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A. Limitations
The proposed ACSeg directly exploits the pixel-level representations of a pre-trained ViT model. Although the ACG

accurately groups pixels to concepts in the representation space, it can not be guaranteed that all representations reflect
the corresponding semantic relationship unambiguously, especially when there is a gap between the pre-training dataset
and the downstream task. On the other hand, the region-level representation is also transferred from pre-trained models
and thus suffers from the domain shift. Although it performs well on VOC, the gap between the pre-training data of the
backbone (ImageNet) and COCO causes only modest performance on COCO. It can be mitigated by training a task-specific
model to produce better representations like STEGO [3] and SlotCon [18]. We take solving this issue as future research.
Meanwhile, the pre-defined number of prototypes is neccesary as the optimal partition of images is unknowable without
given granularity. This hyperparameter impacts the granularity since each pixel pair is assigned to the closest prototype when
optimizing the loss. Empirically, our method performs well when the variance of image complexity is not so large and this
hyperparameter is determined by observation on several samples. Dealing with extremely large and complex datasets is still
a limitation.

B. Additional Implementation Details
Dataset. We use the PASCAL VOC 2012 [2] dataset (with extra augmentation data [4]) and COCO-Stuff [8] dataset for
training and evaluation. For the COCO-Stuff dataset, we exploit the 27-classes subset and the “curated” split1 introduced by
IIC [6].
Baseline. Since the ACSeg can be regarded as a kind of clustering, we adopt some commonly used clustering methods
k-means [5], spectral clustering [16], affinity propagation [1], and agglomerative clustering [10] as baselines for comparison.
We use the implementation of these algorithms in Scikit-learn [11]. For these baselines, it is difficult to choose a fixed set
of parameters for all images, which is why these methods cannot achieve good adaptiveness. We chose relatively suitable
hyperparameters for different baselines, as shown in Table III. On the other hand, their are some existing over/ under-
clustering methods for replacing the ACG, such as LOST [14] and DSM [9]. We compare the proposed ACG with them and
show the results in Table I.
K-means clustering. In this setting, we run k-means clustering on the region-level representations produced by the concept
classifier to get the class prediction of each concept. For the VOC 2012 dataset, we first recognize the concepts belonging
to background as mentioned in Section 3.5. After that, we run k-means to assign the representations of predicted foreground
concepts to 20 clusters and finally get predictions of 21 classes (20 foreground classes + 1 background class). The background
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class is recognized by the method proposed in Section 3.5. We show the results with some other possible alternatives in
Table II. For the COCO-Stuff dataset, since there is no background category, we directly cluster all representations into 27
classes. The evaluation is done by matching the predicted clusters with the ground truth by Hungarian algorithm [7].

LOST [14] DSM [9] ACG (Ours)
18.2 36.8 47.1

Table I. Results of other baselines.

Max Area [9] Unsupervised Saliency [17] Attention (Ours)
39.1 46.0 47.1

Table II. Results of other background classification methods.

k-NN retrieval. We adopt the weighted k-NN classifier in this setting. Specifically, the soft label of a concept is calculated by
weighted averaging one-hot labels of k most similar concepts by their similarity, where we use the cosine distance between
region embeddings as the similarity. Finally, the category with the highest score in the soft label is used as the classification
result of a concept. We generate labels for concepts in the training set by the most overlapping ground truth region. The
evaluation is done on the val set of VOC 2012 and COCO-Stuff. For the VOC 2012 dataset, we chose the train and aug2

sets as the training set. For the COCO-Stuff dataset, we only report the results produced by using the first 10k samples of the
train set in the main text, because it is very time-consuming to get the results of baselines. We show the results of our method
when using all samples of the train set in Table IV.

Algorithm Hyperparameters
K-means n clusters = 5, init = ‘k-means++’
Spectral clustering n clusters = 5, n components = 5
Affinity propagation damping=0.5, preference = -2
Agglomerative clustering distance threshold = 0.65, linkage = ‘average’

Table III. Hyperparameters for different clustering baselines k-means, spectral
clustering, affinity propagation, and agglomerative clustering.

Dataset Method K=1 K=5

COCO

K-means 29.9 33.1
Spectral 28.5 31.3

ACSeg (Ours) 30.4 34.0
ACSeg†(Ours) 33.8 37.7

Table IV. Additional k-NN retrieval results. †
indicates using all samples.

Unsupervised semantic segmentation with text. We first generate the text-based classifiers using the text encoder of
CLIP [12] and the pre-defined categories. Following [12, 19], the words of categories are wrapped to sentences by templates
and the classifier for a category is the average of the corresponding wrapped sentences. For the VOC 2012 dataset, we use
the background classifier mentioned in Section 3.5 and only construct the text-based classifier for 20 foreground categories.
For the COCO-Stuff dataset, we first classify concepts to all the things and stuff categories defined in COCO and then map
them to 27 classes following ReCo [13]. For the visual representations, we first get the pixel-level representations following
MaskCLIP [19] with CLIP-ViT-B/16 and then produce the region-level representation for each concept by averaging the
pixels within it.

C. Additional Qualitative Results
We show the additional t-SNE [15] visualization of the pixel-level representations and discovered concepts, clustering

results, and retrieval results in Figure I, Figure II, and Figure III, respectively. In addition, the visualization of the training
process can be found in acseg video.mp4 in the supplementary material.

2samples in SBD [4] but not in train and val sets
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Figure I. Additional t-SNE visualization of the pixel-level representations (marked with dots) produced by self-supervised ViT and
the corresponding concepts discovered by the ACG (marked with stars). We mark the concepts found by the ACG in different colors.
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Figure II. Additional qualitative results on PASCAL VOC 2012 dataset.
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Figure III. Additional visualization of k-NN retrieval results. We show five concepts with the highest similarity following each query
concept (with red frame). The concepts is shown by the highlighted area in the image.
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[14] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud Marlet, and Jean
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