
Supplementary materials for the paper
“Meta-Learning with a Geometry-Adaptive Preconditioner”

A. Toy example

To build an intuition for the effect of Riemannian metric,
we construct a 2-D toy example over the parameter space. A
learner minimizes an objective function of the form below.

f(x1, x2) =x2
1 + x2

2 + x1x2

+
1

2
(sin2 5x1 + sin2 5x2)

− 1

2
(cos2 3x1 + cos2 3x2)

(13)

We set the initial point to (x1, x2) = (−4,−2) and the
learning rate to 0.1. In Figure 2 (a), we train the learner for
50 iterations. In Figure 2 (b), we define a preconditioner P1

as follows:

P1 =

[
0.5 0.1
0.1 −0.3

]
(14)

and train the learner with P1 for 13 iterations. In Figure 2
(c), we derive a preconditioner P2, which is the Riemannian
metric corresponding to the parameter space (Eq. 13) as
follows [32]:

P2 =

[
1 + u2 uv
uv 1 + v2

]
(15)

where u = 2x1 + x2 + 3 sin(3x1) cos(3x1) +
5 cos(5x1) sin(5x1) and v = 2x2 + x1 +
3 sin(3x2) cos(3x2) + 5 cos(5x2) sin(5x2). We train
the learner with P2 for 50 iterations.

B. Proofs of Theorems

Definition 1. Two n × n matrices A and B are similar if
there exists an invertible n× n matrix P such that

B = P−1AP (16)

Lemma 1. Let A = blkdiag(A1, · · · , An) be a block di-
agonal matrix such that the main-diagonal blocks Ai are
k× k positive definite matrices. Then A is a positive definite
matrix.

Proof. First, we show that A is a positive definite matrix.
For all non-zero x = (x1, · · · , xn) ∈ Rnk where xi ∈ Rk,
we can derive the following.

xTAx = xT blkdiag(A1, · · · , An)x

= xT
1 A1x1 + · · ·xT

nAnxn

> 0 (∵ Ai is a positive definite)

(17)

Next, we show that A is a symmetric matrix. Since Ai is a
symmetric matrix (i.e., Ai = AT

i ), we find that the following
is satisfied.

AT = blkdiag(A1, · · · , An)
T

= blkdiag(AT
1 , · · · , AT

n )

= blkdiag(A1, · · · , An)

= A

(18)

Hence, A is a symmetric matrix. Therefore, A is a positive
definite matrix.

Theorem 1. Let G̃l
τ,k ∈ Rm×n be the ‘l-layer k-th inner-

step’ gradient matrix transformed by meta parameter Ml for
task τ . Then preconditioner PGAP induced by G̃l

τ,k is a Rie-
mannian metric and depends on the task-specific parameters
θτ,k.

Proof. We can rewrite the G̃l
τ,k as follows:

G̃l
τ,k = Ul

τ,k(M
l ·Σl

τ,k)V
l
τ,k

T

= (Ul
τ,kM

lUl
τ,k

T )Ul
τ,kΣ

l
τ,kV

l
τ,k

T

= Dl
τ,kG

l
τ,k,

(19)

where Dl
τ,k = Ul

τ,kM
lUl

τ,k
T . To induce preconditioner in

Eq. (19), we reformulate Eq. (19) as the general gradient
descent form (i.e., matrix-vector product):

vec(G̃l
τ,k) = blkdiag(Dl

τ,k, · · · ,Dl
τ,k︸ ︷︷ ︸

n times

) · vec(Gl
τ,k)

= PGAP · vec(Gl
τ,k)

(20)

where PGAP is a block diagonal matrix such that the main-
diagonal blocks are Dl

τ,k’s. Now, we prove that block Dl
τ,k

is a positive definite matrix. Since Dl
τ,k is similar to Ml by

Definition 1, they have the same eigenvalues. In addition, all
eigenvalues of Dl

τ,k are positive because all eigenvalues of
Ml are positive. Next, we show that Dl

τ,k is a symmetric
matrix as below.

(Dl
τ,k)

T = (Ul
τ,kM

lUl
τ,k

T )T

= Ul
τ,kM

lUl
τ,k

T

= Dl
τ,k

(21)

Therefore, Dl
τ,k is a positive definite matrix. By Lemma 1,

PGAP is a positive definite matrix.
Since the unitary matrix Ul

τ,k depends on the gradient
matrix G̃l

τ,k, it depends on the task-wise parameters θτ,k.



Hence, PGAP depends on the task-wise parameters θτ,k be-
cause it depends on the unitary matrix Ul

τ,k.
Since PGAP depends on the task-wise parameters θτ,k, it

can be expressed as a function which is a smooth function
mapping from the given θτ,k to a positive definite matrix
blkdiag(Dl

τ,k, · · · ,Dl
τ,k). Hence, PGAP is a Riemannian

metric.
Therefore, PGAP is a Riemannian metric and depends on

the task-specific parameters θτ,k.

Lemma 2. If a random vector x = (X1, · · · , Xn) ∈ Rn

follows an uniform distribution on the (n− 1)-dimensional
unit sphere, the variance of the random variable Xi satisfies
the following.

V(Xi) =
1

n
(22)

Proof. Since X1, · · · , Xn follow an identical distribution,
V(Xi) = V(Xj) holds for all i, j. Thus,

nV(Xi) =

n∑
i=1

V(Xi). (23)

Then, we derive the sum of variance as follows:

n∑
i=1

V(Xi) =

n∑
i=1

E(X2
i ) (∵ E(X) = 0)

= E(
n∑

i=1

X2
i )

= E(||X||22)
= 1.

(24)

By Eq. (23) and (24), we have

V(Xi) =
1

n
. (25)

Lemma 3. If two independent random vectors x =
(X1, · · · , Xn), y = (Y1, · · · , Yn) ∈ Rn follow a uniform
distribution on the (n− 1)-dimensional unit sphere, then

P (|⟨x,y⟩| > ϵ) ≤ 1

nϵ2
. (26)

Proof. Since we can rotate coordinate so that y =
(1, 0, · · · , 0) ∈ Rn, we have

⟨x,y⟩ = X1. (27)

Following Eq. (27), we show that its expectation is equal to:

E[⟨x,y⟩] = E[X1],

= 0
(28)

and its variance is equal to:

V[⟨x,y⟩] = V[X1],

=
1

n
(by Lemma 2).

(29)

By applying Chebyshev’s inequality [12] on ⟨x,y⟩, we have

P (|⟨x,y⟩| ≥ k√
n
) ≤ 1

k2
, (30)

for any real number k > 0. Let k√
n

be a ϵ. Then we rewrite
the in Eq. (30) as follows:

P (|⟨x,y⟩| ≥ ϵ) ≤ 1

nϵ2
. (31)

This result indicates that the two vectors x and y become
asymptotically orthogonal as n increases.

Assumption 2. The elements of gradient matrix follows an
i.i.d. normal distribution with zero mean.

Theorem 2. Let G ∈ Rm×n be a gradient matrix and G̃ be
the gradient matrix transformed by meta parameter M. Un-
der the Assumption 2, as n becomes large, G̃ asymptotically
becomes equivalent to MG as follows:

G̃ ∼= MG (32)

Proof. Let g1, g2, · · · , gm are the row vectors of G. Then,

G =

∥g1∥ . . .
∥gm∥




g1

∥g1∥
...

gm

∥gm∥

 . (33)

Under the Assumption 2, g1, g2, · · · , gm follow an i.i.d mul-
tivariate normal distribution. Then, we have

gi
∥gi∥

⊥⊥ gj
∥gj∥

(∀i ̸= j), (34)

and gi

∥gi∥ ,
gj

∥gj∥ are located on the (n− 1)-dimensional unit
sphere [41]. Since independent vectors gi

∥gi∥ ,
gj

∥gj∥ are lo-
cated on the (n− 1)-dimensional unit sphere, the vectors are
asymptotically orthogonal as n increases by Lemma 2. Now,
we rewrite G as follows.

G = I

∥g1∥ . . .
∥gm∥




g1

∥g1∥
...

gm

∥gm∥

 (35)

Since I is a unitary matrix and ( g1

∥g1∥ , · · · ,
gm

∥gm∥ )
T approxi-

mately becomes semi-unitary matrices as n increases, the sin-
gular values of G asymptotically become ∥g1∥, · · · , ∥gm∥.

By Eq. (35), the following holds under the Assumption 2
as n becomes sufficiently large.

G̃ ∼= MG (36)



C. Implementation Details
For the reproducibility, we provide the details of im-

plementation. Our implementations are based on Torch-
meta [15] library. Our implementation code is available at:
https://github.com/Suhyun777/CVPR23-GAP.

C.1. Hyper-parameters

For all the experiments, we use the hyper-parameters in
Table 9.

Hyper-parameter Sinusoid mini-ImageNet tiered-ImageNet Cross-domain

5 shot 10 shot 20 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
Bathc size 4 4 4 4 2 4 2 4 2
Total training iteration 70000 70000 70000 80000 80000 130000 200000 80000 80000
inner learning rate α 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
outer learning rate β1 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
outer learning rate β2 0.001 0.001 0.0001 0.003 0.0001 0.003 0.0001 0.003 0.0001
The number of training inner steps 5 5 5 5 5 5 5 5 5
The number of testing inner steps 10 10 10 10 10 10 10 10 10
Data augmentation None random flip random flip random flip

Table 9. Hyper-parameters used for training GAP on various few-
shot learning experiments.

C.2. Backbone Architecture

C.2.1 2-layer MLP network.

For the few-shot regression experiment, we use a sim-
ple Multi-Layer Perceptron (MLP) with 1-dimensional in-
put/output and 40-dimensional hidden layers as in [20].

C.2.2 4-Conv network.

For the few-shot classification and cross-domain few-shot
classification experiments, we use the standard Conv-4 back-
bone used in [56], comprising 4 modules with 3×3 convolu-
tions, with 128 filters followed by batch normalization [26],
ReLU non-linearity, and 2× 2 max-pooling.

C.3. Optimization

We use ADAM optimizer [28]. For tiered-ImageNet ex-
periment, the learning rate (LR) is scheduled by the cosine
learning rate decay [38] for every 500 iterations. In all the
experiments except for the tiered-ImageNet, the learning rate
is unscheduled.

C.4. Preconditioning

In the few-shot regression experiment, we apply precondi-
tioner only to the hidden layer. In both few-shot classification
and cross-domain few-shot classification, we only apply pre-
conditioner to 4 convolutional layers.


