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A. Sensitivity Analysis on Hyper-parameters

The hyper-parameters in our method including γ in Eq. 8,
ϵ in Eq. 10 and λ in Eq. 12. In Figure 1, a sensitivity study
of them on 3-bit ResNet-18 is performed. For γ, we choose
several small values from 0 to 2 since the optimization in data
generation process of ImageNet is not as easy as other small-
scale datasets. We keep ϵ on a small magnitude so that the
perturbation is not too large, and keep λ on a large magnitude
so that the magnitude of two loss terms are consistent. The
results show that the performance of HAST is somewhat
sensitive to these hyper-parameters, but most of these results
(50.12% ∼ 51.15%) are comparable with that of the model
fine-tuned on real data (51.95%). Note that the worse results
in Figure 1 outperforms the quantized model obtained by the
state-of-the-art ZSQ method (45.51%) in a large margin. We
conduct similar experiments to find out the optimal value of
these hyper-parameters on other datasets.

B. Sample Difficulty Promotion Details

Perturbation Direction Calculation. In the main paper,
we calculate the perturbation δ by maximizing the sample
difficulty, which is closely related to the loss. However, there
are two loss terms, i.e., the Kullback-Leibler (KL) loss and
the feature alignment (FA) loss in the fine-tuning process.
Thus we conduct a further experiment to select the optimal
loss for perturbation direction calculation. The experimental
results are shown in Table 1. We observe that the choice of
loss for calculating the perturbation direction has a certain
impact on the performance. Though not optimal for all set-
tings, we choose KL+FA to calculate perturbation direction
since it shows the best in most settings.

loss weights. We apply sample difficulty promotion to
the synthetic samples obtained by hard sample synthesis
for more difficult samples. Then both of them are used to
fine-tune the quantized model with the same loss weights.
Further experiments on the loss weights of the original syn-
thetic samples and the promotional samples are conducted.
Experimental results are shown in table 2. The loss weight
of the original synthetic samples is denoted as a, and that of
the promotional samples is denoted as b. We perform 3-bit
quantization on CIFAR-10 and ImageNet. For CIFAR-10,

Dataset Model Bit-width KL FA KL+FA

Cifar-10 ResNet-20 W4A4 92.43 92.29 92.36
W3A3 88.29 87.68 88.34

Cifar-100 ResNet-20 W4A4 66.69 66.50 66.68
W3A3 55.61 55.13 55.67

ImageNet ResNet-18 W4A4 66.90 66.69 66.91
W3A3 51.06 50.87 51.15

Table 1. Performance of our HAST when calculating perturbation
direction with diferent losses. We maximize the gradient of KL, FA
and KL+FA respectively to calculate perturbation direction.

we achieve the best accuracy of 88.34% by setting both the
weights to 1. When it comes to ImageNet, better perfor-
mance than that reported in the main paper is obtained by
increasing the weight of promotional samples.

a, b
ResNet-20 ResNet-18

a, b
ResNet-20 ResNet-18

Cifar-10 ImageNet Cifar-10 ImageNet
1,0 86.17 47.94 0,1 88.19 48.55
3,1 85.92 50.52 1,4 86.69 52.14
2,1 87.53 50.97 1,3 86.94 53.12
1,1 88.34 51.15 1,2 87.73 52.69

Table 2. Ablation results of loss weights in W3A3 setting. The loss
weights of original synthetic samples and promotional samples are
denoted as a, b respectively.

C. Feature Alignment Analysis
Direct feature alignment vs. relaxed feature alignment.

Direct feature alignment [3] is an easy and effective way
to transfer feature representations by directly using mean
square error to align the feature. However, we use attention
vector [4] to relax the feature alignment constraint due to
the limited capacity of quantized model. In this section, we
provide the performance comparison of our HAST between
using direct feature alignment (DFA) and using relaxed fea-
ture alignment (RFA). Table 3 shows the experimental results.
The relaxed feature alignment obtains better performance
in any settings over direct feature alignment. Significant im-
provements can be observed from 3-bit quantization. This
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Figure 1. Sensitivity analysis on hyper-parameters. We report the top-1 accuracy of 3-bit ResNet-18 on ImageNet.
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Figure 2. Further experiments on feature alignment. (a)Gradient cosine similarity of two terms in loss function. (b)Distribution of the
eigenvalues for different loss.

shows that it is harmful for low-precision quantized model
to learn the feature representations of full-precision model
directly.

Dataset Model Bit-width HAST(DFA) HAST(RFA)

Cifar-10 ResNet-20 W4A4 91.99 92.36
W3A3 83.92 88.34

Cifar-100 ResNet-20 W4A4 66.53 66.68
W3A3 51.50 55.67

ImageNet ResNet-18 W4A4 66.49 66.91
W3A3 45.52 51.15

Table 3. Performance of our HAST with direct feature alignment
and relaxed feature alignment.

Cooperation with KL. Gradient cosine similarity was
used in [1] to measure the cooperation ability of multiple
loss terms. The authors found that the cross-entropy (CE)
loss does not work well with the Kullback-Leibler (KL) loss
in network fine-tuning process. We apply this metric in our
work. Specifically, we fine-tune the 3-bit ResNet-20 using
baseline (CE+KL) [5] and our HAST (FA+KL) respectively
and measure the cosine similarity of the gradient of two
distinct loss terms. As shown in Figure 2a, the cosine dis-
tance between CE and KL takes negative values throughout
the fine-tuning, while that of FA+KL is positive. This im-
plies that the combinations of FA and KL cooperate well,
and using them together could enhance each other, which is
opposite to the combinations of CE and KL.

Generalizability. Hessian matrix was used in [1] to mea-
sure the local curvature of the loss surface and compare the

generalizability of the two distinct loss terms. Since Hessian
matrix itself is enormous in size and computations involving
its entirety is considered almost infeasible, analyzing the
eigenvalues of the matrix is often the most preferred way
to study its characteristics. Figure 2b plots the distribution
of the eigenvalues of the Hessian matrix, approximated by
PyHessian [2]. We separate Hessian calculation for each loss
of CE, KL and FA. A huge difference in the local curvature
of the loss terms can be observed. While CE has longer tail
for high eigenvalues, KL and FA has more concentration to
lower eigenvalues, which means the local curvature of loss
surface of KL and FA is smaller than that of CE, leading to
better genrealizability according to the finding that smaller
local curvature improves generalization [1].

D. Results with smaller number of samples

Table 4 shows the ablation on amount of the synthetic
samples. The performance drops as the number of samples
decreases. However, HAST with only 256 samples still per-
forms better than previous methods, such as IntraQ with
45.51% using 5120 samples.

Amount IntraQ(5120) 256 1280 2560 5120

ACC(%) 45.51 49.17 49.95 50.23 51.15

Table 4. Results with smaller number of samples.
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