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In this supplementary material, we present a formal in-
troduction of group equivariance briefly, an additional ex-
planation of multiple descriptor extraction, results on the
ERDNIM dataset, and additional qualitative results. Sec-
tion 1 explains a formal definition of equivariance and group
equivariant networks. Section 2 evaluates the matching
quality of our proposed method under rotation and illu-
mination variations on the day/night image pairs, with de-
tails about the benchmark generation. Section 3 shows the
results of realistic downstream task on the IMC2021 [8]
dataset. Section 4 shows the comparisons of computational
overhead and the number of parameters. Section 5 shows
different strategies of multiple descriptor extraction using
dominant orientation candidates. Section 6 evaluates the
existing feature matching methods in the Roto-360 dataset.
Section 7 shows the re-training results of GIFT with cyclic
rotation augmentation. Section 8 shows the matching re-
sults with increasing the number of samples of the Roto-360
dataset. Section 9 presents additional qualitative results to
visualize the consistency of dominant orientation estima-
tion, the similarity maps under in-plane rotations of images,
and predicted matches on the HPatches and extreme rota-
tion (ER) datasets [1, 14].

1. Group equivariance

A feature extractor � is said to be equivariant to a geo-
metric transformation Tg if transforming an input x 2 X
by Tg and then passing it through � gives the same result as
first passing x through � and then transforming the result-
ing feature map by T 0

g . Formally, the equivariance can be
expressed for transformation group G and � : X ! Y as

�[Tg(x)] = T 0
g[�(x)], (1)

where Tg and T 0
g represent transformations on each space of

a group action g 2 G. If Tt is a translation group (R2,+),
and f is a feature mapping function Z2 ! RK given convo-
lution filter weights  2 R2⇥K , the translation equivariance
of a convolutional operation can be expressed as follows:

[Ttf ] ⇤  (x) = [Tt[f ⇤  ]](x), (2)

where ⇤ indicates the convolution operation.
Recent studies [2–4,26,27] propose convolutional neural

networks that are equivariant to symmetry groups of trans-
lation, rotation, and reflection. Let H be a rotation group.
The group G can be defined by G ⇠= (R2,+) o H as the
semidirect product of the translation group (R2,+) with the
rotation group H . Then, the rotation-equivariant convolu-
tion on group G can be defined as:

[Tgf ] ⇤  (g) = [Tg[f ⇤  ]](g), (3)

by replacing t 2 (R2,+) with g 2 G in Eq. 2. This opera-
tion can be applied to an input tensor to produce a trans-
lation and rotation-equivariant output. Extending this, a
network equivariant to both translation and rotation can be
constructed by stacking translation and rotation-equivariant
layers instead of conventional translation-equivariant lay-
ers. Formally, let � = {Li|i 2 {1, 2, 3, ...,M}}, which
consists of M rotation-equivariant layers under group G.
For one layer Li 2 �, the transformation Tg is defined as

Li[Tg(g)] = Tg[Li(g)], (4)

which indicates that the output is preserved after Li about
Tg . This can be extended to apply Tg to input I and then
pass it through the network � to preserve the transformation
Tg for the whole network.

[⇧M
i=1Li](TgI) = Tg[⇧

M
i=1Li](I). (5)

2. Experiments in extreme rotated day-night

image matching (ERDNIM)

To show the robustness of our method under both ge-
ometric and illumination changes, we evaluate the match-
ing performance of our method in the extreme rotated Day-
Night Image Matching (ERDNIM) dataset, which rotates
the reference images of the RDNIM dataset [18], which is
originally from the DNIM dataset [28].

1



SIFT SuperPoint D2Net R2D2 KeyNet+
HyNet GIFT LISRD ours ours*

Day HEstimation 0.064 0.073 0.001 0.044 0.085 0.108 0.228 0.232 0.272

MMA 0.049 0.082 0.024 0.054 0.068 0.123 0.270 0.245 0.277

Night HEstimation 0.108 0.092 0.002 0.062 0.097 0.151 0.291 0.316 0.364

MMA 0.082 0.111 0.033 0.076 0.093 0.177 0.358 0.362 0.404

Table 1. Comparison of matching quality on the ERDNIM dataset. We use two evaluation metrics: homography estimation accuracy
(HEstimation), and mean matching accuracy (MMA) at 3 pixel thresholds. Results in bold indicate the best score and underlined results
indicate the second best scores.

Figure 1. Results of MMA with different pixel thresholds on the ERDNIM dataset. ’ours*’ uses k differently group-aligned features
based on top-k selection. We use k = 4 in this experiment.

2.1. Data generation

The source dataset DNIM [28] consists of 1722 images
from 17 sequences of a fixed webcam taking pictures at reg-
ular time spans over 48 hours. They construct the pairs of
images to match by choosing a day and a night reference
image for each sequence as follows: we first select the im-
age with the closest timestamp to noon as the day reference
image, and the image with the closest timestamp to mid-
night as the night reference image. Next, we pair all the im-
ages within a sequence to both the day reference image and
the night reference image. Therefore, 1,722 image pairs are
obtained for each of the day benchmark and night bench-
mark, where the day benchmark is composed of day-day
and day-night image pairs, and the night benchmark is com-
posed of night-day and night-night image pairs. To evalu-
ate the robustness under geometric transformation, the RD-
NIM [18] dataset is generated by warping the target image
of each pair with homographies as in SuperPoint [5] gen-
erated with random translations, rotations, scales, and per-
spective distortions. Finally, we add rotation augmentation
to the reference image of each pair to evaluate the rotational
robustness, and call this dataset extreme rotated Day-Night
Image Matching (ERDNIM). We randomly rotate the refer-
ence images in the range [0�, 360�). The number of image
pairs for evaluation remains the same as RDNIM [18]. Fig-
ure 2 shows some examples of ERDNIM image pairs.

2.2. Examples of ERDNIM image pairs

2.3. Evaluation metrics

We use two evaluation metrics, HEstimation and
mean matching accuracy (MMA), following LISRD [18].
We measure the homography estimation score [5] using
RANSAC [7] to fit the homography using the predicted
matches. To measure the estimation score, we first warp
the four corners of the reference image using the predicted
homography, and measure the distance between the warped
corners and the corners warped using the ground-truth ho-
mography. The predicted homography is considered to be
correct if the average distance between the four corners is
less than a threshold: HEstimation= 1

4

P4
i=1 ||ĉi � ci||2 

✏, where we use ✏ = 3. MMA [6, 19] is the percentage of
the correct matches over all the predicted matches, where
we also use 3 pixels as the threshold to determine the cor-
rectness of matches.

2.4. Results

Table 1 shows the evaluation results on the ERDNIM
dataset. We compare the descriptor baselines SIFT [15],
SuperPoint [5], D2-Net [6], R2D2 [19], KeyNet+HyNet [9,
24], GIFT [14], and LISRD [18]. Our proposed model with
the rotation-equivariant network (ReResNet-18) achieves
state-of-the-art performance in terms of homography esti-
mation. GIFT [14], an existing rotation-invariant descriptor,



shows a comparatively lower performance on this extremely
rotated benchmark with varying illumination. Note that
we use the same dataset generation scheme with the same
source dataset [13] to GIFT [14]. LISRD [18], which selects
viewpoint and illumination invariance online, demonstrates
better MMA than ours on the Day benchmark, but ours*
which extracts top-k candidate descriptors shows the best
MMA and homography estimation on both Day and Night
benchmarks.

Figure 1 shows the results of mean matching accuracy
with different pixel thresholds on the ERDNIM dataset. Our
descriptor with top-k candidate selection denoted by ours*
achieves the state-of-the-art MMA at all pixel thresholds on
both the day and night benchmarks. The results show our
local descriptors achieve not only rotational invariance, but
also robustness to geometric changes with perspective dis-
tortions and day/night illumination changes.

3. Results of the realistic downstream task

desc. Stereo track
# kpts mAA 5� mAA 10� # inliers

SuperPoint 1024 0.259 0.348 61.9
GIFT 1024 0.292 0.394 70.8
ours 1024 0.305 0.404 99.8

SuperPoint 2048 0.263 0.358 73.9
GIFT 2048 0.313 0.420 98.6
ours 2048 0.296 0.403 118.5

Table 2. Results of the downstream task in IMC2021 [8]. We
use the SuperPoint keypoint detector for all methods.

In Table 2, we evaluate on IMC 2021 stereo track [8]
using the validation set of PhotoTourism and PragueParks
to show the results on a realistic downstream task. Our
descriptor consistently performs better than SuperPoint [5]
descriptors under varying number of keypoints, and obtains
comparable results with GIFT [14] descriptors. This shows
that our method performs similarly for the general and non-
planar transformations, while it significantly outperforms
existing methods on Roto-360 and RDNIM datasets with
extreme rotation transformations. Note that it is also possi-
ble to use image pairs with GT annotations of intrinsic and
extrinsic parameters by approximating the 2D relative ori-
entation for our training1, and we leave this for future.

4. Computational overhead and the number of

parameters

4.1. Computational overhead

Table 3 compares an average of the inference time and
GPU usage with other descriptor extraction methods above.

1The details of obtaining the rotation from a homography can be found
in Section 2 of “Deeper understanding of the homography decomposition
(Malis and Vargas, 2007)”.

method speed (ms) GPU usage (GB)
ours 147.4 5.21 GB
ours† 206.4 4.83 GB

SuperPoint [5] 66.0 2.35 GB

GIFT [14] 198.8 2.93 GB
LISRD [18] 781.0 2.85 GB
PosFeat [12] 208.8 4.67 GB

Table 3. Comparison of computational overhead. We compare
inference time (milliseconds) and GPU memory usage (gigabytes)
while fixing the number of keypoints.

While achieving strong rotational invariance, speed and
GPU usage of ours are similar to those of existing local de-
scriptor methods. Note that, our group aligning has a time
complexity of O(1) on the GPU with the predicted orien-
tation because it is a transposition operation and does not
take up extra memory. In addition, the time complexity of
our group-equivaraint feature extractor is the same to the
conventional CNNs on GPU since the steerable CNNs mul-
tiply the basis kernels and the learnable parameters in test
time. (Section 2.8 of [26])

4.2. The number of parameters

method # params
ours 0.6M
ours† 2.6M

GIFT [14] 0.4M

LISRD [18] 3.7M
PosFeat [12] 21.1M
HardNet [16] 9.0M
HyNet [25] 1.3M

SuperPoint [5] 1.3M
LF-Net [17] 2.6M
RF-Net [22] 1.4M
D2-Net [6] 7.6M
R2D2 [19] 0.5M

The right table shows the
number of parameters in mil-
lions, where the first group
(top) are descriptor-only mod-
els and the second group
(bottom) are joint detection
and description models. Our
model in the first row has
a second smallest model size
among those of descriptor-
only models. When using
our model with the deeper
backbone denoted denoted by
ours†, the number of model parameters increases, but it
does not increase significantly compared to other compar-
ison groups, where is still similar to that of LF-Net [17].

5. Elaboration of multiple descriptor extrac-

tion

In this section, we show the results of different configu-
rations of the multiple descriptor extraction scheme which
was mentioned in Section 4.3, Table 3, Table 4, and Table 6
of the main paper.

Table 4 shows the results with different strategies for
multiple descriptor extraction on the Roto-360 dataset. It
can be seen that using a score ratio of 0.6 selects mul-
tiple candidates dynamically, where the total number of
candidates is similar to using top-2 candidates, but the
MMA@5px is as high as using top-3 candidates which



cand. Roto-360
@5px @3px pred. total.

top1 91.35 90.18 688 1161
top2 92.31 91.19 1315 2322
top3 92.82 91.69 2012 3483
0.8 92.25 91.13 951 1660
0.6 92.82 91.69 1333 2340

Table 4. Results with different multiple descriptor extraction

strategies. The first group uses a static candidate selection strat-
egy i.e., the number of candidate orientations is fixed. The second
group uses the dynamic candidate selection strategy, where only
the score threshold is determined, and the number of orientation
candidates may vary.

uses a higher number of candidates. Note that this multi-
ple descriptor extraction scheme is largely inspired by the
classical method based on an orientation histogram such as
SIFT [15]. Owing to the parallel computation of GPUs for
mutual nearest neighbor matching, the time complexity of
constructing a correlation matrix to find matches is O(1)
regardless of the number of candidates.

6. Comparison with feature matching methods

method Roto-360
@5px @3px pred.

ours+NN 91.4 90.2 688.3
SP+SG [5, 21] 30.1 29.8 874.1
LoFTR [23] 18.8 15.9 509.4

Table 5. Comparison with keypoint matching methods on the

Roto-360 dataset.

Table 5 compares the feature matching methods to
our descriptors with simple nearest neighbour matching
(NN) algorithm. We evaluate our local feature with near-
est neighbour matching (ours+NN) and compare it with
SuperGlue [21] (i.e., SuperPoint+SuperGlue [5, 21]) and
LoFTR [23]. The results with the simple matching algo-
rithm of ours+NN clearly outperforms the two other meth-
ods on the extremely rotated examples of the Roto-360
dataset. Note, however, that both SuperGlue [21] and
LoFTR [23] are for feature matching and thus are not di-
rectly comparable to our method for feature extraction.

7. Changing the rotation range of the GIFT

Table 6 shows that GIFT* does not improve perfor-
mance on the Roto-360 dataset because the bilinear pool-
ing of GIFT does not guarantee invariance for rotation.
This is because our group aligning computes invariant fea-
tures without breaking any equivariance, in contrast to
GIFT [14] whose bilinear pooling violates group equivari-
ance due to their inter-group interaction from the 3⇥3 con-

method Roto-360
5px 3px pred.

ours 91.35 90.18 688.3
GIFT 42.05 41.59 589.2

GIFT* 40.71 40.27 564.2

Table 6. The result of re-training the GIFT [14] model by re-

placing the rotation group with 360-degree cyclic. GIFT* de-
notes a retrained model by extending the rotation sampling interval
from -180� to 180�.

volution across the group dimension, which makes invari-
ance not guaranteed either. While GIFT and ours both use
rotation-equivariant CNNs to finally yield an invariant de-
scriptor, our architecture based on equivariant kernels guar-
antees cyclic rotation-equivariance by construction, unlike
GIFT which relies on rotation augmentations to approxi-
mate equivariance.

8. The number of sampled images for Roto-360

# sample 10 100 1K
Align 91.4 80.0 89.9

Avg 82.1 72.3 80.7
Max 78.0 69.3 79.2
None 18.8 16.4 20.5

Bilinear 41.0 28.5 43.7
Table 7. Results on Roto-360 constructed using a different

number of source images.

Table 7 shows the mean matching accuracy (MMA) at 5
pixels threshold when increasing the number of source im-
ages to 100 images (3,600 pairs) and 1,000 images (36,000
pairs). The tendency of the matching results is maintained
under increased diversity and complexity of the dataset, and
group aligning consistently achieves state-of-the-art results.
Therefore, we use 10 samples as they are sufficient to mea-
sure the relative rotation robustness of the local features.

9. Additional qualitative results

9.1. Visualization of the consistency of orientation

estimation

We provide more examples for Figure 5 of the main pa-
per, which visualize the consistency of orientation estima-
tion. Additionally, we show the similarity map w.r.t. a
keypoint under varying rotations. To visualize Figure 3,
we create a sequence of 480 ⇥ 640 images augmented by
random in-plane rotation with Gaussian noise sourced by
ILSVRC2012 [20]. Figure 3 shows the qualitative com-
parison of the estimated orientation consistency. Given the
dominant orientations estimated from the image pair, we



calculate the relative angle between the corresponding key-
point orientations and measure the difference between the
relative angle and the ground-truth rotation. We evaluate the
relative angle to be correct i.e., the dominant orientation es-
timation is consistent if the difference with the ground-truth
rotation is within a 30� threshold. Our rotation-equivariant
model trained with the orientation alignment loss inspired
by [10,11] consistently estimates more correct keypoint ori-
entations than LF-Net [17] and RF-Net [22].

9.2. Visualization of the similarity maps of a key-

point under varying rotations

Figure 4 shows the similarity maps with respect to a key-
point under varying rotations of images with a resolution
of 180 ⇥ 180, with uniform rotation intervals of 45�. We
compare one descriptor of a red keypoint from the source
image at 0� to all other descriptors extracted across the ro-
tated image using cosine similarity to compute the similar-
ity maps. Yellow circles in the rotated images show the
correct locations of the keypoint correspondences. We vi-
sualize 5 locations with the highest similarity scores with
the query keypoint for better visibility. Our descriptor lo-
calizes the correct keypoint locations more precisely com-
pared to GIFT [14] and LF-Net [17]. Specifically, although
GIFT [14] uses group-equivariant features constructed us-
ing rotation augmentation, their descriptor fails to locate
the corresponding keypoints accurately in rotated images
- which shows that the explicit rotation-equivariant net-
works [26] yield better rotation-invariant features than con-
structing the group-equivariance features with image aug-
mentation [14].

9.3. Visualization of the predicted matches on the

extreme rotation

Figure 5 visualize the predicted matches on the ER
dataset [14]. We extract a maximum of 1,500 keypoints
from each image and find matches using the mutual near-
est neighbor algorithm. The results show that our method
consistently finds matches more accurately compared to
GIFT [14] and LF-Net [17].

9.4. Visualization of the predicted matches on the

HPatches viewpoint

Figure 6 visualize the predicted matches on the
HPatches [1] viewpoint variations We extract a maximum
of 1,500 keypoints from each image and find matches using
the mutual nearest neighbor algorithm. The results show
that our method consistently finds matches more accurately
compared to GIFT [14] and LF-Net [17].



Reference Target Reference Target

Figure 2. Example of ERDNIM image pairs augmented from [18, 28]. The left two columns show the day reference benchmark with
day-day and day-night image pairs. The right two columns show the night reference benchmark with night-day and night-night image
pairs. The reference image of a pair is augmented with random rotation in the range [0�, 360�), and the target image is augmented by
homographies generated with random translation, rotation, scale, perspective distortion. The regions with black artifacts by homographies
are masked out to measure the correctness of matching.
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Figure 3. Visualization of consistency of dominant orientation estimation. We extract the source keypoints using SuperPoint [5] and
obtain the target keypoints using GT homography. We evaluate the consistency of orientation estimation by comparing the relative angle
difference and the ground-truth angle at a threshold of 30�. The green and red arrows represent consistent and inconsistent orientation
estimations, respectively. We spatially align the target images and its’ orientations to the source images for better visibility. Our method
predicts more consistent orientations of keypoints compared to LF-Net [17] and RF-Net [22].
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Figure 4. Similarity maps with respect to a keypoint under rotation. We compare one descriptor about the red keypoint from the source
image at 0� to all other descriptors extracted across the rotated images, with yellow circles representing corresponding keypoints. For
better visibility, we visualize the top 5 pixels with the highest similarity to the keypoints.



(a) ours (b) GIFT (c) LF-Net
Figure 5. Visualization of predicted matches in the ER dataset [14]. We use a maximum of 1,500 keypoints for matching by the mutual
nearest neighbor algorithm. We measure the correctness at a three-pixel threshold. The green lines denote the correct matches, and the red
lines denote the incorrect matches.



(a) ours (b) GIFT (c) LF-Net
Figure 6. Visualization of the predicted matches in HPatches viewpoint variations. We use a maximum of 1,500 keypoints, the mutual
nearest neighbor matcher, and a three-pixel threshold for correctness. In this experiment, we use the rotation-equivariant WideResNet16-8
(ReWRN) backbone, which is ‘ours†’ in table 4 of the main paper.



References

[1] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krys-
tian Mikolajczyk. Hpatches: A benchmark and evaluation
of handcrafted and learned local descriptors. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5173–5182, 2017. 1, 5

[2] Taco Cohen and Max Welling. Group equivariant convo-
lutional networks. In International conference on machine
learning, pages 2990–2999. PMLR, 2016. 1

[3] Taco S Cohen, Mario Geiger, and Maurice Weiler. A gen-
eral theory of equivariant cnns on homogeneous spaces. In
Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pages 9145–9156, 2019. 1

[4] Taco S Cohen and Max Welling. Steerable cnns. arXiv
preprint arXiv:1612.08498, 2016. 1

[5] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPR Deep Learning for Visual SLAM
Workshop, 2018. 2, 3, 4, 7

[6] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-
net: A trainable cnn for joint description and detection of
local features. In Proceedings of the ieee/cvf conference on
computer vision and pattern recognition, pages 8092–8101,
2019. 2, 3

[7] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 2

[8] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image
matching across wide baselines: From paper to practice.
International Journal of Computer Vision, 129(2):517–547,
2021. 1, 3

[9] Axel Barroso Laguna and Krystian Mikolajczyk. Key. net:
Keypoint detection by handcrafted and learned cnn filters re-
visited. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022. 2

[10] Jongmin Lee, Yoonwoo Jeong, and Minsu Cho. Self-
supervised learning of image scale and orientation. In 31st
British Machine Vision Conference 2021, BMVC 2021, Vir-
tual Event, UK. BMVA Press, 2021. 5

[11] Jongmin Lee, Byungjin Kim, and Minsu Cho. Self-
supervised equivariant learning for oriented keypoint detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4847–4857,
2022. 5

[12] Kunhong Li, Longguang Wang, Li Liu, Qing Ran, Kai Xu,
and Yulan Guo. Decoupling makes weakly supervised local
feature better. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15838–
15848, 2022. 3

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 3

[14] Yuan Liu, Zehong Shen, Zhixuan Lin, Sida Peng, Hujun Bao,
and Xiaowei Zhou. Gift: Learning transformation-invariant
dense visual descriptors via group cnns. Advances in Neural
Information Processing Systems, 32:6992–7003, 2019. 1, 2,
3, 4, 5, 9

[15] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 2, 4

[16] Anastasiia Mishchuk, Dmytro Mishkin, Filip Radenovic,
and Jiri Matas. Working hard to know your neighbor’s mar-
gins: Local descriptor learning loss. In Advances in Neural
Information Processing Systems, pages 4826–4837, 2017. 3

[17] Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi.
Lf-net: learning local features from images. In Advances
in neural information processing systems, pages 6234–6244,
2018. 3, 5, 7
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