
Supplementary Material

A. Implementation Details

IVLN Experiments We used a batch size of 8, a learning
rate of 1e-5 and trained with the AdamW optimizer for all
the IVLN models. The maximum number of steps was 15
per episode. In training, we chose a dropout rate of 0.5 and
a environment dropout rate of 0.4. For the baseline HAMT
model, we trained for a total of 100k iterations and evaluated
every 2k iterations. For the TourHAMT models, we trained
for a total of 5k iterations and evaluated every 200 iterations.
Note that TourHAMT models were trained with batches of
tours and the HAMT model was trained with batches of
episodes. We trained all models with teacher-forcing and
updated gradients per episode. Thus, TourHAMT models
did not train with fewer gradient updates than the HAMT
model. We ran IVLN experiments on Quadro RTX 6000
GPUs. The fine-tuning of the baseline HAMT model took
12 GPU hours and the training of each TourHAMT model
took 70 GPU hours. Altogether, a total of 876 GPU hours
were used for the IVLN experiments.
IVLN-CE Experiments We used a batch size of 5 for all
training phases. For both teacher-forcing and DAgger train-
ing phases, we used a learning rate of 2.5e-4 with the Adam
optimizer. For DAgger training, we performed 10 itera-
tions with 4 epochs of training per iteration. We collected
5000 rollouts per iteration. We took the oracle action with
probability � = 0.5n+1 where n is the index of the current
iteration and took the agent action otherwise. We evaluated
the model after each epoch of training. During inference the
model takes the argmax of the predicted action distribution.
IVLN-CE experiments were run on Tesla V100 GPUs. Each
unstructured latent memory model required 24 GPU hours
to train and each semantic map model required 120 GPU
hours to train. Altogether, 2016 total GPU hours were used
for training and evaluation to support these experiments.

B. Evaluation Server Details

As mentioned in Sec. 1, we will release an evaluation
server and public leaderboard to standardize and benchmark
progress on IVLN. Like existing evaluation servers for VLN2

and VLN-CE,3 we will establish IR2R and IR2R-CE eval-
uation servers that accept and score prediction files. Partic-
ipants will run inference of their models locally on a Test
split. The prediction file will be scored on the evaluation
server and the results will be added to a public leaderboard.

In existing evaluation servers of the Room-to-Room
dataset, the target paths of the Test split are kept private
to preserve the integrity of the split. However, in IVLN,
the oracle navigation phase involves conveying the agent to

2R2R server: eval.ai/web/challenges/challenge-page/97
3R2R-CE server: eval.ai/web/challenges/challenge-page/719

Figure 5. We repeat Fig. 2b for the IR2R-CE Train split regenerated
using Test split modifications. This demonstrates that during a tour,
the percentage already observed of both the Upcoming Episode
and the Complete Tour are similar to the observation coverage
experienced while following the tours proposed in the main paper.

the target goal location at the end of each episode in a tour.
Running model inference in such a setting requires access
to the target path. Given this concern, we modify the IVLN
paradigm for leaderboard evaluation as follows:

1. The oracle navigation phase is modified to only convey
the agent to the start of the next episode, rather than
first to the target goal of the current episode.

2. Episodes in a tour are ordered such the distance between
the start locations of sequential episodes is minimized
(tip-to-tip). Ordering episodes tip-to-tail as originally
presented for IVLN would compromise the target goal
locations with high certainty.

These two modifications ensure that the privacy of the
Test split target paths of Room-to-Room are preserved. A
second concern is the domain gap between the Test split and
rest of the IVLN splits induced by the modifications above.
We regenerate the Train and validation splits of IR2R-CE
with these modifications. In Fig. 5, we show the observation
coverage of both upcoming episodes and complete tours of
the regenerated Train split for direct comparison to Fig. 2b.
We find that these modifications result in a slightly lower
AUC of Complete Tour coverage while Upcoming Episode
coverage is mostly similar. Finally, we evaluate our best
Map-CMA model (Tab. 4 row 14) against the regenerated
IR2R-CE Val-Unseen split. Performance metrics are similar
to those reported in Tab. 4: 48 t-nDTW (+1), 36 SR (+1),
and 33 SPL (+1). Thus, we conclude these modifications
for Test set evaluation on a public leaderboard ensure the
privacy of the R2R test paths while preserving the core IVLN
evaluation challenges.

C. Illustrative Figures

Figures 6, 7, 8, and 9 further illustrate IVLN and pro-
posed, initial models.

https://eval.ai/web/challenges/challenge-page/97
https://eval.ai/web/challenges/challenge-page/719
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Figure 6. Ranked sample evaluations of t-nDTW scores applied to five reference paths. While t-nDTW evaluates the entire length of a tour,
here we evaluate 2-episode sub-tours for illustration.



Figure 7. We compare IR2R-CE against the continuous environment versions of R4R, R6R, and R8R. Room-for-Room (R4R) is a benchmark
in VLN consisting of long-distance instruction-following episodes synthesized from the Room-to-Room (R2R) dataset by joining two
adjacent paths (and consequently instructions) tip-to-tail [21]. Joining 3 paths tip-to-tail is known as R6R and joining 4 paths tip-to-tail is
known as R8R [51]. In this comparison, at the start of each episode we measure what percentage of that episode’s target path has been
observed earlier in the tour (left). Since the tours of IR2R-CE are significantly longer on average (100 episodes vs. 2, 3, or 4), the agent
has a higher percentage of prior observability when tasked with a new instruction to follow. Also at the start of each episode, we measure
what percentage of the observable scene region has been observed (right). Agents performing tours in IR2R-CE smoothly gain observation
coverage of the scene region, eventually observing the entire space. On the other hand, agents performing tours in R8R average less than 30%
observability coverage by the beginning of the final episode. The significantly higher and iteratively-procured episode coverage and scene
region coverage in IVLN provides a realistic and rich signal for navigation planning that has yet to be featured in any other VLN benchmark.
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Figure 8. The TourHAMT model architecture. Unlike the original HAMT model [11], we unfreeze the History Transformer module, and
append the previous episodes’ state-action pairs as history (light red top part of the history box) on top of the current episode’s history
(dark red bottom part of the history box). The state-action history is empty at the beginning of the tour and accumulates as the number of
experienced episodes grows.
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Figure 9. Architectures of unstructured memory models in IR2R-CE. Episode-based CMA as defined in [25] is shown on top. Tour-adapted
versions are shown below with t indicating a step in the current episode and ⌧ indicating a step in the current tour. Memory structures with
episode steps, ht, are reset for new episodes, whereas memory structures with tours steps, h⌧ , are reset for new tours. Changes from the
model immediately above are shown in bold in dark blue.
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