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A. Outline
In this supplementary material, we provide more details for our paper titled “Class Balanced Adaptive Pseudo Labeling

for Federated Semi-Supervised Learning”, organized into the following sections:

• Appendix A gives the overall training procedure of our CBAFed in Algorithm 1.

• Appendix B gives detailed review of traditional pseudo labeling methods.

• Appendix C gives more discussions of proposed residual weight connection.

-Appendix C.1 gives detailed comparison of proposed residual weight connection and mean teachers [10].

-Appendix C.2 empirically shows that skip connection is important for the success of residual weight connection.

• Appendix D gives proof of theorem 3.1 in paper.

• Appendix E gives more discussions of class balanced adaptive pseudo labeling.

• Appendix F gives experiment details and more experimental results.

-Appendix F.1 gives detailed dataset splitting and pre-processing.

-Appendix F.2 gives the implementation details of experiments in our paper.

-Appendix F.3 gives discussions of different training strategies on labeled clients when number of labeled clients is
Two.

-Appendix F.4 gives experimental results on AUC metric.

-Appendix F.5 gives experimental results on partially labeled clients.

A. Algorithm 1
To further illustrate our method, the overall training procedure is summarized in Algorithm 1.

B. Review of Classic Batch-based Pseudo Labeling
In semi-supervised learning, for unlabeled data, traditional approaches [1,9,12], such as Fixmatch [9] and Flexmatch [12],

use original data or their weak augmented version in one batch to generate pseudo labels. These labels are adopted to
supervise model’s training. Let X l = {(X l

i , y
l
i)}Bi=1 be a batch of B labeled data and X u = {Xu

i }ϵBi=1 be a batch of ϵB
unlabeled data, where ϵ is the hyperparameter that determines the relative sizes of X l and X u. Let pm(y|θ(X)) be the
predicted class distribution produced by the model θ for input X . The pseudo label q̂ui is calculated by:

q̂ui = argmax pm(y|θ(Xu
i )), i = 1, 2, · · · , ϵB. (1)
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Algorithm 1: Class Balanced Adaptive Pseudo Labeling

Input: Initialized global model θG1 , dataset Di in Ci, i = 1, 2, · · · , n+m, threshold base τ , upper bound threshold
τh, hyper-parameter α1, α2, β, skip epoch s, local supervised training epoch J , warm up stage
communication rounds P and total communication rounds T .

Output: Global model θGT+1

1 for t← 1 to P do
2 In local clients
3 for ℓ← 1 to m in parallel do
4 θℓt ← θGt
5 θres ← θGt
6 for j ← 1 to J do
7 θℓt ←use Eq. 5 to update θℓt
8 if j%s = 0 then
9 θℓt = α1θ

res + (1− α1)θ
ℓ
t

10 θres = θℓt

11 return θℓt , σℓ
t (1), σ

ℓ
t (2), · · · , σℓ

t (C), |Dℓ|
12 In central server
13 θGt+1 ←

∑m
ℓ=1

|Dℓ|∑m
i=1 |Di|θ

ℓ
t

14 if t%s = 0 then
15 θGt+1 = α1θ

G
t+1−s + (1− α1)θ

G
t+1

16 In central server
17 set σu

t (c) = 0 and use equations 10∼14 to compute class distribution p̃t(c) and threshold Tt+1(c), c = 1, 2, · · ·C.
18 for t← P+1 to T do
19 In local clients
20 for ℓ← 1 to m in parallel do
21 θℓt ← θGt
22 θres ← θGt
23 for j ← 1 to J do
24 θℓt ←use Eq. 5 to update θlt
25 if j%s = 0 then
26 θℓt = α1θ

res + (1− α1)θ
ℓ
t

27 θres = θℓt

28 return θℓt , σℓ
t (1), σ

ℓ
t (2), · · · ,σℓ

t (C), |Dℓ|
29 for µ← m+ 1 to n+m in parallel do
30 θµt ← θGt
31 Tt+1(c)← Tt+1(c), c = 1, 2, · · · , C
32 p̃t(c)← p̃t(c), c = 1, 2, · · · , C
33 use Eq. 17, 19 and 20 to compute new training dataset Dtrain

µ

34 use Eq. 22 to compute σµ
t (c), c = 1, 2, · · · , C

35 θµt ← use Eq. 21 to update θµt
36 return θµt , σµ

t (1), σ
µ
t (2), · · · , σ

µ
t (C), |Dtrain

µ |
37 In central server
38 use Eq. 23 to compute scaling factor wi

t

39 θGt+1 ←
∑n+m

i=1 wi
tθ

i
t

40 if t%s = 0 then
41 θGt+1 = α2θ

G
t+1−s + (1− α2)θ

G
t+1

42 use equations 10 ∼ 14 to compute class distribution p̃t(c) and threshold Tt+1(c), c = 1, 2, · · ·C.
43 In central server
44 return θGT+1



The training losses are: L = Ll + λLu, where loss Ll for labeled data (supervised loss) and loss Lu for unlabeled data
(unsupervised loss) are computed by:

Lu =
1

ϵB

ϵB∑
i=1

1(max(pm(y|θ(Xu
i )) > τ)H(q̂ui , pm(y|θ(Xu

i ))), (2)

Ll =
1

B

B∑
i=1

H(yl
i, pm(y|θ(Xl

i))), (3)

where H(, ) is an entropy function , τ is the threshold and λ is a trade-off parameter. Noted that in batch-based pseudo
labeling, the unsupervised loss is applied on a selected subset of current batch, which supervised by the pseudo labels
computed in current batch, as shown in Eq. 2.

C. More Discussions of Residual Weight Connection
C.1. Comparison of Residual Weight Connection and Mean Teachers

In this section, we give more comparisons of our residual weight connection and mean teachers [10]. The main differences
lie in three folds: 1) The update strategy is different. In mean teachers [10], the update of teacher model is conducted after
each training iteration with the student model optimized by the consistency loss. In our residual weight connection, there is
only one model and the there is one skip epoch between every residual update. Residual update is done after every s epochs
with a weighted average of the model’s weight and weight of the same model in the s epoch before this epoch. 2) The usage
scenarios are different. The mean teachers model [10] is designed for semi-supervised learning. It mainly uses consistency
regularization to train the model. Our residual weight connection is designed for fully supervised learning in labeled clients
or model aggregation in the central server. 3) The scale of parameter α is different. In mean teacher [10], α is set to 0.999,
so the impact of the student model’s weight is low for the model update. In our residual weight connection, α is set to 0.8 or
0.5. So the impact of the former model’s weight is high in residual update.

C.2. Skip Connection is Important

In our residual weight connection, we define a skip epoch s between residual update, i.e., residual weight connection
every s epochs. In this section, we will give experimental results to show this skip connection is important for the success of
residual weight connection. We conduct experiments on SVHN dataset and set the same setting as that in Sec. 4.1. Fig. 1
shows the test accuracy curve of FedAVG [7] training on on one labeled client with s = 1 and s = 5. As can be shown in the
figure, with the skip connection (s = 5), the model eventually achieves better performance.

Figure 1. Test accuracy curve in local training of SVHN dataset with s = 1 and s = 5. For s = 5, we also show a curve on epochs with
skip weight connection.



D. Proof of Theorem 3.1
Theorem.

τ + p̃t(c)−
√

1

C
≤ Tt(c) ≤ τ + p̃t(c), (4)

Proof. Note that

pt =
1

C

C∑
c=1

p̃t(c) =
1

C
, (5)

so we have

0 ≤ std(p̃t) =

√√√√ 1

C − 1
(

C∑
c=1

p̃t(c)2 − 2

C∑
c=1

p̃t(c)pt + Cp2t )

=

√√√√ 1

C − 1
(

C∑
c=1

p̃t(c)2 −
1

C
)

≤
√

1

C − 1
(1− 1

C
) =

√
1

C
.

(6)

Thus,

τ + p̃t(c)−
√

1

C
≤ Tt(c) ≤ τ + p̃t(c). (7)

E. More Discussions of Class Balanced Adaptive Pseudo Labeling
In this section, we give more discussions of class balanced adaptive pseudo labeling. We argue that std(p̃t) (Eq. 12 in the

main paper) is important for balancing the empirical distribution of training data. Considering some extreme cases that if the
amount of training data of some classes (e.g., c1) are large and some classes (e.g., c2) are low, this will lead to a large std(p̃t).
Thus, the threshold of c2 will be low and more pseudo labels in c2 can be selected. For c1, because p̃t(c1) is large, p̃t(c1)+ τ
will be much larger than τh, so relatively larger std(p̃t) will not change the value of the threshold of c1 (Tt(1) will still be
τh). Finally, the training distribution will be more balanced in the next communication round. In conclusion, introducing
std(p̃t) when computing the threshold will encourage a more balanced training process.

F. Experiment Details and More Experimental Results
F.1. Dataset Splitting and Pre-processing

To evaluate the effectiveness of our proposed method, we conduct extensive experiments on four image classification
datasets, i.e., SVHN, CIFAR-10, CIFAR-100, Fashion MNIST and one medical image classification dataset: ISIC 2018
(Skin Lesion Analysis Towards Melanoma Detection). For the former four natural datasets, we use the original training and
test dataset for training and testing. For ISIC 2018 dataset, we randomly select 80% images for training and the remaining
images for testing. For SVNH and CIFAR-10/100, we resize the original 32×32 images to 40×40 pixels and randomly crop
a 32× 32 region. For Fashion MNIST dataset, we resize the original 28× 28 images of these datasets to 36× 36 pixels and
randomly crop a 32× 32 region. Regarding ISIC 2018, we resize the spatial resolution of the original image from 600× 450
to 240× 240 and randomly crop a 224× 224 region. After resizing and randomly croping, we normalize the cropped region
for all 5 datasets as the network input. Noted that we strictly follow the settings used in [5] for CIFAR datasets, SVHN and
ISIC 2018.

F.2. Detailed Implementation Details

In this section, we give detailed implementation details in our experiments.



Main Experiments in Sec. 4.1 We utilize the SGD optimizer, and implement our method with PyTorch. We adopt
ResNet18 [4] from PyTorch for all datasets. For fair comparison, we use the same network architecture and training protocol,
including the optimizer, data preprocessing, etc. across all FSSL methods. The learning rate in the labeled client and the
unlabeled clients are empirically set to 0.03 and 0.02 for all datasets. The batch size is set to 64 for SVHN, CIFAR-10/100
and Fashion MNIST, and 12 for for ISIC 2018. We empirically set τ = 0.84 for all datasets, τh = 0.95 for CIFAR-10/100
and Fashion MNIST and τh = 0.9 for SVHN and ISIC 2018. The hyper-parameter β is set as 0.7 for CIFAR-10 and Fashion
MNIST, 0.3 for SVHN and CIFAR-100, and 0.03 for ISIC 2018. For residual weight connection, we set α1 = 0.8 in local
labeled training and α2 = 0.5 in global model aggregation of all datasets. For ISIC 2018 dataset, we follow [5] to enlarge
the the weight of labeled client to about 50%. The total communication round is set to 1000 (warm up stage is 500) for all 5
datasets except CIFAR-100. Since the task of CIFAR-100 is harder, we set the total communication round to 2000 (warm up
stage is 1000).

ViT Backbone. The experiments are conducted on SVHN dataset. We utilize the SGD optimizer, and implement our
method with PyTorch. We adopt ViT-Tiny pre-trained model on Imagenet [2] as backbone [3] from PyTorch. The learning
rate in the labeled client and the unlabeled clients are empirically set to 0.005 and 0.001. The batch size is set to 64. We
empirically set τ = 0.84, τh = 0.95, β = 0.3, α1 = 0.8 and α2 = 0.5. Since ViT [3] converges much faster than CNNs [8],
the total communication round is set to 200 (warm up stage is 100).

F.3. Discussions of Training Strategies in Warm up Stage when Number of Labeled Clients is Two

When the number of labeled clients is larger than 1, different training strategies can be used for labeled clients w.r.t.
number of local epochs and the usage of residual weight connection. [8] claims that final global model with one local training
epoch performs better compared with more than one local training epochs. But, we find that more local training epochs with
residual weight connection will perform better when the number of labeled clients are more than one. We first compare three
representative training strategies: (1) model w/ one local training epoch w/o residual weight connection (2) model w/ one
local training epoch w/ residual weight connection in global aggregation stage (3) model w/ eleven local training epoch w/
residual weight connection in both local training and global aggregation stage. We set α = 0.8 for both local training and
global aggregation and set the skip epoch as s = 5. Fig. 2 and 3 show the training curve of these three training strategies.
We can see that strategy 3 performs much better and more stable than strategy 1 and 2. Meanwhile, strategy 1 and 2 perform
closely. So residual weight connection in local training has dominant effect for more robust training process compared with
in global aggregation. Since more local training epochs w/ residual weight connection performs better, we then compare
strategy 1, 2 and a new training strategy 4: model w/ eleven local training epochs w/o residual weight connection. Fig. 4
shows the training curves. As shown in Fig. 4, although strategy 4 can converge much faster, the final performances of
strategy 4 and strategy 1 are close, which is much lower than strategy 3. Lastly, we compare the effect of residual weight
connection in local training and global aggregation. We set two new strategies, i.e., strategy 5: model w/ eleven local training
epochs w/ residual weight connection only in local training and strategy 6: model w/ eleven local training epochs w/ residual
weight connection only in the global aggregation stage. Fig. 5 shows the training curves. As shown in Fig. 5, strategy 3
and 5 have close performances, which is higher than strategy 6. So residual weight connection in local training dominates
the improvement of final performance. Moreover, the test curves of strategy 3 and 5 are much more stable than strategy 6, so
residual weight connection in local training can also make the global model more stable during training.

F.4. More Experimental Results.

In this section, we give more experimental results. Table 1 reports Area under the ROC Curve (AUC) results on five
datasets.

F.5. Results on Partially Labeled Clients

To better study the ability of our CBAPL and residual weight connection in another FSSL setting, following [5], we further
conduct experiments that all local clients are partially labeled with 10% data. Since FedIRM [6] requires extra supervision
from fully labeled clients which cannot be generalized on this setting, we only compare our method with RSCFed [5] and
Fed-Consist [11]. Besides, we report the results of FedAVG [7] trained on all data as the upper bound (local training epoch 1),
FedAVG [7] trained on only labeled data as the lower bound (local training epoch 1) and FedAVG [7] trained on only labeled
data with residual weight connection in both local training and global aggregation (local training epoch 6). As shown in
Table 2, our method surpasses all compared baselines. Note that FedAVG [7] trained on only labeled data w/ residual weight
connection can significantly surpass the one w/o residual weight connection. In this setting, although labeled training data



Figure 2. Test accuracy curve of models trained on two labeled clients with different training strategies.

Figure 3. Test accuracy curve of models trained on two labeled clients with different training strategies. For training curve of strategies
with residual weight connection, we only show epochs on skip weight connection.

Table 1. Area under the ROC Curve (AUC) results on SVHN, CIFAR-10/100, Fashion MNIST and ISIC 2018 datasets under heterogeneous
data partition with ResNet18. FedAVG+ means FedAvg [7] trained with all one labeled clients using our residual weight connection. Fed-
consist+ means Fed-Consist [11] using our proposed fixed pseudo labeling without enlarging the weight of labeled client.

Labeling Strategy Method Client Num. Dataset
labeled unlabeled SVHN CIFAR10 CIFAR100 Fashion-MNIST ISIC 2018

Fully supervised
FedAvg [7](upper-bound) 10 0 99.39 98.16 96.70 99.41 93.69
FedAvg [7](lower-bound) 1 0 94.21 89.90 81.18 95.48 83.62

FedAvg+ [7] 1 0 97.01 91.61 84.88 97.32 85.45

Semi supervised

FedIRM [6] 1 9 94.79 89.38 83.17 95.55 82.39
Fed-Consist [11] 1 9 95.92 88.97 82.79 94.36 82.13

Fed-Consist+ [11] 1 9 97.14 89.75 81.27 95.62 83.37
RSCFed [5] 1 9 96.32 90.76 85.02 95.96 83.99

CBAFed(ours) 1 9 98.85 93.87 85.23 98.48 85.01

from all clients are balanced, the total training amount is small. It shows our residual weight connection enjoys the benefits
of robustness and the ability of reaching better optimum even when training on balanced federated setting whose amount of
training data is small. Fig. 6 shows the test curves w/ and w/o residual weight connection. Since the overall training data is
balanced, the test curve w/o residual weight is slightly more stable compared with imbalanced case. But, model w/ residual



Figure 4. Test accuracy curve of models trained on two labeled clients with different training strategies.

Figure 5. Test accuracy curve of models trained on two labeled clients with different training strategies.

Table 2. Comparison of our method against RSCFed [5], Fed-Consist [11] and FedAVG [7] in cifar-10 dataset, with the number of labeled
data in every client is set to 10%.

Method Client Num. Accuracylabeled unlabeled
FedAVG [7](upper bound) 100% 0 80.89
FedAVG [7](lower bound) 10% 0 52.83

FedAVG+ [7] 10% 0 60.55
Fed-Consist [11] 10% 90% 59.75

RSCFed [5] 10% 90% 63.14
CBAFed(ours) 10% 90% 64.82

weight connection performs much better than w/o residual weight connection.
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