3 x_{1}\right)+$ $5 \cos \left(5 x_{1}\right) \sin \left(5 x_{1}\right)$ and $v=2 x_{2}+x_{1}+$ $3 \sin \left(3 x_{2}\right) \cos \left(3 x_{2}\right)+5 \cos \left(5 x_{2}\right) \sin \left(5 x_{2}\right)$. We train the learner with \mathbf{P}_{2} for 50 iterations.

B. Proofs of Theorems

Definition 1. Two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix P such that

$$
\begin{equation*}
B=P^{-1} A P \tag{16}
\end{equation*}
$$

Lemma 1. Let $A=\operatorname{blkdiag}\left(A_{1}, \cdots, A_{n}\right)$ be a block diagonal matrix such that the main-diagonal blocks A_{i} are $k \times k$ positive definite matrices. Then A is a positive definite matrix.

Proof. First, we show that A is a positive definite matrix. For all non-zero $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n k}$ where $x_{i} \in \mathbb{R}^{k}$, we can derive the following.

$$
\begin{align*}
x^{T} A x & =x^{T} \operatorname{blkdiag}\left(A_{1}, \cdots, A_{n}\right) x \\
& =x_{1}^{T} A_{1} x_{1}+\cdots x_{n}^{T} A_{n} x_{n} \tag{17}\\
& >0\left(\because A_{i} \text { is a positive definite }\right)
\end{align*}
$$

Next, we show that A is a symmetric matrix. Since A_{i} is a symmetric matrix (i.e., $A_{i}=A_{i}^{T}$), we find that the following is satisfied.

$$
\begin{align*}
A^{T} & =\operatorname{blkdiag}\left(A_{1}, \cdots, A_{n}\right)^{T} \\
& =\operatorname{blkdiag}\left(A_{1}^{T}, \cdots, A_{n}^{T}\right) \tag{18}\\
& =\operatorname{blkdiag}\left(A_{1}, \cdots, A_{n}\right) \\
& =A
\end{align*}
$$

Hence, A is a symmetric matrix. Therefore, A is a positive definite matrix.
Theorem 1. Let $\tilde{\mathbf{G}}_{\tau, k}^{l} \in \mathbb{R}^{m \times n}$ be the 'l-layer k-th innerstep' gradient matrix transformed by meta parameter \mathbf{M}^{l} for task τ. Then preconditioner $\mathbf{P}_{G A P}$ induced by $\tilde{\mathbf{G}}_{\tau, k}^{l}$ is a Riemannian metric and depends on the task-specific parameters $\theta_{\tau, k}$.

Proof. We can rewrite the $\tilde{\mathbf{G}}_{\tau, k}^{l}$ as follows:

$$
\begin{align*}
\tilde{\mathbf{G}}_{\tau, k}^{l} & =\mathbf{U}_{\tau, k}^{l}\left(\mathbf{M}^{l} \cdot \boldsymbol{\Sigma}_{\tau, k}^{l}\right) \mathbf{V}_{\tau, k}^{l}{ }^{T} \\
& =\left(\mathbf{U}_{\tau, k}^{l} \mathbf{M}^{l} \mathbf{U}_{\tau, k}^{l}{ }^{T}\right) \mathbf{U}_{\tau, k}^{l} \boldsymbol{\Sigma}_{\tau, k}^{l} \mathbf{V}_{\tau, k}^{l}{ }^{T} \tag{19}\\
& =\mathbf{D}_{\tau, k}^{l} \mathbf{G}_{\tau, k}^{l},
\end{align*}
$$

where $\mathbf{D}_{\tau, k}^{l}=\mathbf{U}_{\tau, k}^{l} \mathbf{M}^{l} \mathbf{U}_{\tau, k}^{l}{ }^{T}$. To induce preconditioner in Eq. (19), we reformulate Eq. (19) as the general gradient descent form (i.e., matrix-vector product):

$$
\begin{align*}
\operatorname{vec}\left(\tilde{\mathbf{G}}_{\tau, k}^{l}\right) & =\operatorname{blkdiag}(\underbrace{\mathbf{D}_{\tau, k}^{l}, \cdots, \mathbf{D}_{\tau, k}^{l}}_{n \text { times }}) \cdot \operatorname{vec}\left(\mathbf{G}_{\tau, k}^{l}\right) \tag{20}\\
& =\mathbf{P}_{\mathrm{GAP}} \cdot \operatorname{vec}\left(\mathbf{G}_{\tau, k}^{l}\right)
\end{align*}
$$

where $\mathbf{P}_{\mathrm{GAP}}$ is a block diagonal matrix such that the maindiagonal blocks are $\mathbf{D}_{\tau, k}^{l}$'s. Now, we prove that block $\mathbf{D}_{\tau, k}^{l}$ is a positive definite matrix. Since $\mathbf{D}_{\tau, k}^{l}$ is similar to \mathbf{M}^{l} by Definition 1, they have the same eigenvalues. In addition, all eigenvalues of $\mathbf{D}_{\tau, k}^{l}$ are positive because all eigenvalues of \mathbf{M}^{l} are positive. Next, we show that $\mathbf{D}_{\tau, k}^{l}$ is a symmetric matrix as below.

$$
\begin{align*}
\left(\mathbf{D}_{\tau, k}^{l}\right)^{T} & =\left(\mathbf{U}_{\tau, k}^{l} \mathbf{M}^{l} \mathbf{U}_{\tau, k}^{l}{ }^{T}\right)^{T} \\
& =\mathbf{U}_{\tau, k}^{l} \mathbf{M}^{l} \mathbf{U}_{\tau, k}^{l} T \tag{21}\\
& =\mathbf{D}_{\tau, k}^{l}
\end{align*}
$$

Therefore, $\mathbf{D}_{\tau, k}^{l}$ is a positive definite matrix. By Lemma 1, $\mathbf{P}_{\mathrm{GAP}}$ is a positive definite matrix.

Since the unitary matrix $\mathbf{U}_{\tau, k}^{l}$ depends on the gradient matrix $\tilde{\mathbf{G}}_{\tau, k}^{l}$, it depends on the task-wise parameters $\theta_{\tau, k}$.

Hence, $\mathbf{P}_{\mathrm{GAP}}$ depends on the task-wise parameters $\theta_{\tau, k}$ because it depends on the unitary matrix $\mathbf{U}_{\tau, k}^{l}$.

Since $\mathbf{P}_{\mathrm{GAP}}$ depends on the task-wise parameters $\theta_{\tau, k}$, it can be expressed as a function which is a smooth function mapping from the given $\theta_{\tau, k}$ to a positive definite matrix $\operatorname{blkdiag}\left(\mathbf{D}_{\tau, k}^{l}, \cdots, \mathbf{D}_{\tau, k}^{l}\right)$. Hence, $\mathbf{P}_{\mathrm{GAP}}$ is a Riemannian metric.

Therefore, $\mathbf{P}_{\mathrm{GAP}}$ is a Riemannian metric and depends on the task-specific parameters $\theta_{\tau, k}$.

Lemma 2. If a random vector $\boldsymbol{x}=\left(X_{1}, \cdots, X_{n}\right) \in \mathbb{R}^{n}$ follows an uniform distribution on the $(n-1)$-dimensional unit sphere, the variance of the random variable X_{i} satisfies the following.

$$
\begin{equation*}
\mathbb{V}\left(X_{i}\right)=\frac{1}{n} \tag{22}
\end{equation*}
$$

Proof. Since X_{1}, \cdots, X_{n} follow an identical distribution, $\mathbb{V}\left(X_{i}\right)=\mathbb{V}\left(X_{j}\right)$ holds for all i, j. Thus,

$$
\begin{equation*}
n \mathbb{V}\left(X_{i}\right)=\sum_{i=1}^{n} \mathbb{V}\left(X_{i}\right) \tag{23}
\end{equation*}
$$

Then, we derive the sum of variance as follows:

$$
\begin{align*}
\sum_{i=1}^{n} \mathbb{V}\left(X_{i}\right) & =\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)(\because \mathbb{E}(X)=0) \\
& =\mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{2}\right) \tag{24}\\
& =\mathbb{E}\left(\|X\|_{2}^{2}\right) \\
& =1
\end{align*}
$$

By Eq. (23) and (24), we have

$$
\begin{equation*}
\mathbb{V}\left(X_{i}\right)=\frac{1}{n} \tag{25}
\end{equation*}
$$

Lemma 3. If two independent random vectors $\boldsymbol{x}=$ $\left(X_{1}, \cdots, X_{n}\right), \boldsymbol{y}=\left(Y_{1}, \cdots, Y_{n}\right) \in \mathbb{R}^{n}$ follow a uniform distribution on the $(n-1)$-dimensional unit sphere, then

$$
\begin{equation*}
P(|\langle\boldsymbol{x}, \boldsymbol{y}\rangle|>\epsilon) \leq \frac{1}{n \epsilon^{2}} \tag{26}
\end{equation*}
$$

Proof. Since we can rotate coordinate so that $\boldsymbol{y}=$ $(1,0, \cdots, 0) \in \mathbb{R}^{n}$, we have

$$
\begin{equation*}
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=X_{1} . \tag{27}
\end{equation*}
$$

Following Eq. (27), we show that its expectation is equal to:

$$
\begin{align*}
\mathbb{E}[\langle\boldsymbol{x}, \boldsymbol{y}\rangle] & =\mathbb{E}\left[X_{1}\right] \tag{28}\\
& =0
\end{align*}
$$

and its variance is equal to:

$$
\begin{align*}
\mathbb{V}[\langle\boldsymbol{x}, \boldsymbol{y}\rangle] & =\mathbb{V}\left[X_{1}\right] \\
& =\frac{1}{n}(\text { by Lemma } 2) . \tag{29}
\end{align*}
$$

By applying Chebyshev's inequality [12] on $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$, we have

$$
\begin{equation*}
P\left(|\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \geq \frac{k}{\sqrt{n}}\right) \leq \frac{1}{k^{2}}, \tag{30}
\end{equation*}
$$

for any real number $k>0$. Let $\frac{k}{\sqrt{n}}$ be a ϵ. Then we rewrite the in Eq. (30) as follows:

$$
\begin{equation*}
P(|\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \geq \epsilon) \leq \frac{1}{n \epsilon^{2}} \tag{31}
\end{equation*}
$$

This result indicates that the two vectors \boldsymbol{x} and \boldsymbol{y} become asymptotically orthogonal as n increases.

Assumption 2. The elements of gradient matrix follows an i.i.d. normal distribution with zero mean.

Theorem 2. Let $\mathbf{G} \in \mathbb{R}^{m \times n}$ be a gradient matrix and $\tilde{\mathbf{G}}$ be the gradient matrix transformed by meta parameter M. Under the Assumption 2, as n becomes large, $\tilde{\mathbf{G}}$ asymptotically becomes equivalent to MG as follows:

$$
\begin{equation*}
\tilde{\mathrm{G}} \cong \mathrm{MG} \tag{32}
\end{equation*}
$$

Proof. Let $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \cdots, \boldsymbol{g}_{m}$ are the row vectors of \mathbf{G}. Then,

$$
\mathbf{G}=\left[\begin{array}{ccc}
\left\|\boldsymbol{g}_{1}\right\| & & \tag{33}\\
& \ddots & \\
& & \left\|\boldsymbol{g}_{m}\right\|
\end{array}\right]\left[\begin{array}{c}
\frac{\boldsymbol{g}_{1}}{\left\|\boldsymbol{g}_{1}\right\|} \\
\vdots \\
\frac{\boldsymbol{g}_{m}}{\left\|\boldsymbol{g}_{m}\right\|}
\end{array}\right] .
$$

Under the Assumption $2, \boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \cdots, \boldsymbol{g}_{m}$ follow an i.i.d multivariate normal distribution. Then, we have

$$
\begin{equation*}
\frac{\boldsymbol{g}_{i}}{\left\|\boldsymbol{g}_{i}\right\|} \Perp \frac{\boldsymbol{g}_{j}}{\left\|\boldsymbol{g}_{j}\right\|}(\forall i \neq j) \tag{34}
\end{equation*}
$$

and $\frac{\boldsymbol{g}_{i}}{\left\|\boldsymbol{g}_{i}\right\|}, \frac{\boldsymbol{g}_{j}}{\left\|\boldsymbol{g}_{j}\right\|}$ are located on the $(n-1)$-dimensional unit sphere [41]. Since independent vectors $\frac{\boldsymbol{g}_{i}}{\left\|\boldsymbol{g}_{i}\right\|}, \frac{\boldsymbol{g}_{j}}{\left\|\boldsymbol{g}_{j}\right\|}$ are located on the $(n-1)$-dimensional unit sphere, the vectors are asymptotically orthogonal as n increases by Lemma 2. Now, we rewrite \mathbf{G} as follows.

$$
\mathbf{G}=\mathbf{I}\left[\begin{array}{lll}
\left\|\boldsymbol{g}_{1}\right\| & & \tag{35}\\
& \ddots & \\
& & \left\|\boldsymbol{g}_{m}\right\|
\end{array}\right]\left[\begin{array}{c}
\frac{\boldsymbol{g}_{1}}{\left\|\boldsymbol{g}_{1}\right\|} \\
\vdots \\
\frac{\boldsymbol{g}_{m}}{\left\|\boldsymbol{g}_{m}\right\|}
\end{array}\right]
$$

Since \mathbf{I} is a unitary matrix and $\left(\frac{\boldsymbol{g}_{1}}{\left\|\boldsymbol{g}_{1}\right\|}, \cdots, \frac{\boldsymbol{g}_{m}}{\left\|\boldsymbol{g}_{m}\right\|}\right)^{T}$ approximately becomes semi-unitary matrices as n increases, the singular values of \mathbf{G} asymptotically become $\left\|\boldsymbol{g}_{1}\right\|, \cdots,\left\|\boldsymbol{g}_{m}\right\|$.

By Eq. (35), the following holds under the Assumption 2 as n becomes sufficiently large.

$$
\begin{equation*}
\tilde{\mathbf{G}} \cong \mathrm{MG} \tag{36}
\end{equation*}
$$

C. Implementation Details

For the reproducibility, we provide the details of implementation. Our implementations are based on Torchmeta [15] library. Our implementation code is available at: https://github.com/Suhyun777/CVPR23-GAP.

C.1. Hyper-parameters

For all the experiments, we use the hyper-parameters in Table 9.

Hyper-parameter		Sinusoid		mini-ImageNet	tiered-ImageNet	Cross-domain			
	5 shot	10 shot	20 shot	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot
Bathc size	4	4	4	4	2	4	2	4	2
Total training iteration	70000	70000	70000	80000	80000	130000	200000	80000	80000
inner learning rate α	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
outer learning rate β_{1}	0.001	0.001	0.001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
outer learning rate β_{2}	0.001	0.001	0.0001	0.003	0.0001	0.003	0.0001	0.003	0.0001
The number of training inner steps	5	5	5	5	5	5	5	5	5
The number of testing inner steps	10	10	10	10	10	10	10	10	10
Data augmentation		None			random flip	random flip	random flip		

Table 9. Hyper-parameters used for training GAP on various fewshot learning experiments.

C.2. Backbone Architecture

C.2.1 2-layer MLP network.

For the few-shot regression experiment, we use a simple Multi-Layer Perceptron (MLP) with 1-dimensional input/output and 40-dimensional hidden layers as in [20].

C.2.2 4-Conv network.

For the few-shot classification and cross-domain few-shot classification experiments, we use the standard Conv-4 backbone used in [56], comprising 4 modules with 3×3 convolutions, with 128 filters followed by batch normalization [26], ReLU non-linearity, and 2×2 max-pooling.

C.3. Optimization

We use ADAM optimizer [28]. For tiered-ImageNet experiment, the learning rate (LR) is scheduled by the cosine learning rate decay [38] for every 500 iterations. In all the experiments except for the tiered-ImageNet, the learning rate is unscheduled.

C.4. Preconditioning

In the few-shot regression experiment, we apply preconditioner only to the hidden layer. In both few-shot classification and cross-domain few-shot classification, we only apply preconditioner to 4 convolutional layers.

