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S1. Additional Ablation Studies
In this section, we introduce the additional ablation stud-

ies that could not be included due to the space limitations of
the main paper.

S1.1. Comparison with Re-ranking Solutions

Since this paper aims to extract improved global embed-
dings, we did not consider re-ranking solutions in the main
paper. In this subsection, we compare our proposed solution
with existing re-ranking solutions and further show that our
proposed solution is more effective when combined with
re-ranking solutions. The comparison results are shown in
Tab. S1. Our proposed method outperforms most of the pre-
vious two-stage (global retrieval and re-ranking) solutions
(e.g. GeM+DSM [13], DELG+GV [1], DELG+RRT [14],
DELG+SuperGlue [14]) and shows the advantage of han-
dling structural information on the global stage. Recently, a
powerful re-ranking solution called CVNet-Rerank [7] has
emerged. We applied this CVNet-Rerank to our proposed
Network. Our proposed network, SENet, shows quite high
performance with global embedding alone, and when com-
bined with CVNet-Rerank, it surpasses the original CVNet-
Global + CVNet-Rerank method, further showing the pow-
erful effect of robust global embedding.

S1.2. Re-ranking with Query Expansion

In Sec. S1.1, only methods for re-ranking through pre-
cise matching between image pairs (e.g. GV, RRT, and
CVNet-Rerank) were presented, and methods for travers-
ing the entire database (e.g. query expansion [3–5, 16] and
diffusion [2, 6]) were not reported. In this subsection, we
additionally apply alpha query expansion (αQE) [4], which
is a representative method among query expansion method-
ologies, to our method, and show that our method can be
harmoniously connected with various re-ranking methods.
we tune the hyper-parameters of αQE, the number of the
query expansion candidates n and power parameter α, on
ROxf / RPar benchmarks and fixed on their 1M-add ex-
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periments following the previous studies [7, 14]. Finally,
we choose n = 5, α = 2 for ROxf and n = 20, α = 1
for RPar experiments. Tab. S2 shows the results when the
αQE methods is applied to our proposed SENet. Due to the
characteristic of query expansion, which shows better per-
formance as the global retrieval result is more accurate, our
proposed global embedding network shows a huge perfor-
mance improvement when combined with query expansion.

S1.3. Model Design Consideration
Channel-wise similarity (Tab. S3). Self-similarity can
be calculated per channel or directly using all channels.
We conduct additional ablation studies on two methods:
channel-wise self-similarity and direct self-similarity. The
results are shown in Tab. S3. The method using channel-
by-channel self-similarity shows superior performance. We
believe that channel-wise self-similarity is a way to fully
exploit the valuable semantic information of each channel,
and our experimental results support this belief.

Similarity type (Tab. S4). Self-similarity can be mea-
sured through several similarity metrics. We conduct addi-
tional ablation studies on two similarities: cosine similarity
and dot product. The results are shown in Tab. S4. The
model using the dot product shows quite good performance
in the base ROxf and RPar experiments, but shows rela-
tively weak performance in the 1M-add experiments than
the model using cosine similarity. Since cosine similarity
helps to measure the absolute similarity without being af-
fected by the scale of the features, it showed higher perfor-
mance than the model using the dot product.

Fusion method (Tab. S5). Feature fusion can also pro-
ceed with several fusion methods. We conduct additional
ablation studies on two fusion methods, sum and concate-
nate. The results are shown in Tab. S5. While both exper-
iment results with each fusion method show better perfor-
mance than the baseline for all measures with the help of
self-similarity, the model using sum fusion shows slightly
better performance while intuitively learning the consensus
of the visual features and structural features.
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Medium Hard
ROxf +1M RPar +1M ROxf +1M RPar +1M

(a) Existing Global Retrieval Solutions + Re-ranking
DELF-D2R-R-ASMK* (GLDv1) [15] 73.3 61.0 80.7 60.2 47.6 33.6 61.3 29.9
+ Spatial Verification (SP) [15] 76.0 64.0 80.2 59.7 52.4 38.1 58.6 29.4
R101-GeM (SfM-120k) [11, 13] 65.3 46.1 77.3 52.6 39.6 22.2 56.6 24.8
+ Deep Spatial Matching (DSM) [13] 65.3 47.6 77.4 52.8 39.2 23.2 56.2 25.0
R50-DELG (GLDv2-clean) [1] 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4
+ Geometric Verification (GV) [1] 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7
+ Reranking Transformer (RRT) [14] 78.1 67.0 86.7 69.8 60.2 44.1 75.1 49.4
R101-DELG (GLDv2-clean) [1] 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9
+ Geometric Verification (GV) [1] 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7
+ Reranking Transformer (RRT) [14] 79.9 - 87.6 - 64.1 - 76.1 -
+ SuperGlue [12, 14] 79.7 - 87.1 - 62.1 - 71.5 -
R50-CVNet-Global (GLDv2-clean) [7] 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2
+ R50-CVNet-Rerank [7] 86.1 77.6 89.4 79.9 72.8 61.1 78.6 63.9
R101-CVNet-Global (GLDv2-clean) [7] 80.2 74.0 90.3 80.6 63.1 53.7 79.1 62.2
+ R101-CVNet-Rerank [7] 85.6 79.6 90.6 81.5 72.9 64.5 80.4 66.2

(b) Ours + Re-ranking
R50-SENet-Lcls & Lcon (GLDv2-clean) 81.9 74.2 90.0 79.1 63.0 52.0 78.1 59.9
+ R50-CVNet-Rerank‡ [7] 85.8 78.7 90.8 80.1 72.4 62.7 81.0 63.7
R101-SENet-Lcls & Lcon (GLDv2-clean) 82.8 76.1 91.7 83.6 66.0 55.7 82.8 67.8
+ R101-CVNet-Rerank‡ [7] 86.5 80.0 92.0 84.3 74.4 65.4 83.5 70.7

Table S1. Comparison with state-of-the-art re-ranking models. All re-rankings were applied to the top 100 candidates among the global
retrieval results for each query. The best scores for each group are boldfaced. ‡ denotes extract re-ranking scores with the official models.

model
Loss Medium Hard

Lcls Lcon ROxf +1M RPar +1M ROxf +1M RPar +1M

R50-SENet ✓ 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9
+ αQE 84.8 78.6 93.1 86.6 66.9 57.8 85.3 73.0
R50-SENet ✓ 81.9 74.2 90.0 79.1 63.0 52.0 78.1 59.9
+ αQE 84.0 79.6 92.6 86.4 67.1 60.8 83.8 72.7
R101-SENet ✓ ✓ 80.0 72.5 91.6 82.1 61.7 49.2 82.2 64.6
+ αQE 83.2 78.4 93.7 88.1 64.4 56.8 86.2 75.4
R101-SENet ✓ ✓ 82.8 76.1 91.7 83.6 66.0 55.7 82.8 67.8
+ αQE 85.0 81.2 93.2 88.2 69.3 63.0 85.7 76.5

Table S2. Effect of the Alpha Query Expansion (αQE).

model
(R50, Lcls)

Medium Hard

ROxf +1M RPar +1M ROxf +1M RPar +1M

baseline 78.6 70.7 89.5 77.4 58.8 44.8 77.9 57.7

directly 79.8 71.4 90.1 77.8 60.4 46.3 78.5 58.1
channel-wise 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9

Table S3. Ablation experiments on channel-wise self-similarity.

model
(R50, Lcls)

Medium Hard

ROxf +1M RPar +1M ROxf +1M RPar +1M

baseline 78.6 70.7 89.5 77.4 58.8 44.8 77.9 57.7

Dot Product 80.3 71.7 90.1 77.3 61.5 47.0 78.9 56.7
Cosine Similarity 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9

Table S4. Ablation experiments on self-similarity type.

model
(R50, Lcls)

Medium Hard

ROxf +1M RPar +1M ROxf +1M RPar +1M

baseline 78.6 70.7 89.5 77.4 58.8 44.8 77.9 57.7

Concatenate 80.1 71.7 89.9 78.3 61.4 47.3 78.6 58.5
Sum 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9

Table S5. Ablation experiments on feature fusion method.

S1.4. Additional Feature Visualization
We additionally visualize the intermediate features of

our proposed network in Fig. S1 to see the effect of the pro-
posed modules. In this figure, original features F and self-
similarity descriptor D are fused to structural feature Fs

while raising the similarities where both visual and struc-
tural cues form a consensus and diminishing the similarities
that do not.

S1.5. Additional Qualitative Results
Additional qualitative results on ROxford5k [8, 10] and

RParis6k [9, 10] benchmark are shown in Fig. S2 and
Fig. S3, respectively. All results are reported from exper-
iments with the addition of a 1M distractor on “hard” diffi-
culty (ROxf-Hard+1M and RPar-Hard+1M). These results
show that the proposed structural embedding finds the cor-
rect answer more accurately, even when the baseline solu-
tion often retrieves incorrect answers due to similar visual
properties.
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Figure S1. Additional visualization of the intermediate feature similarity between query-positive and query-hard negative images. Our
network enhances the similarity where the visual and structural cues form a consensus and diminishes other parts. Sc(·, ·) denotes cosine
similarity between two inputs. All features are extracted using R50-SENet-Lcls model.
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Figure S2. Additional qualitative results with R50-DELG† and R50-SENet-Lcls models on ROxford5k-Hard+1M benchmark. The
upper line is the result of R50-DELG†, and the lower line is the result of R50-SENet-Lcls. Correct and incorrect answers are marked with
green / red borders around the image, respectively. yellow dotted line indicates the area of the positive image that overlaps the query. All
query images are cropped following the evaluation protocol of [10]. Our purpose is to visualize the difference between the baseline and
our proposed methods so we skip the correct results that both models correct.
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Figure S3. Additional qualitative results with R50-DELG† and R50-SENet-Lcls models on RParis6k-Hard+1M benchmark. The
upper line is the result of R50-DELG†, and the lower line is the result of R50-SENet-Lcls. Correct and incorrect answers are marked with
green / red borders around the image, respectively. yellow dotted line indicates the area of the positive image that overlaps the query. All
query images are cropped following the evaluation protocol of [10]. Our purpose is to visualize the difference between the baseline and
our proposed methods so we skip the correct results that both models correct.
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[3] Ondřej Chum, Andrej Mikulik, Michal Perdoch, and Jiřı́
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